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Abstract

It is well-known that individuals with increased iron levels are more prone to thrombotic diseases, mainly due to the
presence of unliganded iron, and thereby the increased production of hydroxyl radicals. It is also known that erythrocytes
(RBCs) may play an important role during thrombotic events. Therefore the purpose of the current study was to assess
whether RBCs had an altered morphology in individuals with hereditary hemochromatosis (HH), as well as some who
displayed hyperferritinemia (HF). Using scanning electron microscopy, we also assessed means by which the RBC and fibrin
morphology might be normalized. An important objective was to test the hypothesis that the altered RBC morphology was
due to the presence of excess unliganded iron by removing it through chelation. Very striking differences were observed, in
that the erythrocytes from HH and HF individuals were distorted and had a much greater axial ratio compared to that
accompanying the discoid appearance seen in the normal samples. The response to thrombin, and the appearance of a
platelet-rich plasma smear, were also markedly different. These differences could largely be reversed by the iron chelator
desferal and to some degree by the iron chelator clioquinol, or by the free radical trapping agents salicylate or selenite (that
may themselves also be iron chelators). These findings are consistent with the view that the aberrant morphology of the HH
and HF erythrocytes is caused, at least in part, by unliganded (‘free’) iron, whether derived directly via raised ferritin levels or
otherwise, and that lowering it or affecting the consequences of its action may be of therapeutic benefit. The findings also
bear on the question of the extent to which accepting blood donations from HH individuals may be desirable or otherwise.
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Introduction

Iron overload is associated with many pathological conditions,

including liver and heart disease, neurodegenerative disorders,

diabetes, hormonal abnormalities immune system abnormalities,

heart failure, and in particular in the more classical conditions

recognised as ‘iron overload’ diseases such as hemochromatosis

(e.g. [1–14]). Moderate iron loading is also known to accelerate

thrombus formation after arterial injury, to increase vascular

oxidative stress, and to impair vasoreactivity [5,15–17]. Further-

more, iron-induced vascular dysfunction may contribute to the

increased incidence of ischemic cardiovascular events that have

been associated with chronic iron overload [15,18–20]. Poorly

liganded iron is the main culprit, and plays a fundamental role in

the development of pathology [1,2], while copper dysregulation

may also be of significance [21].

In 1976, Simon and co-workers first noted that idiopathic

hemochromatosis is a genetic disease and suggested that the

gene(s) responsible for the disease may be linked to the

histocompatibility genes [22]. The relevant (HFE) gene discovery

was only reported in 1996 [23]. HH is now probably the most

well-known genetic iron overload disease [24–26]. The most

common types of HH are caused by a C282Y or H63D mutation

in the protein encoded by the HFE gene [27–38]; HH individuals

may also be C282Y/H63D or present as a variety of heterozy-

gotes, where they have one copy of each of the mutation and a

wild type copy [39,40]. These types of HH are called type 1

(classical HFE gene mutations, resulting in a cysteine-to-tyrosine

substitution at amino acid 282 - C282Y) or a histidine-to-aspartate

substitution at amino acid 63 - H63D [41]. However, there are

also non-HFE haemochromatoses, which include all hemochro-

matosis disorders that are unrelated to the typical HFE mutations

[42]. Mutations in different genes are responsible for the distinct

types of non-classical HFE hemochromatosis, including hepcidin

[43,44] and hemojuvelin (type 2 or juvenile hemochromatosis -
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resulting from mutations in iron regulatory protein, hemojuvelin –

HJV gene [45]), transferrin receptor 2 (type 3 hemochromatosis -

TFR2 gene [46,47]; and mutations in the iron exporter,

ferroportin 1 [48] (mutated in type 4, the atypical dominant form

of primary iron overload - SLC40A1 gene) [41,42,49].

In the current work, HH will refer to type 1 or classical

hemochromatosis, based on mutations in the HFE gene, as

confirmed herein by genotyping. The genes linked to HH cause

disruption of the mechanisms that regulate iron absorption,

leading to progressive increase of total body iron and organ

damage [42]. Therefore, HH is indicative of disruption of the HFE

gene product, as well as commonly (but not inevitably) a persistent

elevation of serum ferritin concentration [42,50]. Here we also

classify hyperferritinemia (HF) as occurring in individuals with

high serum ferritin levels (higher than 200 ng/mL21 for females

and 300 ng/mL21 for males) but not with the genetic mutation in

the HFE gene (these individuals were tested for all combinations of

the C282Y, H63D as well as S65C mutations, and found to be

wild type for these mutations). Serum ferritin levels remain an

important indication of iron overload in HH, and therefore is an

important diagnostic tool [41,51–53].

One of the main medical complications of hemochromatosis is

that uncontrolled iron leads to tissue damage derived from free

radical toxicity caused by the excessive levels of this metal [41,54–

57]. Previously, we have shown that when ferric iron is added to

whole blood taken from healthy individuals, the red blood cell

morphology is changed [58]. We have also seen that in diabetes

(where iron overload is sometimes also present - and these diseases

may be mutually causative [2,13,51,59–65]) RBCs are elongated

and twist around fibrin fibers [66]. The possible hydroxyl radical

formation, due to excess iron, or the excess iron itself, may

therefore, as can many drugs [67], change red blood cell and fibrin

fiber ultrastructure, as both RBCs and coagulation factors are

exposed to particularly high serum ferritin and/or iron that may

ultimately cause hydroxyl radicals to be produced in the serum.

In view of the above, we here investigate the RBC morphology

in blood from individuals with hemochromatosis, in the presence

or absence of thrombin, and also study fibrin fiber morphology.

To make the logic behind this study and its mechanistic

hypotheses the clearer, and following the precepts of Wong [68],

we now include a descriptive Figure 1 that sets out the structure of

the manuscript.

We also add iron-chelating and other compounds to determine

any stabilizing effect of these substances on both RBC ultrastruc-

ture and fibrin fiber morphology. We observe remarkable

difference in morphology between RBCs from hemochromatosis

and hyperferritinemic individuals relative to those from normal

controls, with certain kinds of iron chelator and hydroxyl radical

scavenger being able to return the aberrant morphology to near-

normal states. It is unknown as to whether this aberrant

morphology of itself contributes to disease pathology (in the way

that aberrant morphology is well known to do in the case of sickle

cell disease [69]), but the present findings would possibly open the

debate about the desirability of using blood donations from HH

individuals.

Materials and Methods

Ethical approval was granted at the University of Pretoria

(HUMAN ETHICS COMMITTEE: FACULTY OF HEALTH

SCIENCES) under the name E Pretorius. Healthy individuals:

written informed consent was obtained from all healthy individuals

used as controls. Hemochromatosis and wild type blood:

throwaway blood was obtained from a routine genetics laboratory

(AMPATH National Reference Laboratory) after blood was sent

for genetic testing. The blood tubes came from all over South

Africa from various Pathology depots, to a central Genetic

laboratory for genetic testing. The Genetics laboratory obtained

written consent in order to perform the genetic testing. As for the

erythrocyte analysis, no additional written consent was obtained,

as the individuals were not identified for the academic part of the

study. No contact details were available where patients could be

identified or contacted. Given this, the institutional review board

waived the need for written informed consent, for the academic

part of the study, from these participants.

Twenty non-smoking healthy individuals with no chronic

diseases and who do not use any medication, served as control

subjects. SEM pictures of their RBC were compared to those in

our SEM database (of thousands of micrographs) and found to be

comparable. Hemochromatosis individuals were previously geno-

typed as H63D/H63D; C282Y/C282Y; H63D/wild type and

C282Y/wild type and all where Cacausians. Furthermore, wild

types, with high serum ferritin levels were included in the current

study. Blood samples from Hemochromatosis individuals were

obtained from the South African National Blood Services. Serum

ferritin levels, free iron, transferrin and % saturation were also

measured. Currently a hemochromatosis SEM database of RBC

and fibrin fiber networks with and without thrombin is being

created. Ethical clearance was obtained for the study from the

University of Pretoria Human Ethics Committee: E Pretorius as

principal investigator (Ethics Approval Number 151/2006).

Genomic DNA from 5 ml human blood samples collected in

EDTA tubes was isolated using the MagneSil KF Genomic System

on the KingFisher ML instrument. A multiplex PCR to determine

the HFE C282Y and H63D mutations was performed using

fluorescent hybridization probes specifically adapted for PCR in

glass capillaries using the ROCHE 480 Light Cycler. A Melting

Curve program is used to genotype the human genomic DNA

samples. The resulting melting peaks allow discrimination between

the homozygous (wild type or mutant) as well as the heterozygous

genotype [70].

Whole blood samples from healthy individuals and individuals

with hemochromatosis were obtained in Ethylenediaminetetra-

acetic acid (EDTA) blood tubes [71]. To prepare whole blood

smears, 10 ml aliquots were directly placed on a glass cover slip

with and without the addition of 5 ml human thrombin (20 U/

mL). Platelet rich plasma (PRP) (10 ml aliquots) was also prepared

and mixed with 5 ml thrombin [8].

Desferal, salicylate, sodium selenite and clioquinol were

prepared as stock solutions at 10 mM concentrations (stock

solution 1) as well as a lower stock solution of 0.5 mM (stock

solution 2) for each of the compounds used. The final concentra-

tions after dilution and after adding stock solution 1 and 2, are

shown in Table 1.

Whole blood smears for light microscopy were prepared by

making a blood smear with 10 ml of whole blood on to a

microscope slide. The smear was allowed to dry on a hotplate for 5

minutes or until completely dry followed by fixing in 100%

methanol and staining with methylene blue for (4 minutes) and

eosin (30 seconds). Smears were viewed with a Nikon Optiphod

transmitted light microscope (Nikon Instech Co., Kanagawa,

Japan).

Axial ratios of RBCs from healthy individuals, from those with

HH mutations, and from various wild types with or without

chelating and hydroxyl trapping compounds (0.5 mM concentra-

tion), were captured using ImageJ (ImageJ is a public domain,

Java-based image processing program developed at the National

Institutes of Health: http://rsbweb.nih.gov/ij/). Axial ratios were

Erythrocytes and Fibrin in Iron Overload
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always greater than (or equal to) 1 by using the largest diameter

overall as the numerator and the largest diameter at 90u to the line

used to provide the numerator as the denominator. Box plots and

other statistics were calculated using MS-Excel, together with the

add-in template downloadable from http://www.vertex42.com/.

In descriptive statistics, a box plot is a convenient way of

graphically depicting groups of numerical data through their

quartiles [72]. P values were calculated from the means, the

numbers of objects measured in each class and the standard

deviations using the Excel add-in available via http://www.

talkstats.com/attachment.

Figure 1. An overview figure summarizing the contents of this manuscript. 1) Literature suggests that there is a rationale for looking at the
vascular system and particularly blood; 2) we propose a mechanistic hypothesis; 3) our sample was chosen to be a random group of hereditary
hemochromatosis and hyperferritinemia individuals, along with controls; 4) our tissue of choice was blood where we looked at the morphology of
erythrocytes with and without the addition of chelators and iron trapping compounds; 5) our choice of methods involved microscopy techniques as
well as statistical analysis of iron levels.
doi:10.1371/journal.pone.0085271.g001

Table 1. Volumes of platelet rich plasms (PRP), whole blood (WB) and thrombin (T) versus concentration and volume of iron-
chelating and related compound.

Volumes and concentrations Final compound concentration

10 ml PRP+5 ml T+5 ml of 10 mM (stock solution 1) compound. 2.5 mM

10 ml WB+5 ml T+5 ml of 10 mM (stock solution 1) compound. 2.5 mM

10 ml PRP+5 ml T+5 ml of 0.5 mM (stock solution 2) compound. 0.125 mM

10 ml WB+5 ml T+5 ml of 0.5 mM (stock solution 2) compound. 0.125 mM

10 ml WB+5 ml of 10 mM (stock solution 1) compound. 3.33 mM

10 ml WB+5 ml of 0.5 mM (stock solution 2) compound. 0.167 mM

doi:10.1371/journal.pone.0085271.t001
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php?attachmentid = 261&d = 1213281245 and the facility at

http://www.graphpad.com/quickcalcs/ttest1.cfm?Format = SD.

The cover slips with prepared smears were incubated at room

temperature for 5 minutes and were then immersed in 0.075 M

sodium phosphate buffer (pH 7.4) and finally placed on a shaker

for 2 minutes. Smears were fixed in 2.5% gluteraldehyde/

formaldehyde (1:1) in PBS solution with a pH of 7.4 for 30

minutes, followed by rinsing 36 in phosphate buffer for five

minutes before being fixed for 30 minutes with 1% osmium

tetroxide (OsO4). The samples were again rinsed 36with PBS for

five minutes and were dehydrated serially in 30%, 50%, 70%,

90% and three times with 100% ethanol. The material was critical

point dried, mounted and coated with carbon. A Zeiss ULTRA

plus FEG-SEM with InLens capabilities were used to study the

surface morphology of platelets and micrographs were taken 1 kV.

This instrument is located in the Microscopy and Microanalysis

Unit of the University of Pretoria, Pretoria, South Africa.

Results

We choose to provide the data in the form of micrographs, that

illustrate the typical morphologies we observe, along with

statistical analyses of many measurements to provide the necessary

robustness or powering [72]. All individuals were tested for the

HH mutation. They were sent for testing by their medical

practitioners due to the fact that the all had symptoms of iron

overload including possible organ damage. Most of the HH

individuals have increased SF levels, while all HF individuals (by

definition) have increased SF levels. Increased serum iron was

taken as above 30 mmol.L21; transferrin levels that were below

2.1 g/L21 were taken as atypical and % saturation above 45%

were taken as atypical. Table 2 shows the reference serum ferritin

values typically used to determine the presence of iron overload;

while Table 3 shows normal ranges for serum iron, transferrin and

% transferrin saturation.

Tables 4 and 5 show the profiles of our HH and HF patients,

while Figures 2 and 3 show box plots and statistics for serum

ferritins (SFs) and serum irons (SIs) for controls, HH and HF

individuals. Statistical analyses (data shown at the bottom of

Figures 2 and 3) confirm that both the HH and HF groups have

increased SF levels, compared to those of healthy individuals (p-

value,0.05). We could not find any correlation between serum

iron, transferrin and % saturation and the presence of the HH

mutation (an illustration of the serum iron data is given in Table 5).

However, many patients with HF also had increased SF levels and

in some cases the 3 other values were also increased (see Table 5).

From the data in Table 5, it therefore seems as if SF levels are the

iron-related value that most effectively imply or reflect the

presence of the HH mutation.

Figure 4 shows a box plot of axial ratios, with statistics for

controls and HH individuals; and also HH RBCs with and without

chelating and hydroxyl trapping agents. Figure 5 similarly shows a

box plot of axial ratios for HF individuals, and also HF RBCs with

and without chelating and hydroxyl trapping agents.

Axial ratios of RBCs in healthy control individuals are close to

1, which is indicative of their well-known, common discoid shape.

Both the HH and wild type individuals show a significantly

elongated shape as seen in their axial ratios, and these also have a

much greater variance. However, when the iron-chelating

compounds are added, RBCs appear to revert to the typical

discoid shape. Although the serum ferritin concentrations in HH

individuals are not significantly different from those of the

controls, they do exhibit a very much greater variance, while the

concentrations in those with hyperferritinaemia are of course (by

definition) substantially greater (Figure 2). By contrast, there were

no significant differences in serum iron (transferrin-bound iron)

between the controls, HH or HF samples (Figure 3).

P values assess the probability of the null hypothesis being true

(i.e. that all objects are from the same population and thus not

‘different’ from each other) [72]. For controls (17 individuals), HH

(13 individuals) and HF (4 individuals), axial ratios of 20 cells per

individual were measured (controls: n = 340; HH: n = 260; HF:

n = 80). For each of these HH and HF individuals, compounds

were added to WB and axial ratios of 20 cells per added

compound were again measured. The mean values for the axial

ratios for HH cells differed highly significantly from those of

control cells (p,0.0001), and also from those treated with desferal,

salicylate, selenite and clioquinol (P,0.0001 in every case). As with

Table 2. A series of analyses indicating that serum ferritin levels are taken as an indicator of Hemochromatosis, hyperferritinemia,
and in healthy individuals.

Healthy individuals

Males: 25 –300 mg/L21; Females: 25 – 200 mg/L21[73]

Levels of serum ferritin taken as indication for Hemochromatosis

Serum ferritin above approximately females 200 mg/L21 and males 300 mg/L21. [41,53,74–79].

88% of males with homozygous C282Y mutation individuals serum ferritin levels were greater than 300 mg/L21 and in females 57% had levels greater than 200 mg/
L21[77].

Severe overload - serum ferritin levels more than 1000 mg/L21[55,80].

Severe overload - serum ferritin levels more than $239 mg/L21 [51].

Ideal maintenance for Hemochromatosis: 25 – 50 mg/L21 [73,75].

doi:10.1371/journal.pone.0085271.t002

Table 3. Normal values for serum iron, transferrin and %
transferrin saturation.

Normal values for serum iron

11.6 – 31.4 mmol/L21 [81]

Normal values for transferrin

2.2 – 3.7 g/L21 [81]

Normal values for % transferrin saturation

20–50% [81]
up to 45% [82–84]

doi:10.1371/journal.pone.0085271.t003
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the HH, the axial ratios in HF patients also differed highly

significantly from those of controls (P,0.0001) and from those

treated with desferal, salicylate, selenite or clioquinol (P,0.0001 in

every case).

Figures 6, 7, 8, 9, 10, 11 show SEM and LM micrographs (see

the illustration in Figures 6D and 7G: RBC with measurement

lines for axial ratios, indicated by arrows in each micrograph).

Figure 6A–C shows SEM micrographs of typical healthy RBC,

whole blood (WB) with thrombin, as well as PRP with added

thrombin. These individuals do not have increased SF, and do not

smoke nor use any chronic medication. As expected, RBCs of such

healthy individuals show a typical discoid shape (Figure 6A). When

thrombin is added to WB, the RBCs keep their typical discoid

shape; however, fibrin fibers form over and around the RBCs

(Figure 6B). When PRP is mixed with thrombin, a typical fiber net

is formed (Figure 6C). Figure 6D shows a light microscopy smear

of a healthy individual. We have previously shown that the

exposure of whole blood to physiological levels of iron (0.03 mM

FeCl3) causes RBC shape change [85]. This can be seen in

Figure 3E. Figure 3F also shows how ‘healthy’ fibrin changes in

the presence of iron.

By contrast, Figure 7A–D show SEM micrograph smears from

blood taken from HH and HF individuals. HH RBCs typically

have a substantially changed shape, where they become elongated,

with pointed extensions (Figure 7A). Interestingly, in HH where

SF is within normal ranges, RBCs still have an elongated shape

(Figure 7B). This was noted in all individuals with the mutation but

where SF levels are within the normal ranges. A changed RBC

and fibrin network morphology was also noted for HF individuals

with SF levels higher than 200 mg/L21 (females) and 300 mg/L21

(males) (Figure 7C). Thus either HH or HF alone is sufficient to

cause the aberrant morphology. Figure 7D shows whole blood

from a female HH individual (SF = 219 mg/L21) with added

thrombin, where the RBCs are entrapped and deformed in the

fibrin mesh. Figure 7E shows PRP and thrombin from an HH

individual (SF = 1166 mg/L21), where the typical fibrin fibers

coagulate to form a tighter meshed network. It is known that

iron ions may inhibit thrombin activity ([86]). Here this changed

fibrin morphology may in part be the result of this inhibition.

The same ultrastructure is seen in HF individuals (Figure 7F –

SF = 1230 mg/L21).

Figure 7G shows a light microscopy micrograph of a typical HH

individual with SF in the normal range (179 mg/L21); and

Figure 7H, that of an HF individual (SF = 506 mg/L21). The

shape changes seen in some of the RBCs are typical of a

representative light microscopy view of the whole smear.

Interestingly, all HH individuals whose SF levels are within

normal ranges (Table 4, low SF levels shown in italics) still have a

changed RBC shape.

We also exposed PRP and WB from HH and HF (with and

without thrombin) individuals to 2.5 mM and 3.33 mM and

desferal (Figure 8A–C), sodium salicylate (Figure 9A–C), sodium

selenite (Figure 10A–C) or clioquinol (Figure 11A–C) (Table 1). A

second round of experiments (Figures 8–11 D–F) was done at 20-

fold lower concentration of the compounds were added (Table 1).

To assess the extent of the changes, RBC light microscopy was

included for low concentrations of all compounds (Figures 8–11

G). Desferal is the classical iron chelator; however, it has poor

gastrointestinal absorption and therefore has to be administered

intravenously or subcutaneously [87–89]. Sodium salicylate is a

known trap for free radicals [90,91], and is an active metabolite of

aspirin [92] and we previously showed that it has a protective

Figure 2. A box plot drawn from serum ferritin (SF) values for healthy individuals, HH and HF individuals.
doi:10.1371/journal.pone.0085271.g002
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effect on fibrin fiber networks after iron exposure [7]. Sodium

selenite is an assimilable form of an essential trace element (Se)

with antioxidant, immunological, and anti-inflammatory proper-

ties [93]. This said, we note that we cannot absolutely exclude that

salicylate and selenite also have some iron-chelating activities,

since catechol (structurally related to salicylate) does [94], and

salicylate is part of the siderophore enterobactin [95], while the

solubility product of ferric selenite is rather low [96,97]. Clioquinol

has the ability to chelate and redistribute iron [98] and is emerging

as a potential therapy for some diseases, such as Alzheimer’s

disease [99] and cancer [100]. The ‘high’ concentrations of all the

compounds stabilized the RBC and fibrin morphology. Although

the lower concentrations also showed a stabilizing effect, it was not

as profound as that seen with the high concentrations. Neverthe-

less, here we saw that both concentrations of the compounds

stabilized ultrastructure in both HH (low and high SF levels) and

HF individuals.

Discussion

Excess iron levels are associated with Alzheimer’s disease,

Parkinson’s disease, Huntington’s disease, Friedreich’s ataxia and

other neurological disorders, cancer, Fanconi anemia, stroke,

heart disease, diabetes and ageing [1,2,5,18,19,54,101–110]. One

of the hereditary diseases necessarily associated with iron overload

is hemochromatosis, where iron overload causes oxidative stress

that ultimately damages organs. An unanswered question remains

as to what extent, and by what mechanisms, hereditary (or other)

iron overload conditions may contribute to the clinical manifes-

tation of the conditions listed above.

We have recently shown that high added iron may impact on

the coagulation profile and RBC ultrastructure [66,111]. Previ-

ously, we have documented that ferric ions can activate non-

enzymatic blood coagulation, resulting in the formation of fibrin-

like dense matted deposits (DMDs) demonstrable by SEM [112].

Azizova and co-workers also noted that iron causes oxidative

modification of thrombin [86]. RBCs also change morphology

under elevated iron levels [96]. Further, it is also known that

hemoglobin (Hb) content in HH is raised [113,114]; however, the

ultrastructure of fibrin fibers and RBCs in blood in HH seem not

to have been investigated previously. Currently, we know that iron

may change fibrin fiber shape and packaging, when added at

physiological levels [8,66]. We have also shown [8] that in

diabetes, if elevated iron levels are present, changes in fibrin fibers

as well as RBC structure occur. This was ascribed to another,

pathological pathway of fibrin formation initiated by free iron

(initially as Fe (III)), leading to the formation of highly reactive

oxygen species such as the hydroxyl radical, that can oxidise and

insolubilize proteins, a process that might be inhibited by iron-

chelating compounds [8]. The final product of such a pathway is a

fibrin-like material, termed dense matted deposits (DMDs) that are

remarkably resistant to proteolytic degradation. We developed a

laboratory platelet rich plasma (PRP) as well as a functional

fibrinogen model where we used scanning electron microscopy

(SEM) [58] to show that iron-chelating agents can be effective

inhibitors of DMD formation [8]. Of a small range tested, the

most active inhibitors of DMD formation proved to be desferal,

Figure 3. A box plot drawn from serum iron (SI) values for healthy individuals, HH and HF individuals.
doi:10.1371/journal.pone.0085271.g003
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clioquinol and curcumin, whereas epigallocatechin gallate and

deferiprone were less effective. In the present work, we also

investigated the protective effect of the direct free radical

scavenger, sodium salicylate, as well as sodium selenite, by

pretreating iron-exposed PRP and purified fibrinogen with these

candidate molecules [7], though as noted above we cannot entirely

exclude that they can chelate iron too. We suggested that the

hydroxyl radicals produced by iron exposure, are neutralized e.g.

by their conversion to molecular oxygen and water, thus inhibiting

the formation of dense matted fibrin deposits in human blood and

our laboratory fibrinogen model [7]. We note too the role of iron

in the production of other dense cellular deposits such as lipofuscin

(e.g. [115–118]), and we should also recognise that the ferric iron,

as a trivalent cation, necessarily has profound electrostatic effects,

simply from the Debye-Hückel theory. Finally, we note that that

patients do have (excess) unliganded iron, that we also measure the

variations in ferritin levels between individuals, and ferritin, even

in serum, contains iron (see e.g. [119–121].

Perhaps surprisingly, very little is known about the RBC

ultrastructure and fibrin network packaging in hemochromatosis

individuals. In 1997 Akoev and co-workers showed that RBC

membranes in hemochromatosis display an aggregation and

enlargement of intra-membrane particles in comparison with

structures seen in membranes from healthy donors [122]. In the

present work, we demonstrate that the gross morphology of RBCs

from HH individuals, as well as their fibrin fiber ultrastructure, is

Table 4. Profiles of Hereditary Hemochromatosis and genetically wild type individuals with high serum ferritin (SF) levels used in
this study (rows in italics show individuals with SF values that are within normal ranges: females #200 ng/mL21; males #300 ng/
mL21).

Gene Serum ferritin (ng/mL21) Age Gender Representative Figure

H63D/H63D 1613 52 M

C282Y/C282Y 15 22 M 3B

C282Y/C282Y 389 44 M

C282Y/C282Y 1113 46 M

C282Y/C282Y 508 37 F 3A

C282Y/H63D 374 72 F

C282Y/H63D 5 24 F

C282Y/H63D 69 11 F

C282Y/H63D 27 13 M

C282Y/H63D 1019 58 M

C282Y/H63D 1166 59 F 3E

C282Y/wild type 1344 63 M

C282Y/wild type 506 53 M

C282Y/wild type 79 12 M

C282Y/wild type 68 64 M 4G, 5G, 6G, 7G

C282Y/wild type 219 54 F 3D

H63D/wild type 625 52 M 4,5,6,7 A–F

H63D/wild type 468 48 M

H63D/wild type 179 19 M 3G

H63D/wild type 594 46 M

H63D/wild type 242 50 F

H63D/wild type 634 44 F 4A, B, C

AVERAGE 511.64 43

WILD TYPE (Genetically tested due to a history of familial HH and high SF)

Wild type 242 57 F

Wild type 841 55 F

Wild type 506 53 M 3H

Wild type 303 51 M 3C

Wild type 1230 66 M 3F

Wild type 790 58 F

Wild type 479 86 F

Wild type 1736 62 M

Wild type 860 41 M

Wild type 453 57 M

AVERAGE 512 59

doi:10.1371/journal.pone.0085271.t004
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changed, where RBCs form pointed extensions and are distorted,

with a much greater axial ratio compared to the appearance seen

in the normal discoid samples. Previously, we have also shown

with atomic force microscopy (AFM), that in diabetes the RBC

membrane architecture is changed [123]. The RBC membrane

consists of an overlaying asymmetric phospholipid bilayer

membrane [124], supported by an underlying spectrin-actin

cytoskeletal complex, which is interconnected by junctional

complexes, resulting in a simple hexagonal geometric matrix.

The associations between spectrin and actin with the junctional

and ankyrin complexes are of fundamental importance for

allowing erythrocytes to maintain their shape [125]. The plasma

membrane is anchored to the spectrin network mainly by the

protein ankyrin and the trans-membrane proteins band 3 (anion

Table 5. HH and wild type individuals with age, gender, free iron, transferrin and % saturation levels.

Mutation
Serum
ferritin ng/mL21 Gender Age

Serum
Iron (mmol/L21)

Transferrin
(g/L21) % Saturation

C282Y/H63D 7 F 24 21.3 2.6 33

C282Y/H63D 1218 M 54 32.4 2 65

C282Y/H63D 9 M 64 5.8 3.5 7

C282Y/wild type 32.41 F 12 17.2 3.1 22

C282Y/wild type 313.8 M 12 37.3 2.1 71

C282Y/wild type 118 F 57 22.6 2.2 41

C282Y/wild type 113.7 F 39 25.8 2 52

C282Y/wild type 197 M 20 48.2 2.2 88

C282Y/wild type 807 M 48 22.8 2.7 34

C282Y/C282Y 389.7 M 44 21.5 2.1 41

C282Y/C282Y 501 M 26 40.3 2.1 77

H63D/H63D 83 F 43 10.8 2.1 21

H63D/wild type 634.1 F 44 29.2 3.4 34

H63D/wild type 242 F 50 9.7 2 19

H63D/wild type 159 M 63 13.3 3.4 16

H63D/wild type 6 F 44 13.2 2.8 19

H63D/wild type 594 M 46 34.8 3.4 41

H63D/wild type 469 M 39 15.4 2.4 25

H63D/wild type 483 M 56 40.1 2.7 59

H63D/wild type 1500 M 47 30.1 1.1 95

H63D/wild type 35 F 15 34.7 2.2 63

H63D/wild type 126 F 41 21.3 2.5 34

H63D/wild type 736 M 61 37.4 2.5 60

AVERAGES 381.46 42 25.4 2.5 44

Wild type 303 M 51 11.7 3.1 15

Wild type 790 F 58 28.8 2.9 40

Wild type 860 M 41 22.1 2.7 33

Wild type 453 M 57 23.3 2 47

Wild type 568 M 48 13.1 2 26

Wild type 527 M 51 24.7 2.2 45

Wild type 269 M 62 38.6 2.1 74

Wild type 1386 M 38 29.9 2.6 46

Wild type 1441 M 39 39.6 2.6 61

Wild type 259 F 63 9.8 2.7 15

Wild type 432 F 53 7.5 1.8 17

Wild type 562 M 44 18.9 2.6 29

Wild type 455 M 56 36.4 3.1 47

Wild type 1434 M 63 36.7 2.3 64

AVERAGES 695.64 51.71 24.4 2.5 40

HH and wild type individuals with serum ferritin (normal values: females #200 ng/mL21; males #300 ng/mL21) gender, age, serum iron (normal values: 11.6 –
31.4 mmol/L21), transferrin (normal values: 2.2 – 3.7 g/L21) and % saturation levels (normal values: 20 – 50%). Bold values indicate where levels do not fall into normal
value.
doi:10.1371/journal.pone.0085271.t005
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transport protein) and band 4.1 (55 kDa actin-binding protein)

[126–128] and is substantially responsible for controlling the

rheological behavior and for withstanding the physical forces

associated with circulatory transport.

We reported that in diabetes a decreased surface roughness is

present, and that this is indicative of superficial protein structure

rearrangement [123]. Given the effects of non-membrane-

permeant chelators on the ability to reverse the morphological

changes observed in the current study, we suggest that the change

in RBC ultrastructure is driven by RBC membrane-induced

architectural changes. We therefore agree with Akoev and

coworkers that membrane architecture is changed in HH. This

view is also consistent with the well-known ability of amphipathic

cationic and anionic drugs to affect the membrane architecture of

RBCs [67,129–132].

Figure 4. A box plot of axial ratios of 20 cells from 17 healthy individuals (n = 340) versus axial ratios of 20 cells from 13 HH
individuals (n = 260) with and without chelating and other compounds (n = 260 per compound). Micrographs were taken at 100x
magnification with a Nikon Optiphod transmitted light microscope (Nikon Instech Co., Kanagawa, Japan).
doi:10.1371/journal.pone.0085271.g004

Figure 5. A box plot of axial ratios of 20 cells from 17 healthy individuals versus 20 cells from 4 HF individuals (n = 80) with and
without chelating and other compounds (n = 80 per compound). Micrographs were taken at 1006 magnification with a Nikon Optiphod
transmitted light microscope (Nikon Instech Co., Kanagawa, Japan).
doi:10.1371/journal.pone.0085271.g005
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In healthy individuals (with normal SF, free iron, transferrin and

saturation levels), RBCs are typically discoid-shaped, even

following the addition of thrombin (Figure 6A and B). The box

plot analyses also reflect this (Figure 4 and 5). When the

coagulation pathways are activated, fibrin fibers are generated

(in the presence of thrombin), forming a clot. This clot has RBCs

trapped in the network. This was also seen in our laboratory

investigation (Figure 6B). In HH, as well as in HF individuals, the

RBCs are highly entwined in the fibrin mesh, which might

ultimately result in a tighter clot (only HH individual shown -

Figure 7D).

Here we also show the effects of high and lower physiological

level exposure of desferal, salicylate, sodium selenite or clioquinol.

The higher additive concentrations (Figure 8–11 A–C) show a

definite RBC and fibrin network stabilization as noted with the

SEM data. Desferal stabilizes the RBC ultrastructure with and

without thrombin, and fibrin fibers also appear more like those of

a healthy individual (Figure 8). With the high desferal concentra-

tion, RBCs return to the typical, normal discoid-shaped, and with

added thrombin, they regain their discoid shape (Figure 8A and

B). The lower desferal concentration does not have such a

profound stabilizing effect as the higher concentration, as most of

the RBCs appear slightly elliptical rather than discoid. This is also

seen in the light microscopy micrograph (Figure 8G). PRP with

added thrombin, show more individual fibers between thicker

homogenous fibrin. Therefore, the typical net does not completely

form (Figure 8F) in the manner seen with the higher desferal

concentration. These results are seen for both HH and HF

individuals, suggesting that the reasons for the changed ultra-

structure is primarily due to the high SF levels.

In whole blood smears without thrombin, but with added

sodium salicylate, RBCs do not have the pointed extensions

(Figure 9A–C). However, with added thrombin, most of the RBCs

seem to be folded around the fibrin fibers, changing the typical

discoid shape (Figure 9B). Fibrin fibers were comparable to those

of healthy individuals (Figure 9C). Lower concentrations of the

additives did stabilize the RBC as well as fibrin fiber morphology

(Figure 9D – F). Light microscopy of whole blood with these lower

Figure 6. RBCs and fibrin networks from healthy individuals
with SF levels within normal ranges. A) RBC B) RBC with added
thrombin; C) Platelet rich plasma smear with added thrombin. D)
Typical light microscopy smear from a healthy individual. The cell
arrowed illustrates the means by which we determined the axial ratios.
E) Healthy RBC exposed to physiological levels of iron. F) Healthy PRP
exposed to physiological levels of iron showing matted masses (white
arrows). All SEM micrographs scales = 1 mm; Light microscopy scale
= 10 mm.
doi:10.1371/journal.pone.0085271.g006

Figure 7. Micrographs from hereditary hemochromatosis (HH)
and hyperferritinemia (HF) individuals. A) RBC from HH individual
with high SF (508 mg/L21) (C282Y/C282Y); B) RBC from HH individual
with low SF (15 mg/L21) due to regular phlebotomy (C282Y/wild type)
C) Whole blood smear, showing elongated RBC from a HF individual
with high SF (303 mg/L21); D) Whole blood smear, from HH with added
thrombin (C282Y/wild type) (219 mg/L21); E) Platelet rich plasma smear
from HH with added thrombin (C282Y/H63D) (1166 mg/L21); F) Platelet
rich plasma smear from HF individual with added thrombin (1230 mg/
L21); G) Light microscopy smear from a H63D/wild type individual
(179 mg/L21) - The cell arrowed illustrates the means by which we
determined the axial ratios; H) Light microscopy smear from a HF
individual with high iron levels (506 mg/L21). All SEM micrographs
scales = 1 mm. Light microscopy micrographs scales = 10 mm.
doi:10.1371/journal.pone.0085271.g007

Figure 8. Micrographs of samples from patients with heredi-
tary hemochromatosis with added desferal. A) Whole blood with
added 10 mM desferal (H63D/wild type); B) Whole blood, with added
thrombin and 10 mM desferal (H63D/wild type); C) Platelet rich plasma
smear, with added thrombin and 10 mM desferal (H63D/wild type); D)
Whole blood with added 0.5 mM desferal (H63D/wild type); E) Whole
blood, with added thrombin and 0.5 mM desferal (H63D/wild type); F)
Platelet rich plasma smear, with added thrombin and 0.5 mM desferal
(H63D/wild type); G) Light microscopy of whole blood with 0.5mM
desferal (C282Y/wild type). All SEM micrographs scales = 1 mm; light
microscopy micrograph scale = 10 mm.
doi:10.1371/journal.pone.0085271.g008
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concentrations also shows the stabilizing of the RBCs (Figure 9G).

The same pattern was seen in the presence of sodium selenite

(Figure 10A–C), except that it seems as if the RBC kept their shape

better in the presence of the sodium selenite and thrombin.

Clioquinol showed anomalous results, where RBC with and

without thrombin kept their pointed appearance and the fibrin

fibers also coagulated into DMDs with very few individual fibers

visible.

The lower additive concentrations (Figure 8–11 D–F) for all

products, show a less prominent stabilizing effect when viewed

with SEM. However, light microscopy of samples in the presence

of the lower concentrations clearly show that most of the RBCs

have returned to the discoid shape. This was noted for HH as well

as wild type/wild type individuals with higher than the accepted

healthy serum iron levels (200 ng/mL21 for females and 300 ng/

mL21 for males).

Individuals with hemochromatosis – as an ‘iron overload

disease’ – are well known to have significantly more ‘iron’ in

their bodies than do normal controls, and this is considered to

contribute to the attendant gross pathologies of this syndrome.

Phlebotomy and iron chelation are thus two therapies in common

use [73,80,87]. Here we establish that accompaniments of this

excessive iron in hemochromatosis whole blood are changes in

both RBC morphology and in fibrin fibers, possibly due to

hydroxyl radical formation or to the presence of excess iron itself.

If hydroxyl radicals are involved, we suggest that they can cause

non-enzymatic changes to fibrin in the presence of thrombin and a

changed RBC ultrastructure, where the cells lose their discoid

shape and are easily deformed when fibrin and DMDs are

produced in the presence of thrombin. Ferric ions may also bind to

the outer surface of the RBC directly [58]. As expected, the

classical iron chelator, desferal, showed a stabilizing effect on both

Figure 9. Micrographs of samples from patients with heredi-
tary hemochromatosis with added sodium salicylate. A) Whole
blood with added 10 mM sodium salicylate (H63D/wild type); B) Whole
blood, with added thrombin and 10 mM sodium salicylate (H63D/wild
type); C) Platelet rich plasma smear, with added thrombin and 10 mM
sodium salicylate (H63D/wild type); D) Whole blood with added 0.5 mM
sodium salicylate (H63D/wild type); E) Whole blood, with added
thrombin and 0.5 mM sodium salicylate (H63D/wild type); F) Platelet
rich plasma smear, with added thrombin and 0.5 mM sodium salicylate;
G) Light microscopy of whole blood with 0.5 mM sodium salicylate
(C282Y/wild type). All SEM micrographs scales = 1 mm; light microscopy
micrograph scale = 10 mm.
doi:10.1371/journal.pone.0085271.g009

Figure 10. Micrographs of samples from patients with hered-
itary hemochromatosis with added sodium selenite; A) Whole
blood with added 10 mM sodium selenite (H63D/wild type); B)
Whole blood, with added thrombin and 10 mM sodium
selenite (H63D/wild type); C) Platelet rich plasma smear, with
added thrombin and 10 mM sodium selenite (H63D/wild type);
D) Whole blood with added 0.5 mM sodium selenite (H63D/
wild type); E) Whole blood, with added thrombin and 0.5 mM
sodium selenite (H63D/wild type); F) Platelet rich plasma
smear, with added thrombin and 0.5 mM sodium selenite
(H63D/wild type); G) Light microscopy of whole blood with
0.5 mM sodium selenite (C282Y/wild type). All SEM micrographs
scales = 1 mm; light microscopy micrograph scale = 10 mm.
doi:10.1371/journal.pone.0085271.g010

Figure 11. Micrographs of samples from patients with hered-
itary hemochromatosis with added clioquinol. A) Whole blood
with added 10 mM clioquinol (H63D/wild type); B) Whole blood, with
added thrombin and 10 mM clioquinol (H63D/wild type); C) Platelet
rich plasma smear, with added thrombin and 10 mM clioquinol (H63D/
wild type); D) Whole blood with added 0.5 mM clioquinol; E) Whole
blood, with added thrombin and 0.5 mM clioquinol (H63D/wild type);
F) Platelet rich plasma smear, with added thrombin and 0.5 mM
clioquinol (H63D/wild type); G) Light microscopy of whole blood with
0.5 mM clioquinol (C282Y/wild type). All SEM micrographs scales
= 1 mm; light microscopy micrograph scale = 10 mm.
doi:10.1371/journal.pone.0085271.g011
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fibrin fiber and RBC ultrastructure. Clioquinol is known to chelate

and redistribute iron [98,99,133–136]. However, in the current

work, it showed the least potential to stabilize RBCs and fibrin. By

contrast, salicylate and sodium selenite showed excellent stabilizing

properties. Previously we have shown that sodium selenite inhibits

fibrinogen polymerization, and suggested that this may occur by

oxidation of hydroxyl radicals and the concomitant reduction of

Se4+ to Se2+ [7]. Salicylate is also known to be a direct free radical

scavenger and recently it has been shown that it affords protection

against rotenone-induced oxidative stress and therefore has

neuroprotective potential against OHN radical damage [92,137].

In the current study, sodium selenite and sodium salicylate

plausibly also inhibited the hydroxyl radicals produced by the

increased iron present in hemochromatosis, but as mentioned

above may well also have bound or chelated some of the free iron.

The current research has shown that iron causes structural

changes, but that selected additives cause a reverting of the

structure; this suggests that the damage seen is indeed reversible.

As discussed in the previous paragraphs, iron causes oxidative

stress in cells. However, in the current manuscript we did not look

at the specific markers that might cause oxidative damage, e.g. the

presence of ROS in the RBCs. Some of the effects might be purely

due to binding, e.g. via electrostatic effects. However, published

research suggests that in the presence of high iron levels, RBCs

and their precursors have more ROS than do their normal

counterparts [138]. Furthermore, it has also been shown that

chelators, including deferiprone, deferasirox and deferoxamine

reduce the oxidative status of thalassaemic RBCs [138]. Further

research, including the unravelling of the exact molecular

mechanisms behind the shape changes would provide important

insights into the treatment of iron overload diseases; however, tt is

outwith the scope of this paper.

There is also discussion [139,140] as to the utility or otherwise

of using HH individuals as blood donors [141]. The present

findings, indicating that the aberrant erythrocyte morphology is a

property of individual cells (and not an ensemble in the

thermodynamic sense [142]), suggest that care may need to be

taken in the use of blood from HH donors. The reversibility of the

aberrant morphologies of the RBC of HH donors under the

conditions normally used in blood banks should therefore be

checked.

Overall, we found remarkable changes in the morphology of

RBCs in individuals with HH and SF, and showed that to an

extent these can be reversed by chelators of unliganded iron and

molecules that are known to stop their sequelae in terms of

hydroxyl radical formation. An interesting observation is that even

if SF levels are within normal ranges for the HH individuals, they

still have a changed RBC and fibrin network ultrastructure. SF

levels are therefore not the only parameter that changes

ultrastructureAt all events, as illustrated by the independence of

HH and HF, the ability to cause a raising of serum ‘iron’ is a

systems property, reflecting the interplay between SF and all other

aspects of the iron metabolic network. In HH individuals and wild

type individuals where SF is high, a changed RBC shape is also

noted, and the axial ratios reflect this. We could not find a clear

correlation between the 3 other typical pathology laboratory

results requested by medical practitioners and the presence of the

HH mutation (Table 5).

This said, it seems as if increased serum ferritin levels in the HF

individuals do indeed cause (or accompany) changes in ultrastruc-

ture. This could be seen as consistent with the view that the

morphological changes are caused not only by the raised Hb levels

in such RBCs [113,114] but by unliganded iron itself. Whether

this aberrant morphology contributes to disease pathology is not

known, but an interesting parallel can be made with sickle cell

disease. Here it is definitely known that the altered RBC

morphology contributes to pathology as the deformed erythrocytes

struggle to pass through blood capillaries, often leading to stroke

[143–148]. Iron parameters are often raised in sickle cell disease

too, including as a result of transfusion treatment [149–155]. It

would thus be of interest to assess the effects of iron chelators on

sickle cell morphologies directly.

Acknowledgments

Molecular genotyping of HFE mutations was performed by Dr Irma

Ferreira PhD, Human Molecular Genetics Laboratory, AMPATH

National Reference Laboratory, Centurion, South Africa. We would like

to that the South African National Blood Services for providing Human

Thrombin for this study. Also, we would like to thank the Unit of

Microscopy and Microanalysis of the University of Pretoria for the use of
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