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The nematode Caenorhabditis elegans has emerged as an

important animal model in various fields including neurobiology,

developmental biology, and genetics. Characteristics of this

animal model that have contributed to its success include its

genetic manipulability, invariant and fully described developmen-

tal program, well-characterized genome, ease of maintenance,

short and prolific life cycle, and small body size. These same

features have led to an increasing use of C. elegans in toxicology,

both for mechanistic studies and high-throughput screening

approaches. We describe some of the research that has been

carried out in the areas of neurotoxicology, genetic toxicology, and

environmental toxicology, as well as high-throughput experiments

with C. elegans including genome-wide screening for molecular

targets of toxicity and rapid toxicity assessment for new

chemicals. We argue for an increased role for C. elegans in

complementing other model systems in toxicological research.

Key Words: Caenorhabditis elegans; neurotoxicity; genotoxicity;
environmental toxicology; high-throughput methods.

Caenorhabditis elegans is a saprophytic nematode species

that has often been described as inhabiting soil and leaf-litter

environments in many parts of the world (Hope, 1999); recent

reports indicate that it is often carried by terrestrial gastropods

and other small organisms in the soil habitat (Caswell-Chen

et al., 2005; Kiontke and Sudhaus, 2006). Although scientific

reports on the species have appeared in the literature for more

than 100 years (e.g., Maupus, 1900), the publication of

Brenner’s seminal genetics paper (Brenner, 1974) signaled its

emergence as an important experimental model. Work with

C. elegans has since led in a short time span to seminal

discoveries in neuroscience, development, signal transduction,

cell death, aging, and RNA interference (Antoshechkin and

Sternberg, 2007). The success of C. elegans as a model has

attracted increased attention as well in the fields of in

biomedical and environmental toxicology.

Clearly, C. elegans will be a valuable toxicity model only if

its results were predictive of outcomes in higher eukaryotes.

There is increasing evidence that this is the case both at the

level of genetic and physiological similarity and at the level of

actual toxicity data. Many of the basic physiological processes

and stress responses that are observed in higher organisms

(e.g., humans) are conserved in C. elegans. Depending on the

bioinformatics approach used, C. elegans homologues have

been identified for 60–80% of human genes (Kaletta and

Hengartner, 2006), and 12 out of 17 known signal transduction

pathways are conserved in C. elegans and human (NRC, 2000;

Table 1). We discuss specific examples in the areas of

neurotoxicology and genetic toxicology in this review.

Caenorhabditis elegans has a number of features that make it

not just relevant but quite powerful as a model for biological

research. First of all, C. elegans is easy and inexpensive to

maintain in laboratory conditions with a diet of Escherichia coli.
The short, hermaphroditic life cycle (~3 days) and large number

(300þ) of offspring of C. elegans allows large-scale production

of animals within a short period of time (Hope, 1999). Since

C. elegans has a small body size, in vivo assays can be conducted

in a 96-well microplate. The transparent body also allows clear

observation of all cells in mature and developing animals.

Furthermore, the intensively studied genome, complete cell

lineage map, knockout (KO) mutant libraries, and established

genetic methodologies including mutagenesis, transgenesis, and

RNA interference (RNAi) provide a variety of options to

manipulate and study C. elegans at the molecular level (Tables 2

and 3; for a more detailed presentation of genetic and genomic

resources, see Antoshechkin and Sternberg, 2007). We address

the particular power of these genetic and molecular tools in

C. elegans at more length below.

Since reverse genetic and transgenic experiments are much

easier and less expensive to conduct in C. elegans as compared
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to many other model systems, it is a useful model for molecular

analyses of the response of conserved pathways to in vivo
chemical exposure. As an in vivo model, C. elegans provides

several characteristics that complement in vitro or cellular

models. The use of whole-organism assays, first of all, allows

the study of a functional multicellular unit, such as a seroto-

nergic synapse, instead of a single cell (Kaletta and Hengartner,

2006). Caenorhabditis elegans also enables the detection of

organism-level end points (e.g., feeding, reproduction, life

span, and locomotion) and the interaction of a chemical with

multiple targets in an organism. Thus, C. elegans complements

both in vitro and in vivo mammalian models in toxicology.

Of note, these characteristics facilitate high-throughput experi-

ments that can examine both fundamental toxicity, which are

critical since so many chemicals have yet to be thoroughly tested,

and the gene-gene and gene-environment interactions whose

importance is just beginning to be appreciated in toxicology.

Here we review three major applications of C. elegans in

biomedical and environmental toxicology: (1) mechanistic

toxicology, with a focus on neurotoxicity and genotoxicity; (2)

high-throughput screening capabilities; and (3) environmental

toxicology and environmental assessment. We emphasize

studies of neurotoxicity because they are the area of toxicology

in which C. elegans has been most exploited to date. We

discuss research methods, recent advances, and important

considerations including limitations of the C. elegans model.

Caenorhabditis elegans AND NEUROTOXICITY

Caenorhabditis elegans Is Well Suited for

Neurophysiology Analysis of Neurotoxicity

With 302 neurons representing 118 characterized neuronal

subtypes (Hobert, 2005), C. elegans provides an in vivo model

TABLE 1

Signal Transduction Pathways Conserved in Nematodes and

Vertebratesa,b

Pathways involved in early development

Wnt pathway via b-catenin

Receptor serine/threonine kinase (tumor growth factor-b receptor) pathway

Receptor tyrosine kinase pathway (small G-protein [Ras] linked)

Notch-delta pathway

Receptor-linked cytoplasmic tyrosine kinase (cytokine) pathway

Pathways involved in later development (e.g., organogenesis and tissue

renewal)

Apoptosis pathway (cell death pathway)

Receptor protein tyrosine phosphatase pathway

Pathways involved in the physiological function of differentiated cells of the

fetus, juvenile, and adult

G-protein–coupled receptor (large G-protein) pathway

Integrin pathway

Cadherin pathway

Gap junction pathway

Ligand-gated cation channel pathway

aAdapted from NRC (2000).
bSignal transduction pathways that are not conserved in nematodes and

vertebrates include the Wnt pathway via c-Jun N-terminal kinase, the

Hedgehog pathway (patched receptor protein), the nuclear factor kappa-B

pathway, the nuclear hormone receptor pathway, the receptor guanylate cyclase

pathway, and the nitric oxide receptor pathway.

TABLE 2

Examples of Mutational Analysis of Caenorhabditis elegans in Toxicology Research

Approach/toxin investigated Mutants used Major findings References

A. KO mutant analysis

Black widow spider

venom

lat-1: KO of latrophilin Latrophilin is the receptor responsible for the

toxicity of venom

Mee et al. (2004)

As asna-1: KO of ArsA ATPase ArsA ATPase is important in Ar resistance in both

bacteria and animals

Tseng et al. (2007)

Cd pgp-5: KO of a ABC transporter ABC transporter is required for resistance to

Cd toxicity

Kurz et al. (2007)

PCB52 cyp-35A1 to cyp-35A5: KOs of

cytochrome P450 35A subfamily

CYP35A is required for fat storage

and resistance to PCB52 toxicity

Menzel et al. (2007)

B. Forward genetics screen

BPA bis-1: mutant created from EMS mutagenesis Collagen mutants are hypersensitive to BPA Watanabe et al. (2005)

Phosphine pre-1, pre-7, pre-33: mutants created from

EMS mutagenesis

Uptake and oxidization of phosphone are directly

associated with oxidative stress in cells

Cheng et al. (2003)

Bt toxins bre-1 to bre-5: mutants created from EMS

mutagenesis

Five new genes involved in Bt toxicity are identified Marroquin et al. (2000)

bre-5: KO of b-1,3-galactosyltransferase Carbohydrate modification is involved in Bt toxicity Griffitts et al. (2001)

bre-2 to bre-5: KOs of glycolipid

carbohydrate metabolism

Glycolipid receptors are targets of Bt toxins Griffitts et al. (2005)

bre-1: KO of GDP-mannose 4,6-dehydratase The monosaccharide biosynthetic pathway is involved

in Bt toxicity

Barrows et al. (2007b)

Note. ABC, ATP-binding cassette; PCB52, polychlorinated biphenyl 52; EMS, ethane methyl sulfonate.
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for studying mechanisms of neuronal injury with resolution of

single neurons. It intially underwent extensive development as

a model organism in order to study the nervous system

(Brenner, 1974), and its neuronal lineage and the complete

wiring diagram of its nervous system are stereotyped and fully

described (Sulston, 1983; Sulston et al., 1983; White et al.,
1986). Each neuron has been assigned a code name

corresponding to its location. For example, ADEL describes

the dopaminergic (DAergic) head neuron ‘‘anterior deirid left.’’

This relatively ‘‘simple’’ nervous system is comprised of 6393

chemical synapses, 890 electrical junctions, and 1410 neuro-

muscular junctions (Chen et al., 2006). Additionally, the main

neurotransmitter systems (cholinergic, c-aminobutyric acid

(GABA)ergic, glutamatergic, DAergic, and serotoninergic)

and their genetic networks (from neurotransmitter metabolism

to vesicle cycling and synaptic transmission) are phylogenet-

ically conserved from nematodes to vertebrates, which allows

for findings from C. elegans to be extrapolated and further

confirmed in vertebrate systems.

Several genes involved in neurotransmission were originally

identified in C. elegans. This is exemplified by the GABA

vesicular transporter unc-47 and the regulatory transcription

factor unc-30 (for review on the GABAergic system [Jorgensen,

2005]), the vesicular acetylcholine (ACh) transporter unc-17
(for review on the cholinergic system [Rand, 2007]), the

glutamate-gated chloride channel subunits a1 and b (glc-1 and

glc-2, respectively, for review on the glutamatergic system

[Brockie and Maricq, 2006]), and the synaptic proteins unc-18,

unc-13, unc-26 (for review on synaptic function [Richmond,

2005]). Experiments challenging the C. elegans nervous

system by laser ablation of individual neurons/axons, exposure

to drugs, and other external stimuli have facilitated the design

of robust behavioral tests to assess the function of defined

neuronal populations (Avery and Horvitz, 1990; Bargmann,

2006; Barr and Garcia, 2006; Brockie and Maricq, 2006; Chase

and Koelle, 2007; Goodman, 2006; Morgan et al., 2007; Rand,

2007). For example, inhibitory GABAergic and excitatory

cholinergic motor functions are assessed by quantifying the

sinusoidal movement (amplitude and frequency of body bends)

and foraging behavior of the worm. Motor and mechanosen-

sory functions of glutamatergic neurons are evaluated by

measuring the pharyngeal pumping rate and the response to

touch. Mechanosensory functions of DAergic and serotoniner-

gic neurons are appraised by observing the ability of worms to

slow down when they encounter food. Furthermore, the

creation of transgenic strains expressing fluorescent proteins

in defined neurons allows in vivo imaging of any desired

neuron. While experimentally challenging in the cells of

microscopic animals, electrophysiology studies can be con-

ducted with relative ease and success in live worms and

cultured C. elegans neurons, establishing that they are

electrophysiologically comparable to vertebrate neurons in

their response to various drugs (Bianchi and Driscoll, 2006;

Brockie and Maricq, 2006; Cook et al., 2006; Schafer, 2006).

Given the relative ease with which gene KO and transgenic

animals can be generated, the ability to culture embryonic or

primary C. elegans cells offers unique perspectives for

neurotoxicology applications and study designs.

Caenorhabditis elegans Is a Potent Model to

Decipher Genetic Aspects of Neurotoxicity

The conservation of neurophysiologic components from

nematodes to humans largely relies on shared genetic networks

and developmental programs. Hence, the availability of

mutants for many of the C. elegans genes facilitated significant

progress in unraveling of evolutionarily conserved cellular and

genetic pathways responsible for neuron fate specificity

TABLE 3

Examples of Transgenic Caenorhabditis elegans Used in Toxicology Research

Field/target tagged Reporter used Applications References

A. Mechanistic studies

DAergic neurons GFP Detect neurodegradation caused by chemicals Jiang et al. (2007)

CYP14A3 and 35A3 GFP Detect intestinal CYP overexpression in response to

PCB52 as well as other xenobiotic CYP inducers

Menzel et al. (2007)

GST GFP Measure GST induction in response to acrylamide as

well as other inducers of oxidative stress

Hasegawa and van der Bliek (in press)

B. Environmental biomonitoring

Heat shock proteins GFP; b-galactosidase Widely used for measuring stress response associated

to toxicity of heavy metals, fungicides,

pharmaceuticals, as well as field samples

Dengg and van Meel (2004); Easton et al. (2001);

Mutwakil et al. (1997); Roh et al. (2006)

Metallothionein b-galactosidase Specifically used for monitoring the bioavailability

of heavy metals

Cioci et al. (2000)

ATP level Firefly luciferase Measure the reduction of metabolic

activity in response to environmental stressor

Lagido et al. 2001

Note. CYP, cytochrome P450; GST, glutathione S-transferase.

CAENORHABDITIS ELEGANS IN TOXICOLOGY RESEARCH 7



(Hobert, 2005), differentiation (Chisholm and Jin, 2005),

migration (Silhankova and Korswagen, 2007), axon guidance

(Quinn and Wadsworth, 2006; Wadsworth, 2002), and

synaptogenesis (Jin, 2002, 2005). Recently, laser axotomy in

C. elegans has been successfully applied to identify axon

regeneration mechanisms (Gabel et al., 2008; Wu et al., 2007),

which are of utmost importance in developing treatments to

reverse neurodegenerative processes and spinal cord injuries.

Essential cell functions relevant to neurotoxicity studies are

also conserved. This is best exemplified by the mechanistic

elucidation of the apoptotic pathway in C. elegans, for which

the 2002 Nobel Prize in Physiology or Medicine was awarded

(Hengartner and Horvitz, 1994; Horvitz, 2003; Sulston, 2003).

The pathway is of direct interest to neurotoxicologists since

apoptosis is implicated in many neurodegenerative diseases

and toxicant-induced cell demise (Bharathi et al., 2006; Hirata,

2002; Koh, 2001; Mattson, 2000; Ong and Farooqui, 2005;

Savory et al., 2003). Pathways relevant to oxidative stress–

related neuronal injuries, such as the p38 mitogen-activated

protein kinase and AKT signaling cascades, the ubiquitin-

proteasome pathway, and the oxidative stress response are also

conserved in the worm (Ayyadevara et al., 2005, 2008;

Daitoku and Fukamizu, 2007; Gami et al., 2006; Grad and

Lemire, 2004; Inoue et al., 2005; Kipreos, 2005; Leiers et al.,
2003; Tullet et al., 2008; Wang et al., 2007a).

The nematode model is also amenable to interesting genetic

alterations. Hence, it is very easy to generate transgenic worms

expressing any kind of mutant recombinant protein, providing

means for the study of neurodegenerative diseases (see

additional discussion below). Gene KO and altered function

mutations are in many cases available from the Gene Knockout

Consortium or the National BioResource Project of Japan

(currently ~1/3 of the ~20,000 total genes in C. elegans;

Antoshechkin and Sternberg, 2007) or alternatively are

conveniently generated using chemicals, radiations, or trans-

posons (discussed below under Caenorhabditis elegans and

Genotoxicity). Hence, classical approaches to elucidate in-

tracellular pathways in C. elegans include forward and modifier

screens following random mutagenesis (Inoue and Thomas,

2000; Malone and Thomas, 1994; Morck et al., 2003; Nass

et al., 2005; O’Connell et al., 1998). Finally C. elegans is

amenable to gender manipulation (possible generation of

males, feminized males, masculinized hermaphrodites, or

feminized hermaphrodites) permitting studies on sex specificity

mechanisms of neurotoxicants or disorders and ‘‘rejuvenation’’

by forcing development through the quiescent dauer larval

stage (Houthoofd et al., 2002).

Neurotoxicological Studies in C. elegans

Years before the latest technologic developments (RNAi and

high-throughput techniques), C. elegans was used to study

toxicity mechanisms of environmental factors affecting the

nervous system. The following section provides a synopsis of

the available literature on neurotoxicity-related issues

addressed in C. elegans. It is not meant to be exhaustive but

rather to illustrate typical studies that are amenable in the

C. elegans platform. We highlight studies with exposure

outcomes to various metals and pesticides, as well as general

considerations on studies of neurodegenerative diseases. We

emphasize the utility of C. elegans in addressing hypothesis-

driven mechanisms of neurotoxicity and extrapolations to

vertebrate systems.

Toxicity Mechanisms of Neurotoxic Metals in C. elegans

Caenorhabditis elegans has been used as a model system to

elucidate the toxicity and toxicological mechanisms of various

heavy metals, such as Aluminum (Al), Arsenic (As), Barium

(Ba), Cadmium (Cd), Copper (Cu), Lead (Pb), Mercury (Hg),

Uranium (U), and Zinc (Zn). In general, these studies focused

on various toxic end points, such as lethality, reproduction, life

span, and protein expression. Some focus has also been

directed to the effects of these metals on the nervous system by

assessing behavior, reporter expression and neuronal morphol-

ogy. We provide here a few examples of these approaches.

Investigators have performed numerous studies to assess

behavior-induced alterations following exposure of the worm

to heavy metals. Depending on the end point assessed,

neurotoxic effects on specific neuronal circuitries can be

inferred.

For instance, a defect in locomotion reflects an impairment

of the neuronal network formed by the interneurons AVA,

AVB, AVD, and PVC providing input to the A- and B-type

motor neurons (responsible for forward and backward

movement) and the inhibitory D-type motor neurons involved

in the coordination of movement (Riddle et al., 1997). By

recording short videos and subsequently analyzing them using

computer tracking software, it has been possible to quantify the

overall movement of C. elegans (distance traveled, directional

change, etc.), body bends and head thrashes, upon metal

treatments, allowing to further correlate the data with damages

to neuron circuitries. These computer tracking studies showed

that worms displayed a dose-dependent decrease in locomotory

movement upon exposure to Pb (Anderson et al., 2001, 2004;

Johnson and Nelson, 1991) and Al (Anderson et al., 2004),

while an increase in locomotion was observed upon exposure

to low concentrations of Hg as compared with Cu (Williams

and Dusenbery, 1988). Another study showed that exposure

to Ba impaired both body bend and head thrashing rates in

a dose-dependent manner (Wang et al., 2008), corroborating

mammalian data on the effect of Ba on the nervous system

attributed to its ability to block potassium channels (Johnson

and Nelson, 1991).

Feeding behavior has also been shown to be affected upon

heavy metal exposure. Feeding requires a different neuronal

circuitry including M3 (involved in pharyngeal relaxation), MC
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(control of pumping rate), M4 (control of isthmus peristalsis),

NSM (stimulate feeding), RIP, and I neurons (Riddle et al., 1997).

A decrease in feeding was observed when worms were exposed to

Cd or Hg (Boyd et al., 2003; Jones and Candido, 1999).

Behavioral research studying the effect of heavy metals on

C. elegans has also taken the route of assessing the ability of

the worm to sense the toxin and alter its behavior accordingly,

involving other neural circuitry, such as the amphid and

phasmid neurons responsible for chemosensation (Riddle et al.,
1997). By generating concentration gradient–containing plates,

Sambongi et al. (1999) discovered that C. elegans was able to

avoid Cd and Cu but not Ni and that the amphid ADL, ASE,

and ASH neurons were responsible for this avoidance as their

combined ablation eliminated the avoidance phenotype.

Furthering the investigation into the role of ASH neurons,

researchers found that a calcium (Ca2þ) influx could be elicited

upon exposing the C. elegans to Cu, which may provide insight

into the mechanism of the ability of the worm to display

avoidance behaviors (Hilliard et al., 2005).

Caenorhabditis elegans exhibits both short-term and long-

term learning-related behaviors in response to specific sensory

inputs (Rankin et al., 1990), which involve defined neuronal

networks. As an example, thermosensation-associated learning

and memory rely on the AFD sensory neuron sending inputs to

the AIY and AIZ interneurons, whose signals are integrated by

the RIA and RIB interneurons to command the RIM motor

neuron (Mori et al., 2007). When assessing the function of this

circuitry, worms grown and fed at a definite temperature are

moved to a food-deprived test plate exposed to a temperature

gradient. The ability of the worms to find and remain in the

area of the test plate corresponding to the feeding temperature

reflects the functioning of the thermosensation learning and

memory network aforementioned (Mori et al., 2007). In-

terestingly, worms exposed to Al and Pb exhibit poor scores at

this test, indicative of a significant reduction of the worms’

learning ability (Ye et al., in press). This recapitulates the

learning deficits observed in young patients overexposed to the

same metals (Garza et al., 2006; Goncalves and Silva, 2007).

While behavioral testing was informative of the neuronal

circuitries affected by heavy metals, additional experiments

uncovered the molecular mechanisms of their neurotoxic

effects. For example, in the previously described study, after

determining that Al and Pb induced memory deficits, the

investigators showed that the antioxidant vitamin E effectively

reversed these deficits, indicating a role of oxidative stress in

Al and Pb neurotoxicity (Ye et al., in press). The involvement

of oxidative stress in metal-induced toxicity was further

confirmed when worms mutated in glutamylcysteine synthetase

(gcs-1), the rate-limiting enzyme in glutathione synthesis

exhibited hypersensitivity to As exposure when compared to

wild-type animals (Liao and Yu, 2005).

Studies conducted in mammalian models found that Hg is

able to block Ca2þ channels. In neurons, this blockage can

induce spontaneous release of neurotransmitters (Atchison,

2003). In C. elegans, the Ca2þ channel blocker verapamil was

found to protect against Hg exposure, suggesting that Ca2þ

signaling plays a role in the toxicity of Hg in this model

organism as in mammals (Koselke et al., 2007).

Observation of neuron morphology following heavy metal

exposure was also performed using C. elegans strains

expressing the green fluorescent protein (GFP) in discrete

neuronal populations. Tests using depleted U evoked no

alterations in the DAergic nervous system of C. elegans, an

observation corroborated with data from mammalian primary

neuronal cultures (Jiang et al., 2007). Meanwhile, kel-8 and

numr-1, which are involved in resistance to Cd toxicity, were

upregulated upon Cd exposure. In particular, GFP levels of

KEL-8::GFP and NUMR-1::GFP were increased in the

pharynx and the intestine in addition to the constitutive

expression observed in AWA neurons (Cui et al., 2007a;

Freedman et al., 2006; Jackson et al., 2006; Tvermoes and

Freedman, 2008). Furthermore, numr-1 was shown to be

induced in response to heavy metals, such as Cd, Cu, Cobalt

(Co), Chromium (Cr), Ni, As, Zn, and Hg. NUMR-1::GFP was

localized to nuclei within the intestine and the pharynx and

colocalized with the stress-responsive heat-shock transcription

factor HSF-1::mCherry (Tvermoes and Freedman, 2008). This

indicates that these particular genes were altered in response to

heavy metals and this may aid in the understanding of the

toxicity of or the protection against these agents.

Toxicity Mechanisms of Neurotoxic Pesticides in C. elegans

Currently, there are over a hundred types of pesticides

available and substantial efforts have been put forth to examine

the neurotoxicity of these agents. Similarity in neural circuitry

and the conservation in genetic makeup between C. elegans
and humans have led to a number of recent studies on pesticide

neurotoxicity in this species (summarized in Table 4). In this

section, we discuss the effects of three groups of pesticides on

neurological pathways in C. elegans and their relevance to

understanding mechanisms of human neurotoxicity.

Paraquat, also known as methyl viologen (mev), is mainly

used as an herbicide. Increased concerns for the potential

human risks associated with paraquat exposure stems from

studies indicating that subjects experiencing exposure to this

and other herbicides/insecticides have a higher prevalence of

Parkinson disease (PD) (Liou et al., 1997; Semchuk et al.,
1992) (Gorell et al., 1998) and increased mortality from PD

(Ritz and Yu, 2000). The use of C. elegans to study the

etiology of PD will be discussed in the later section. This is due

to the specificity with which these pesticides target the

nigrostriatal DAergic system via an elevation of dopamine

and amine turnover (Thiruchelvam et al., 2000a, 2000b). All

forms of paraquat are easily reduced to a radical ion, which

generates superoxide radical that reacts with unsaturated

membrane lipids (Uversky, 2004), a likely mechanism of
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TABLE 4

Pesticides that Have Been Tested Using Caenorhabditis elegans as a Model Organism

Compound Strains investigated Observations References

Paraquat mev-1(kn1)a, mev-2(kn2)a Hypersensitive to oxygen and paraquat, decreased SOD activityb Ishii et al. (1990)

rad-8(mn162) Hypersensitive to oxygen and paraquat, reduced fecundity,

decreased life span

Ishii et al. (1993)

age-1(hx542), age-1(hx546) Increased catalase and Cu/Zn SOD activity, increased life span Vanfleteren (1993)

Vitamin E (antioxidant) inhibits oxidative damage from paraquatb Goldstein and Modric (1994)

mev-1(kn1), rad-8(mn162) Paraquat and high oxygen content inhibit development,

inversely proportional to life span

Hartman et al. (1995)

age-1(hx546), daf-16(m26),
mev-1(kn1)a

Increased resistance to paraquat and heat, extended life span,

increased SOD, and catalase mRNA level only in age-1
mutant, but not daf-16 or mev-1

Yanase et al. (2002)

mev-5(qa5005)a, mev-6
(qa5006)a, mev-7(qa5007)a

Longevity and sensitivity to paraquat, UV or heat do

not correlate

Fujii et al. (2005)

mev-1(kn1), gas-1(fc21) Overproduction of superoxide anion in submitochondrial

particles upon paraquat exposure

Kondo et al. (2005)

skn-1(zu67) Activation of SKN-1 transcription factor, localizes to the

nucleus following paraquat exposure

Kell et al. (2007)

daf-2(e1370) Extended animal life span and increased resistance to ROS

produced by paraquat

Kim and Sun (2007);

Yang et al. (2007)

Overexpression of GSTO,

gsto-1 RNAi

Increased resistance to paraquat-induced oxidative stress Burmeister et al. (2008)

Rotenone gas-1(fc21) Increased sensitivity to rotenone under hyperoxia Ishiguro et al. (2001)

pdr-1, djr-1.1 RNAi Increased vulnerability to rotenone Ved et al. (2005)

Overexpression of LRRK2,

lrk-1 RNAi

Overexpression of wild-type LRRK2 strongly protects

against rotenone toxicity

Wolozin et al. (2008)

Ops N2 Computer tracking system is a promising tool for assessing

neurobehavioral changes associated with OP toxicity

Williams and

Dusenbery 1990

Cholinesterase inhibition associated with high behavioral toxicity Cole et al. (2004)

Absorption effects are more prominent than biodegradation

in soil toxicity tests

Saffih-Hdadi et al. (2005)

Carbamates N2 Rank order of toxicity of carbamate pesticides in C. elegans
correlates well with values for rats and mice, and degree

of behavioral alteration correlates with AChE inhibition

Melstrom and

Williams (2007)

Bt toxin bre-1(ye4), bre-2(ye31), bre-3
(ye28), bre-4(ye13), bre-5(ye17)

Extensive damage to gut, decreased fertility, and death Marroquin et al. (2000)

bre-5(ye17) Increased resistance to Bt toxin Griffitts et al. (2001)

bre-2(ye31), bre-2(ye71),
bre-3(ye28), bre-4(ye13)

Bt toxin resistance involves the loss of glycosyltransferase

in the intestine

Griffitts et al. (2003)

glp-4(bn2), kgb-1(um3),
jnk-1(gk7), sek-1(km4)

Bt toxin reduces brood size and causes damage to the intestine Wei et al. (2003)

A p38 MAPK and a c-Jun N-terminal-like MAPK are both

transcriptionally upregulated by Bt toxin

Huffman et al.
(2004a, 2004b)

Survival rate, infection level, and behavior differred in

C. elegans isolated from geographically distinct strains

Schulenburg and

Muller (2004)

bre-2(ye31), bre-3(ye28),
bre-4(ye13), bre-5(ye17)

Bt toxin resistance entails loss of glycolipid carbohydrates and

the toxin directly and specifically binds to Glycolipids

Griffitts et al. (2005)

bre-3(ye28) Resistance to Bt toxin develops as a result of loss of glycolipid

receptors for the toxin

Barrows et al. (2006)

bre-1(ye4), bre-2(ye31) Resistance to toxin is achieved by mutations in

gylcosyltransferase genes that glycosylate glycolipid or with

a loss of the monosaccharide biosynthetic pathway

Barrows et al.
(2007a, 2007b)

daf-2(e1370), daf-2(e1368), age-1
(hx546), daf-16(mgDf50), daf-2(0(m26)

Mutations in the insulin-like receptor pathway lead to

distinct behavioral responses, including the evasion

of pathogens and reduced ingestion

Hasshoff et al. (2007)

Reproduction and growth significantly reduced by Bt toxin Hoss et al. (2008)

Captan hsp-16.48;hsp-16.1::lacZ Stress induction localized to muscle cells of the pharynx Jones et al. (1996)

Inhibits feeding, cessation of muscular contraction

Dithiocarbamate fungicides hsp-16.48;hsp-16.1::lacZ Induction of stress response Guven et al. (1999)

Organochlorinated pesticides N2 Decreased sensitivity to organochlorinated pesticide in C. elegans
than other soil invertebrates. Compared to other organic

pollutants tested, organochlorinated pesticides are the most

toxic substances in soil or aquatic medium

Bezchlebova et al. (2007);

Sochova et al. (2007)

Note. MAPK, mitogen-activated protein kinase; ROS, reactive oxygen species.
aThese mutants showed defective dye filling, indicative of chemosensory neuron damage.
bSOD, superoxide dismutase.
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neurotoxicity. Caenorhabditis elegans, has a well-defined, yet

simple DAergic network, consisting of eight neurons in the

hermaphrodite and an additional six neurons located in the tail

of the male (Chase and Koelle, 2007) and four DA receptors.

Dopamine is known to be required in the modulation of

locomotion and in learning in C. elegans (Hills et al., 2004;

Sanyal et al., 2004; Sawin et al., 2000). To date, several

paraquat/mev–altered strains have been generated to study

potential pathways in which paraquat exerts its toxic effects.

mev-1 (mutated for the succinate dehydrogenase) (Hartman

et al., 1995; Ishii et al., 1990; Kondo et al., 2005) and mev-3
(Yamamoto et al., 1996) were generated first, and both strains

displayed increased sensitivity to paraquat- and oxygen-

mediated injury as a result of increased production of

superoxide radicals (Guo and Lemire, 2003; Ishii et al.,
1990) and hypersensitivity to oxidative stress. mev-4 (Fujii

et al., 2004), mev-5, mev-6, and mev-7 (Fujii et al., 2005)

displayed resistance to paraquat. However, since the proteins

that are encoded by these genes are currently unknown, future

mapping of these genes will likely reveal pathways involved in

paraquat toxicity.

Paraquat exerts oxidative damage in vertebrates, which has

also been corroborated in C. elegans. Mutants that lack

antioxidant enzymes such as cytosolic or mitochondrial

superoxide dismutases (sod-1 and sod-2) show increased

sensitivity to paraquat (Yang et al., 2007), whereas mutants

with increased superoxide dismutase levels, such as age-1
(encoding the catalytic subunit of phosphoinositide 3-kinase)

(Vanfleteren, 1993; Yanase et al., 2002) and worms over-

expressing the omega-class glutathione transferase gsto-1
(Burmeister et al., 2008) display increased resistance to paraquat

toxicity. Moreover, C. elegans mutants hypersensitive to

oxygen toxicity, such as rad-8 (Honda et al., 1993; Ishii et al.,
1990) or those with a prolonged life span, such as daf-2
(encoding insulin/insulin growth factor receptor) (Bardin et al.,
1994; Kim and Sun, 2007) show increased tolerance to paraquat.

Taken together, these results provide novel information on

mechanisms by which paraquat mediates its toxicity (by

enhancing sensitivity to oxygen toxicity with an elevation in

production of reactive oxygen species and shortening life span)

and provide directions for future investigations on mechanisms

that lead to DAergic neurodegeneration.

A second ubiquitous pesticide is rotenone; it is a naturally

occurring and biodegradable pesticide effective in killing pests

and fish (Uversky, 2004). Researchers first reported in 2000

that Iv exposure to rotenone may lead in humans to the

development of PD-like symptoms accompanied by the

selective destruction of nigral DAergic neurons (Betarbet

et al., 2000). Since rotenone acts by inhibiting mitochondrial

NADH dehydrogenase within complex I (Gao et al., 2003), the

development of a mutant C. elegans strain that exhibits

mitochondrial inhibition provided an experimental platform

where the role of this enzyme could be directly evaluated.

A mutation in a 49-kDa subunit of mitochondrial complex I in

C. elegans mutant gas-1 displays hypersensitivity to rotenone

and oxygen (Ishiguro et al., 2001), highlighting the importance

of a functional complex I in rotenone resistance. Moreover,

C. elegans with alterations in PD causative genes are highly

sensitive to rotenone toxicity, suggesting the ability of these

proteins to protect against rotenone-induced oxidative damage

in DAergic neurons (Ved et al., 2005; Wolozin et al., 2008)

(see neurodegenerative disease section below).

The organophosphates (OPs) are a group of insecticides that

target the cholinergic system. ACh is the primary neurotrans-

mitter involved in motor function in most organisms, including

the nematode (Rand and Nonet, 1997). Due to the involvement

of the neuromuscular system, a computer tracking system was

used to study the neurobehavioral changes in C. elegans
associated with two OP pesticides (malathion and vapona).

Caenorhabditis elegans showed a remarkable decline in

locomotion at a concentration below survival reduction

(Williams and Dusenbery, 1990b). Comparison studies using

similar behavioral analyses were later developed to assess

movement alteration as an indicator of the neurotoxity of 15

OP pesticides (Cole et al., 2004) and carbamate pesticides,

which unlike OP pesticides are reversible AChE inhibitors

(Melstrom and Williams, 2007). The LD50 values in C. elegans
closely correlated with LD50 in both rats and mice. Pesticides

(vapon, parathion, methyl parathion, methidathion, and fun-

sulfothion) that showed cholinesterase inhibition were associ-

ated with pronounced behavioral toxicity (i.e., decrease in

movement). A recent study has compared end points using OPs

and found AChE inhibition to be the most sensitive indicator of

toxicity but also the most difficult to measure (Rajini et al., in

press). Reduction in movement for 10 OPs was found to

correlate to rat and mouse acute lethality data. Finally,

simulation studies examining the rate of absorption and

biodegradation of OP (parathion) also (Saffih-Hdadi et al.,
2005) establish the relevance and reliability of C. elegans as an

experimental model and predictor for soil toxicity.

Caenorhabditis elegans in the Study of Neurodegeneration

As previously stated, the C. elegans nervous system

functionally recapitulates many of the characteristics of the

vertebrate brain. In particular, it can undergo degeneration

through conserved mechanisms and is thus a powerful model

for uncovering the genetic basis of neurodegenerative dis-

orders. In this section, we will focus on PD, Alzheimer disease

(AD), Huntington disease (HD), and Duchenne muscular

dystrophy (DMD).

PD is a progressive, neurodegenerative disorder afflicting

~2% of the U.S. population (Bushnell and Martin, 1999).

Characteristic features include a gradual loss of motor function

due to the degeneration of DAergic neurons within the

substantia nigra pars compacta and loss of DAergic terminals

in the striatum (Wilson et al., 1996). At the cellular level,
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deposition of cytoplasmic Lewy bodies composed of aggre-

gated protein, such as a-synuclein, is observed. PD cases are

referred as familial (FPD) or idiopathic (IPD) depending on

whether the disease is hereditary (FPD) or from unknown

origin, possibly due to environmental exposure to neuro-

toxicants (IPD) (Dauer and Przedborski, 2003; Samii et al.,
2004). Among 11 genomic regions (PARK1 to 11) associated

with FPD, 7 were narrowed down to single genes: PARK1
(a-SYNUCLEIN), PARK2 (PARKIN), PARK4 (a-SYNU-
CLEIN), PARK5 (UCHL1), PARK6 (PINK1), PARK7 (DJ1),

PARK8 (DARDARIN/LRRK2), and PARK9 (ATP13A2) (Wood-

Kaczmar et al., 2006). All but a-SYNUCLEIN are strictly

conserved in the nematode with most residue positions mutated

in PD patients encoding identical amino acids in C. elegans
orthologues (Benedetto et al., 2008). Worms overexpressing

wild type, mutant A30P, or A53T human a-SYNUCLEIN in

DAergic neurons show differential levels of injury, including

reduced DA content, DAergic neuron degeneration, motor

deficits reversible by DA administration, intracellular

a-SYNUCLEIN aggregates similar to Lewy bodies, and

increased vulnerability to mitochondrial complex-I inhibitors,

which is reversed by treatment with antioxidants (Kuwahara

et al., 2006; Lakso et al., 2003; Ved et al., 2005). Furthermore,

deletion (Springer et al., 2005) and knockdown of the

C. elegans PARKIN and DJ1 genes produce similar patterns

of pharmacological vulnerability as those described above for

a-SYNUCLEIN overexpression (Ved et al., 2005). Other PD

genes in C. elegans have been investigated. For example, ubh-1
and ubh-3 (Chiaki Fujitake et al., 2004) share similar functions

with the human PARK5/UCHL1 orthologue. Studies on other

genes have been instrumental in unraveling previously unknown

functions. For example, examination of the PARK8/DARDARIN
orthologue lrk-1 showed that the protein allows the proper

targeting of synaptic vesicle proteins to the axon (Sakaguchi-

Nakashima et al., 2007) and protects against rotenone-induced

mitochondrial injury (Wolozin et al., 2008). Recently, RNAi,

genomic, and proteomic approaches using human

a-SYNUCLEIN transgenic worms identified genetic networks

linking PD to G-protein signaling, endomembrane trafficking,

actin cytoskeleton, and oxidative stress (Cooper et al., 2006;

Gitler et al., 2008; Hamamichi et al., 2008; Ichibangase et al.,
2008; van Ham et al., 2008; Vartiainen et al., 2006), illustrating

the power of this transgenic model for PD study.

Nonhereditary PD cases have also been associated with

exposure to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine,

a designer drug that is converted intracerebrally (by astrocytes)

to 1-methyl-4-phenylpyridinium (MPPþ) by the monoamine

oxygenase B. MPPþ damages the DAergic nervous system,

leading to a typical Parkinsonian syndrome (Kopin and

Markey, 1988; Langston et al., 1984). Similarly, MPPþ-

exposed C. elegans show specific degeneration of DAergic

neurons and associated behavioral defects (Braungart et al.,
2004), which is due to ATP depletion (Wang et al., 2007b).

Exposures to rotenone (see above) or 6-hydroxydopamine also

lead to PD syndromes that share similar features both in

humans and worms (Cao et al., 2005; Ishiguro et al., 2001;

Marvanova and Nichols, 2007; Nass et al., 2002, 2005; Ved

et al., 2005). Though the nematode does not truly exhibit PD-like

symptoms, results with transgenic and drug-exposed worms

emphasize the relevance of C. elegans as a model organism that

(1) permits rapid insights in the genetic pathways involved in PD

and (2) enables high-throughput screening methods for the

development of new anti-PD drugs (Schmidt et al., 2007).

Tauopathies and polyglutamine extension disorders have

also been investigated in the worm using mutants and

transgenic strains (Brandt et al., 2007; Dickey et al., 2006,

Link, 2001; Kraemer et al., 2003, 2006, and Kraemer and

Schellenberg, 2007). The first AD-associated proteins identi-

fied were the beta-amyloid peptide precursor (betaAPP) and the

presenilins PS1 and PS2. Study of the C. elegans presenilin

orthologues sel-12 (Baumeister et al., 1997; Levitan and

Greenwald, 1995) and hop-1 (Li and Greenwald, 1997;

Smialowska and Baumeister, 2006) linked AD to the apoptotic

pathway (Kitagawa et al., 2003) and Notch signaling, which

was later confirmed in vertebrates (Berezovska et al., 1998,

1999; Ray et al., 1999). Characterization of the C. elegans
betaAPP orthologue revealed a key role for microRNA in AD

gene regulation (Niwa et al., 2008). However, most of the

knowledge about AD acquired in C. elegans came from two

transgenic models: worms expressing the human betaAPP

(Boyd-Kimball et al., 2006; Drake et al., 2003; Gutierrez-

Zepeda and Luo, 2004; Wu and Luo, 2005; Wu et al., 2006) or

TAU (Brandt et al., in press; Kraemer et al., 2003). Studies on

betaAPP transgenic worms revealed toxicity mechanisms of

AD by identifying two new genes, aph-1 and pen-2, likely

involved in the progression of the disease (Boyd-Kimball et al.,
2006; Francis et al., 2002). They also allowed the character-

ization of oxidation processes preceding fibrillar deposition

(Drake et al., 2003) and the identification of genes activated upon

induction of betaAPP expression (Link et al., 2003). Furthermore,

protective mechanisms were identified (Florez-McClure et al.,
2007; Fonte et al., 2008) and potential therapeutic drugs for AD

(ginkgolides, Ginkgo biloba extract EGb 761, soy isoflavone

glycitein) were originally and successfully assayed in worms

(Gutierrez-Zepeda et al., 2005; Luo, 2006; Wu et al., 2006).

Caenorhabditis elegans overexpressing the human TAU or

a pseudohyperphosphorylated mutant TAU were found to exhibit

age-dependent motor neuron dysfunctions, neurodegeneration,

and locomotor defects due to impaired neurotransmission (Brandt

et al., 2007; Kraemer et al., 2003).

Likewise, while a few Huntingtin (Htt)-interacting genes

were identified in C. elegans (Chopra et al., 2000; Holbert

et al., 2003), most data came from transgenic worms expressing

polyQ variants of Htt. Several groups targeted different

neuronal subsets to study polyQHtt neurotoxicity in the worm.

They described behavioral defects prior to neurodegeneration

and protein aggregation and axonal defects and uncovered a role

for apoptosis in HD neurodegeneration (Bates et al., 2006; Faber
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et al., 1999; Holbert et al., 2003; Parker et al., 2001). Protective

mechanisms of the polyQ enhancer-1 and ubiquilin were

demonstrated (Faber et al. 2002; Wang et al., 2006), and

pharmacological screening using polyQHtt transgenic

C. elegans is ongoing (Faber et al. 2002; Wang et al., 2006).

A final illustration of the successful use of C. elegans in

elucidating the genetic basis of neurodegenerative disorder is

exemplified by the characterization of the genetic network

implicated in DMD. DMD is mainly characterized by

a progressive loss of muscular mass and function occurring

in males due to mutations in the DYSTROPHIN gene located

on the X chromosome, which commonly leads to paralysis and

death by the age of 30. DYSTROPHIN is both muscular and

neuronal, being required for brain architecture and neurotrans-

mission, such that DMD patients exhibit neurodegeneration

associated with motor deficits and reduced cognitive perform-

ances (average IQ is 85 in DMD boys) (Anderson et al., 2002;

Blake and Kroger, 2000; Poysky, 2007). DYSTROPHIN is

conserved in C. elegans, but its loss-of-function in the worm

results in hypercontractility due to impaired cholinergic activity

and does not affect muscle cells (Bessou et al., 1998; Gieseler

et al., 1999b). Nevertheless, the observation that double

mutants for Dystrophin/dys-1 and MyoD/hlh-1 display severe

and progressive muscle degeneration in the worm (as observed

in mice), set up the basis for a C. elegans model to study

dystrophin-dependent myopathies (Gieseler et al., 2000).

Using this model, several partners of DYSTROPHIN were

characterized, establishing their role in cholinergic neurotrans-

mission and muscle degeneration (Gieseler et al., 1999a,

1999b, 2001; Grisoni et al., 2002a, 2002b, 2003). Additionally,

it was shown that the overexpression of DYSTROBREVIN/
dyb-1 delays neurological and muscular defects (Gieseler et al.,
2002), and mutations in CHIP/chn-1, chemical inhibition of the

proteasome, and prednisone or serotonin treatments suppress

muscle degeneration in C. elegans (Carre-Pierrat et al., 2006;

Gaud et al., 2004; Nyamsuren et al., 2007).

Thus, though at first glance C. elegans appears quite

different from vertebrates, its nervous circuitry and the cellular

processes guiding neuronal development, neuronal death or

survival, neurotransmission, and signal integration rely on the

same neuronal and molecular networks as vertebrates.

Combined with the advantages of a small and fast-growing

organism, these properties make C. elegans a perfect system

for rapid genetic analysis of neurotoxicity mechanisms.

Caenorhabditis elegans AND GENOTOXICITY

As is the case for neurotoxicity, C. elegans provides a cost-

effective, in vivo, genetically manipulable and physiological

model for the study of the toxicological consequences of DNA

damage. As described below, the machinery that responds to

DNA damage in C. elegans is very similar genetically to the

corresponding machinery in higher eukaryotes. Many pro-

cesses related to DNA damage have been extensively studied in

C. elegans, providing an important biological context and clear

relevance to mechanistic studies. Finally, powerful tools for the

study of DNA damage, DNA repair, and mutations have been

developed in this organism.

DNA Damage Response Proteins Are Conserved

between C. elegans and Higher Eukaryotes

Genes and pathways involved in DNA repair in mammals

are generally well conserved in C. elegans (Boulton et al.,
2002; Hartman and Nelson, 1998; O’Neil and Rose, 2005).

Proteins involved in nucleotide excision repair, mismatch

repair, homologous recombination, and nonhomologous end

joining, for instance, are almost entirely conserved between

C. elegans, mouse, and human based on nucleotide sequence

homology (http://www.niehs.nih.gov/research/atniehs/labs/lmg/

dnarmd/docs/Cross-species-comparison-of-DNA-repair-genes.xls).

This is also true for proteins involved in many DNA repair–

related processes, such as translesion DNA polymerases,

helicases, and nucleases. Base excision repair proteins,

interestingly, show somewhat less conservation. While this

conservation is based in some cases only on sequence

homology, many of these proteins have now been biochemi-

cally or genetically characterized. Critically, proteins involved

in other DNA damage responses including apoptosis and cell

cycle arrest are also conserved in C. elegans and mammals

(Stergiou and Hengartner, 2004).

DNA Repair in C. elegans

Early studies on DNA repair in C. elegans were carried out

by Hartman and colleagues, who identified a series of

radiation-sensitive mutants (Hartman, 1985; Hartman and

Herman, 1982) and used an antibody-based assay to measure

induction and repair of ultraviolet (UV) radiation–induced

damage (Hartman et al., 1989). These and more recent studies

(Hyun et al., 2008; Meyer et al., 2007) have shown that

nucleotide excision repair is similar in C. elegans and humans

both in terms of conservation of genes and kinetics of repair.

Nucleotide excision repair is a critical pathway in the context

of exposure to environmental toxins since it recognizes and

repairs a wide variety of bulky, helix-distorting DNA lesions,

including polycyclic aromatic hydrocarbon metabolites, myco-

toxins such as aflatoxin B1, UV photoproducts, cisplatin

adducts, and others (Friedberg et al., 2006; Truglio et al.,
2006).

While nucleotide excision repair has been the best-studied

DNA repair pathway in C. elegans, significant progress has

been made in the study of genes involved in other DNA repair

pathways as well. The role of specific C. elegans gene products

in DNA repair has been studied both via high-throughput and

low-throughput methods. High-throughput methods including

CAENORHABDITIS ELEGANS IN TOXICOLOGY RESEARCH 13

http://www.niehs.nih.gov/research/atniehs/labs/lmg/dnarmd/docs/Cross-species-comparison-of-DNA-repair-genes.xls
http://www.niehs.nih.gov/research/atniehs/labs/lmg/dnarmd/docs/Cross-species-comparison-of-DNA-repair-genes.xls


RNAi knockdown and yeast two-hybrid analysis of protein-

protein interaction have been used to identify a large number of

genes coding for proteins involved in responding to DNA

damage (Boulton et al., 2002; van Haaften et al., 2004a,

2004b). Lower throughput studies involving biochemical

analyses of DNA repair activities (Dequen et al., 2005a;

Gagnon et al., 2002; Hevelone and Hartman, 1988; Kanugula

and Pegg, 2001; Munakata and Morohoshi, 1986; Shatilla

et al., 2005a, 2005b; Shatilla and Ramotar, 2002) as well

in vivo sensitivity to DNA damaging agents (Astin et al., 2008;

Boulton et al., 2004; Dequen et al., 2005b; Lee et al., 2002,

2004; Park et al. 2002, 2004; St-Laurent et al., 2007) or other

DNA damage–related phenotypes (Aoki et al., 2000; Kelly

et al., 2000; Sadaie and Sadaie, 1989; Takanami et al., 1998)

have supported the sequence similarity–based identification

of C. elegans homologues of DNA repair genes in higher

vertebrates, as well as in some cases permitting identification of

previously unknown genes involved in these pathways.

Apoptosis and Cell Cycle Checkpoints in C. elegans

DNA damage that is not repaired can trigger cell cycle arrest

and apoptosis, and these pathways are very well studied in

C. elegans. The great progress made in understanding them

mechanistically demonstrates the power of this model

organism. As mentioned, the cellular mechanisms regulating

apoptosis were discovered in C. elegans, and apoptosis and cell

cycle responses to DNA damage continue to be heavily studied

in C. elegans (Ahmed et al., 2001; Ahmed and Hodgkin, 2000;

Conradt and Xue, 2005; Gartner et al., 2000; Jagasia et al.,
2005; Kinchen and Hengartner, 2005; Lettre and Hengartner,

2006; Olsen et al., 2006; Schumacher et al., 2005; Stergiou

et al., 2007). The short life span of C. elegans has especially

lent itself to groundbreaking studies on the mechanisms of

germ line immortality (Ahmed, 2006; Ahmed and Hodgkin,

2000). Another important advantage of C. elegans is the ability

to easily study in vivo phenomena such as age- or de-

velopmental stage–related differences in DNA repair capacity.

For example, Clejan et al. (2006) showed that the error-prone

DNA repair pathway of nonhomologous end joining has little

or no role in the repair of DNA double-strand breaks in germ

cells but is functional in somatic cells. Holway et al. (2006)

showed that checkpoint silencing in response to DNA damage

occurs in developing embryos but not in the germ line. Both

these findings are important in our understanding develop-

mental exposure to genotoxins in that they suggest a special

protection for germ line cells.

DNA Damage–Related Pathological Processes

in C. elegans

DNA damage–related pathological processes including

carcinogenesis (He et al., 2007; Kroll, 2007; Pinkston-Gosse

and Kenyon, 2007; Poulin et al., 2004; Sherwood et al., 2005;

van Haaften et al., 2004a), aging (Antebi, 2007; Brys et al.,
2007; Hartman et al., 1988; Johnson, 2003; Kenyon, 2005;

Klass, 1977; Klass et al., 1983; Murakami, 2007; Rea et al.,
2007; Ventura et al., 2006), and neurodegenerative diseases

(described above) are also areas of active research in

C. elegans. This research has both established the relevance

of C. elegans as a model for the study of genotoxic agents (due

to conservation of the DNA damage response) and enormously

increased its utility in such studies by providing a wealth of

complementary and contextual biological information related

to the pathological responses to DNA damage in this organism.

Tools for the Study of DNA Damage, Repair, and

Mutation in C. elegans

Caenorhabditis elegans is an excellent model for studies of

genotoxicity due to the plethora of powerful tools available.

Genetic manipulation via RNAi and generation of KOs or other

mutants is relatively straightforward. If suitable mutants are not

already available, they can be generated by a variety of

approaches. These include untargeted and targeted methods,

including chemical mutagenesis, transposon insertion, and

biolistic transformation (Anderson, 1995; Barrett et al., 2004;

Berezikov et al., 2004; Plasterk, 1995; Plasterk and Groenen,

1992; Rushforth et al., 1993).

Assays for the measurement of mutagenesis, DNA damage

and repair, and transcriptional activity have also been de-

veloped for genotoxicity assessment in C. elegans (Table 5).

Some DNA damage and repair assays in C. elegans can be

carried out with as few as one or a few individual nematodes,

permitting studies of interindividual differences and permitting

high-throughput screening of DNA- damaging agents or genes

involved in DNA repair. It is also possible, using PCR- or

Southern blot–based methods, to distinguish damage and repair

in different genomic regions and genomes (i.e., mitochondrial

vs. nuclear DNA; (Hyun et al., 2008; Meyer et al., 2007)).

Mutagenesis has been studied by a variety of methods (Table 5)

including phenotype-based genetic mutation reversion

screens, an out-of-frame LacZ transgene reporter, and direct

sequencing.

Genotoxin Studies in C. elegans

Unlike the case of neurotoxicology, there have so far been

relatively few studies of genotoxicity per se using C. elegans.

One exception has been the study of UV radiation, typically

as a model genotoxin that introduces bulky DNA lesions (Astin

et al., 2008; Coohill et al., 1988; Hartman, 1984; Hartman

et al., 1988; Hyun et al., 2008; Jones and Hartman, 1996;

Keller et al., 1987; Meyer et al., 2007; Stergiou et al., 2007;

Stewart et al., 1991). However, other classes of genotoxins

have been studied, including ionizing radiation (Dequen et al.,
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2005a; Johnson and Hartman, 1988; Stergiou et al., 2007;

Weidhaas et al., 2006), heavy metals (Cui et al., 2007b; Neher

and Sturzenbaum, 2006; Wang et al., 2008), methylmethane-

sulphonate (Holway et al., 2006), polycyclic aromatic hydro-

carbons (Neher and Sturzenbaum, 2006), photosensitizers

(Fujita et al., 1984; Hartman and Marshall, 1992; Mills and

Hartman, 1998), and prooxidant compounds (Astin et al.,
2008; Hartman et al., 2004; Hyun et al., 2008; Salinas et al.,
2006). Studies have taken advantage of the utility of C. elegans
as an in vivo model; for example, it was shown that nucleotide

excision repair slowed in aging individuals (Meyer et al., 2007)

and that longer lived and stress-resistant strains have faster

nucleotide excision repair (Hyun et al., 2008) than do wild

type. It has been possible to identify cases in which UV

resistance was correlated to life span (Hyun et al., 2008;

Murakami and Johnson, 1996), and others in which it was not

(Hartman et al., 1988), so that theories about the relationship of

DNA damage and repair with aging can be directly tested.

Studies of aging populations or individuals are slow and

expensive in mammalian models and impossible in vitro.

High-Throughput Approaches with C. elegans

High-throughput screening has two specific definitions in

toxicology: (1) genome-wide screens for molecular targets or

mediators of toxicity and (2) rapid, high-content chemical

screens to detect potential toxicants. A genome-wide screen

can serve as a hypothesis-finding tool, providing a direction for

further mechanistic investigation. This approach is particularly

useful for studying any toxicant with a poorly understood

mechanism of action. Genome-wide screens can be done using

forward genetics, DNA microarrays, or genome-wide RNAi in

C. elegans.

High-throughput chemical screening, in comparison, has

been proposed as a quicker and less expensive method for

toxicity testing (Gibb, 2008). The conventional animal testing

used by companies or agencies is labor intensive and time

consuming, resulting in a large number of toxicants not being

tested at all. It is estimated, for instance, that there are more

than 10,000 environmental chemicals from several Environ-

mental Protection Agency programs that require further testing

(Dix et al., 2007). The objective of high-throughput chemical

screening is to shortlist chemicals showing high toxicity,

thereby setting priority for regulations as well as further

toxicity testing in mammalian models.

High-throughput screening is feasible with C. elegans due to

its experimental manipulability as well as several automation

technologies. Caenorhabditis elegans is easy to handle in the

laboratory; it can be cultivated on solid support or in liquid, in

Petri dishes, tubes, or 6-, 12-, 24-, 96-, or 384-well plates. It

can also be exposed to toxicants acutely or chronically by

injection, feeding, or soaking. Automated imaging methods

for absorbance, fluorescence, movement, or morphometric

TABLE 5

Genotoxicity Assays Available for the Caenorhabditis elegans Model

Endpoint Assay Principle References

A. Mutagenesis Direct sequencing The mutation rate of a given locus is calculated

using data from DNA sequencing.

Denver et al. (2000, 2004, 2006)

‘‘Big blue worms’’ Transgenic C. elegans carrying an out-of-frame

LacZ reporter gene expresses blue pigment upon

frameshift or insertion/deletion mutations.

Pothof et al. (2003);

Tijsterman et al. (2002)

Reversion assay Mutants with an easily scored phenotype (e.g.,

uncoordinated movement) are exposed to a

chemical of interest; the restoration of a normal

phenotype indicates mutagenesis.

Degtyareva et al. (2002);

Greenwald and Horvitz (1980);

Hartman et al. (1995)

Lethality assay The lethality of transgenic, mutation-sensitive

C. elegans was measured for mutagen detection

Rosenbluth et al. (1983);

Rosenbluth et al. (1985)

B. DNA damage and repair PCR-based assay The amount of PCR product is inversely proportional to

the amount of DNA damage on a given length of template

Meyer et al. (2007); Neher

and Sturzenbaum (2006)

Southern blot T4 endonuclease–sensitive sites in specific genes

(identified by genomic DNA sequence) indicate

the presence of UV photodimers

Hyun et al. (2008)

Immunoassay Antibodies to specific UV photoproducts are identified Hartman et al. (1989)

Enzymatic activity A diagnostic enzymatic activity is measured in vitro Shatilla and Ramotar (2002)

Reproduction/development

assay with KO mutants

Specific DNA damage (e.g., DNA adduct) can be

tested using simple reproduction/development

assays with mutants lacking a specific

DNA repair pathway (e.g., nucleotide excision repair)

Park et al. (2002, 2004)

C. Transcriptional activities RNA: DNA ratio A decrease in RNA: DNA ratio indicates the

inhibition of transcriptional activities

Ibiam and Grant (2005)
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measurement have been developed since the late 1980s (Baek

et al., 2002; Bennett and Pax, 1986; Hoshi and Shingai, 2006;

Simonetta and Golombek, 2007; Tsibidis and Tavernarakis,

2007; Williams and Dusenbery, 1990b). Nowadays, cell sorters

adapted to sort worms based on morphometric parameters or

expression of fluorescent proteins combined with imaging

platforms have been successfully used for large-scale promoter

expression analyses and drug screening purposes (Burns et al.,
2006; Dupuy et al., 2007; Pulak, 2006). Recently, a micro-

fluidic C. elegans sorter with three dimensional subcellular

imaging capabilities was developed, allowing high-throughput

assays of higher complexity (Rohde et al., 2007).

While the simplicity and manipulability of the C. elegans
system enables high-throughput approaches, it also leads to several

potential disadvantages in toxicology studies. Caenorhabditis
elegans exhibits important metabolic differences compared

to vertebrates. For example, C. elegans is highly resistant to

benzo[a]pyrene (Miller and Hartman, 1998), likely because it

does not metabolize the chemical (M. Leung and J. Meyer,

unpublished data). This problem can be potentially solved,

however, by expressing the vertebrate cytochrome P450s in C.
elegans. The impermeable cuticle layer as well as selective

intestinal uptake, furthermore, may block the entry of chemicals,

thereby necessitating high exposure doses to impact the worm’s

physiology. A mutant strain (dal-1) has recently been isolated that

is healthy under laboratory conditions but exhibits altered

intestinal morphology and increased intestinal absorption of

a wide range of drugs (C. Paulson and J. Waddle, personal

communication). The resultant-increased vulnerability of this

strain to the toxic or pharmacological activities of tested

compounds has the potential to increase the sensitivity of the

C. elegans system.

Forward Genetics Screens in C. elegans

Forward genetics refers to the study of genes based on

a given phenotype. In a forward genetics screen, C. elegans are

treated with a mutagen, as described above. Mutant strains are

then exposed to a toxicant and are screened for increased

resistance or sensitivity. Once a resistant or hypersensitive

mutant is identified, the mutation is located using two-point

and three-point mapping and confirmed using single-gene rescue

or RNAi phenocopying (Hodgkin and Hope, 1999). Forward

genetics is efficient in C. elegans because the mutants can cover

genes expressed in a variety of tissues. Caenorhabditis elegans is

hermaphroditic, so homozygous mutant strains can be produced

in the F2 generation via self-crossing.

Forward genetics screens are a useful method in mechanistic

toxicology. Griffitts et al. (2001, 2005), for instance,

discovered the role of glycolipid receptors and carbohydrate

metabolism in Bacillus thuringiensis (Bt) toxins using

C. elegans subjected to a forward genetics screen. The mutation

of glycolipid receptors prevents Bt toxin from entering intestinal

epithelium in C. elegans. Such a tissue-specific mechanism

would have been difficult to detect using in vitro cell cultures.

Gene Expression Analysis in C. elegans

Caenorhabditis elegans has several advantages over other

species in gene expression analysis. WormBase (Harris et al.,
2004), the information-rich central genomic database of

C. elegans, provides an intuitive interface into a well-annotated

genome. Caenorhabditis elegans also has a consistent system

of gene identification, thereby avoiding the confusion of gene

identification that is common in many species, including

human. The interactome modeling of C. elegans is also the

most developed among all animal species (Dupuy et al., 2007;

Li et al. 2004, 2008; Zhong and Sternberg, 2006) and along

with other genome-level bioinformatics tools (Kim et al., 2001)

greatly facilitates system-based analysis.

The results of gene expression analysis can be validated

in vivo using mutational or transgenic approaches in

C. elegans. For example, the gene expression of C. elegans
exposed to ethanol, atrazine, polychlorinated biphenyls,

endocrine disrupting chemicals, and polycyclic aromatic

hydrocarbons have been profiled (Custodia et al., 2001; Kwon

et al., 2004; Menzel et al., 2007; Reichert and Menzel, 2005).

Follow-up studies with transgenic C. elegans expressing

fluorescent markers were used to detect overexpression of

protein in specific tissues in vivo (Menzel et al., 2007; Reichert

and Menzel, 2005). Mutant C. elegans were also used to

confirm the role of specific molecular targets based on gene

expression analysis (Menzel et al., 2007).

Genome-Wide RNAi Screens in C. elegans

The discovery of RNAi mechanisms in C. elegans for which

the 2006 Nobel Prize was awarded (Fire et al., 1998) and the

complete sequencing of the nematode genome (C. elegans
Sequencing Consortium, 1998) led to the generation of

publically available RNAi libraries covering ~90% of its genes

(Fewell and Schmitt, 2006; Kamath and Ahringer, 2003).

Strategies to improve RNAi efficiency, especially in neurons,

were further developed (Esposito et al., 2007; Lee et al., 2006;

Simmer et al. 2002, 2003; Tabara et al., 2002; Tops et al.,
2005). RNAi can be triggered by injection of worms with

interfering double-strand RNA (dsRNA), by feeding them with

transgenic bacteria producing the dsRNA or by soaking them in

a solution of dsRNA. The latter allow timed RNAi exposure and

genome-wide screens in 96- or 384-well plates with liquid worm

cultures and have contributed to discoveries of mechanisms of

axon guidance as well as mitochondrial involvement in oxidative

stress and aging (Ayyadevara et al., 2007; Hamamichi et al.,
2008; Hamilton et al., 2005; Ichishita et al., 2008; Lee et al.,
2003; Schmitz et al., 2007; Zhang et al., 2006).

16 LEUNG ET AL.



A genome-wide RNAi screen typically assesses a number of

physiological parameters at the same time, such as viability,

movement, food intake, and development, thereby facilitating

the interpretation of screening results. While most RNAi screens

have been done in wild-type C. elegans, some are performed

using KO mutants to provide more sensitive or selective assays

(Kaletta and Hengartner, 2006). Genome-wide RNAi screens are

becoming a method of choice for discovering gene function. A

recent study by Kim and Sun (2007), for example, identified

a number of daf-2-dependent and nutrient-responsive genes that

are responsive to paraquat-induced oxidative stress.

High-Content Chemical Screens

The use of C. elegans as a predictive model for human

toxicity was first proposed in the context of heavy metals

(Williams and Dusenbery, 1988). The C. elegans assay was

validated as a predictor of mammalian acute lethality using

eight different metal salts, generating LC50 values parallel to

the rat and mouse LD50 values. A later study investigated the

acute behavioral toxicity of 15 OP pesticides in C. elegans
(Cole et al., 2004). The toxicity of these pesticides in

C. elegans was found to be significantly correlated to the

LD50 acute lethality values in rats and mice. Several other

studies have also validated a number of C. elegans–based

assays for predicting neurological and developmental toxicity

in mammalian species (Anderson et al., 2004; Dhawan et al.,
1999; Tatara et al., 1998; Williams et al., 2000).

A C. elegans–based, high-throughput toxicity screen was first

published by the Freedman group at National Institute of

Environmental Health Sciences (Peterson et al., in press);

additional groups including industry and government groups in

the United States and elsewhere are also carrying out high-

throughput toxicity screening. Screens are typically conducted

on a 96-well plate with a robotic liquid handling workstation

(Biosort, Union Biometrica, Inc., Holliston, MA) to analyze the

length, optical density, motion, and fluorescence of C. elegans.

Caenorhabditis elegans is cultured in liquid from fertilized egg

to adult through four distinct larval stages. The development,

reproduction, and feeding behaviors of the C. elegans culture in

response to different chemical exposures are characterized. The

screen has been validated by the Freedman group with 60

chemicals including metals, pesticides, mutagens, and nontoxic

agents (Peterson et al., in press).

The high-throughput toxicity screen is being further

improved with additional genetics and automation techniques.

The generalized stress response of C. elegans, for instance, was

visualized with transgenic GFP constructs, providing a more

sensitive end point for toxicity screens (Dengg and van Meel,

2004; Roh et al., 2006). Nematode locomotion can be tracked

automatically, providing a more sensitive screen of neurotox-

icity (Cole et al., 2004; Williams and Dusenbery, 1990b).

Transgenic or mutant C. elegans can also be used in the high-

throughput screen to detect specific modes of action, including

metal response (Cioci et al., 2000), oxidative stress (Hasegawa

et al., 2008; Leiers et al., 2003), and DNA damage (Denver

et al., 2006). A microfluidic C. elegans sorter with three-

dimensional subcellular imaging capabilities was recently

reported, thereby allowing high-throughput assays of higher

complexity (Rohde et al., 2007).

Environmental Assessment of Chemical Exposure

Nematodes are the most abundant animal in soil ecosystems

and also found in aquatic and sediment environments. They

serve many important roles in nutrient cycling and in

maintaining environmental quality. These features have

supported their use in ecotoxicological studies and, from the

late 1970s, a variety of nematode species have been used to

study environmental issues. During the late 1990s, C. elegans
began to emerge as the nematode species of choice based on

the tremendous body of knowledge developed by basic

scientists using this model organism for biological studies.

Although generally considered a soil organism, C. elegans
lives in the interstitial water between soil particles and can be

easily cultured within the laboratory in aquatic medium. The

majority of environmental studies have been performed in an

aquatic medium, given its ease of use, and as toxicological end

points have been developed, the assessment tools have been

applied to sediment and soil medium which allows for a more

relevant direct environmental comparison.

The environmental toxicological literature using C. elegans
is extensive and Table 6 provides an overview of laboratory-

based studies where a toxicant of environmental interest has

been added to a medium (water, sediment, or soil) followed by

exposure to C. elegans and the assessment of an adverse effect.

In a limited number of situations, C. elegans testing has been

used to assess contamination in field settings (Table 7). Much

of the early work explored metal toxicity and used lethality as

an endpoint. Over time, a wider variety of toxicants have been

tested and more sophisticated sublethal end points have been

developed including the use of transgenic strains with specific

biomarkers (Candido and Jones, 1996; Chu et al., 2005; Dengg

and van Meel, 2004; Easton et al., 2001; Mutwakil et al., 1997;

Roh et al., 2006), growth and reproduction (Anderson et al.,
2001; Hoss and Weltje, 2007), feeding (Boyd et al., 2003), and

movement (Anderson et al., 2004). These types of end points

developed through environmental studies are directly applica-

ble to the use of the organism as an alternative for mammalian

testing.

Two of the principal limitations in using C. elegans in

environmental testing are concerns related to its comparison to

other nematodes and reliable and simple methods for extracting

them from soil and sediments. Given the almost countless

variety of nematodes, it is impossible for one species to be

representative of the entire Nematoda phylum. Limited studies
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comparing the toxicological effects between nematodes species

indicate that C. elegans is as representative as any of the ones

commonly used and, in many cases, little difference in

response has been found between species (Boyd and Williams,

2003; Kammenga et al., 2000). Further, this organism is much

more thoroughly understood and benefits from its ease of use.

TABLE 7

Examples of Field Studies Using Caenorhabditis elegans to Assess Environmental Samples

Field site Environmental medium Overview References

Carnon River

system (England)

Water Transgenic strains of C. elegans that carry stress-inducible

lacZ reporter genes were used to assess metal

contamination of a river system.

Mutwakil et al. (1997)

Wastewater treatment

process (Georgia)

Water discharges from industrial

operations and a municipal

treatment plant

The contribution of several industrial operations to the waste

stream feeding a municipal wastewater treatment plant

and the treatment plant’s discharge were assessed to

identify sources of water contamination and effectiveness of

waste treatment. The 72-h mortality was used as end point.

Hitchcock et al. (1997)

Elbe River (Germany) Sediments Tested polluted sediments using growth and fertility as

end points.

Traunspurger et al. (1997)

Twelve freshwater

lakes (Germany)

Fresh water sediment Evaluated 26 sediment samples from unpolluted lakes

in southern Germany to determine the effect of

sediment size and organic content on growth and fertility.

Hoss et al. (1999)

Middle Tisza River flood

plain (Hungary)

Soil Following a major release of cyanide and heavy metals from a mine

waste lagoon in Romania, soil contamination was assessed

following a 100-year flood event using mortality as end point.

Black and Williams (2001)

Agricultural soil (Germany) Soil Assessed the toxicity of soil from fields cultivated with

transgenic corn (Bt corn; MON810) compared to

isogenic corn. Growth and reproduction used as end points.

Hoss et al. (2008)

TABLE 6

Representative Laboratory Studies Evaluating Environmentally Relevant Toxicants

Medium End point (test duration) Chemicals tested/comments References

A. Aquatic Lethality (24–96 h) Tested metallic salts of 14 metals (Ag, Hg, Be, Al, Cu, Zn, Pb, Cd,

Sr, Cr, As, Tl, Ni, Sb). Established initial aquatic testing procedures

and compared results to traditionally used aquatic invertebrates.

Williams and Dusenbery (1990a)

Lethality and stress reporter

gene induction (8–96 h)

Assessed the induction of hsp16-lacZ and lethality in C. elegans
exposed to water-soluble salts of Cd, Cu, Hg, As, and Pb.

Stringham and Candido 1994

Growth, behavior, feeding, and

reproduction (4–72 h)

Compared a number of sublethal end points and found feeding and

behavior to be the most sensitive. Tested metallic salts Cd, Cu, and Pb.

Anderson et al. (2001)

Feeding and movement (4–24 h) Determined changes in ingestion using microbeads and movement in

the presence of metals and varying availability of food

Boyd et al. (2003)

Behavior (4 h) Tested a variety of toxicants from several categories of chemicals including

metals, pesticides, and organic solvents. Established the use of a 4-h

exposure period for behavioral assessments.

Anderson et al. (2004)

Reproduction (96 h) Evaluated the effects on reproduction of several endocrine disruptors. Hoss and Weltje (2007)

B. Sediment Growth (72 h) CuSO4 in spiked water added to whole sediments and refined

method for using organism in sediments.

Hoss et al. (1997)

Growth (72 h) Spiked natural sediments with CdCl2 and extracted pore water to

determine effects.

Hoss et al. (2001)

C. Soil Lethality (24 h) Spiked soil with CuCl2 and developed the recovery method used with

C. elegans exposed in soil.

Donkin and Dusenberry (1993)

Lethality (24 h) Tested metallic salts of five metals (Cu, Cd, Zn, Pb, Ni) in artificial

soil. Compared C. elegans data to earthworm data from same medium.

Determined that 24-h exposures for the nematode had similar effects

to 14-day exposures with earthworms.

Peredney and Williams (2000)

Lethality (24–48 h) Tested seven organic pollutants (four azarenes, one short-chain chlorinated

paraffin, and two organochlorinated pesticides) in soil, aquatic, and agar

and compared results across media.

Sochova et al. (2007)
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Much progress has been made to develop better methods to

extract the worm from soil and sediments. The initial method

developed by Donkin and Dusenbery (1993) has led to

a standardized soil toxicological testing method adopted in

2001 by the American Society for Testing and Materials

(ASTM, 2002) and recently the International Standards

Organization in Europe (ISO 2007). The initial extraction

method has been improved through the use of transgenic

strains of nematodes (Graves et al., 2005) which allows for

GFP-labeled worms to be used that distinguishes the worms

being tested in soils from the large numbers of indigenous

species that are similar in size and appearance. It also makes

easier removal from soil with high organic content. All this

work has led to more interest in using C. elegans in

environmental studies.

CONCLUSION: THE ROLE OF C. elegans IN

TOXICOLOGY RESEARCH

The unique features of C. elegans make it an excellent model

to complement mammalian models in toxicology research.

Experiments with C. elegans do not incur the same costs as

experiments with in vivo vertebrate models, while still

permitting testing of hypotheses in an intact metazoan

organism. The genetic tools available for C. elegans make it

an excellent model for studying the roles of specific genes in

toxicological processes and gene-environment interactions,

while the life history of this organism lends itself to high-

throughput analyses. Thus, C. elegans represents an excellent

complement to in vitro or cell culture–based systems and in
vivo vertebrate models.
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