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Abstract: Diabetes mellitus increases the risk of heart failure independently of underlying coronary artery disease, and 

many believe that diabetes leads to cardiomyopathy. The underlying pathogenesis is partially understood. Several factors 

may contribute to the development of cardiac dysfunction in the absence of coronary artery disease in diabetes mellitus. 

There is growing evidence that excess generation of highly reactive free radicals, largely due to hyperglycemia, causes 

oxidative stress, which further exacerbates the development and progression of diabetes and its complications. Hypergly-

cemia-induced oxidative stress is a major risk factor for the development of micro-vascular pathogenesis in the diabetic 

myocardium, which results in myocardial cell death, hypertrophy, fibrosis, abnormalities of calcium homeostasis and en-

dothelial dysfunction. Diabetes-mediated biochemical changes show cross-interaction and complex interplay culminating 

in the activation of several intracellular signaling molecules. Diabetic cardiomyopathy is characterized by morphologic 

and structural changes in the myocardium and coronary vasculature mediated by the activation of various signaling path-

ways. This review focuses on the oxidative stress and signaling pathways in the pathogenesis of the cardiovascular com-

plications of diabetes, which underlie the development and progression of diabetic cardiomyopathy.  
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INTRODUCTION 

 Cardiovascular disease represents the major cause of 
morbidity and mortality in diabetic patients [1]. Accumulat-
ing data from experimental, pathological, epidemiological, 
and clinical studies have shown that diabetes mellitus results 
in cardiac functional and structural changes, independent of 
hypertension, coronary artery disease, or any other known 
cardiac diseases, which support the existence of diabetic 
cardiomyopathy [2-4]. In 1972, Rubler et al. [5] first de-
scribed a specific type of cardiomyopathy related to diabetes, 
suggesting that this myocardial disease exists as an inde-
pendent clinical entity. The term "diabetic cardiomyopathy" 
was therefore proposed. Diabetic cardiomyopathy, as an 
early complication of diabetes, is manifested by diastolic 
dysfunction followed by abnormalities in systolic function 
[6]. When presenting with other cardiovascular complica-
tions (i.e., ischemic heart disease or hypertension), diabetic 
patients have a much worse prognosis than non-diabetic pa-
tients and are more prone to progress to congestive heart 
failure [7]. The underlying diabetic cardiomyopathy appears 
to contribute to accelerated heart failure [1]. 

 Under physiological conditions, reactive oxygen species 
(ROS), such as superoxide radical,

 
hydroxyl radical, and 
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hydrogen peroxide (H2O2) are continuously produced in
 

many cells, but ROS levels
 
are regulated by a number of 

enzymes and physiological antioxidants,
 
such as superoxide 

dismutase, glutathione peroxidase, catalase, and thioredoxin. 
However, when

 
the production of ROS becomes excessive, 

oxidative stress will
 
develop and impose a harmful effect on 

the functional integrity
 
of biological tissue. Large experimen-

tal and clinical studies have shown that the generation of 
ROS is increased in both types

 
of diabetes and that the onset 

of diabetes and its complications,
 
including diabetic cardio-

myopathy, are closely associated with
 
oxidative stress [8, 9]. 

The production of ROS has been shown to be increased in 
patients with diabetes [10-14], and increased ROS produc-
tion may be involved in the onset or development of diabetic 
vascular complications. It has been postulated that hypergly-
cemia, a key clinical manifestation of diabetes, may produce 
ROS through the formation of advanced glycation end prod-
ucts (AGEs) [11, 12] and altered polyol pathway activity 
[13], and through the activation of NADPH oxidase via pro-
tein kinase C (PKC) [15].  

 Hyperglycemia-induced oxidative stress is a major risk 
factor for the development of micro-vascular pathogenesis in 
the diabetic myocardium, which results in myocardial cell 
death, hypertrophy, fibrosis, abnormalities of calcium ho-
meostasis, and endothelial dysfunction [16-18]. Although 
these pathogenic factors cause diabetic cardiomyopathy, 
probably via a different mechanism [16, 19-23], their major 
contribution to diabetic cardiomyopathy is oxidative stress 
[24], which is derived directly from these pathogenic factors 
or indirectly from metabolic intermediates caused by these 
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factors, such as the formation of AGEs and production of 
cytokines or peptides, such as angiotensin II (AT-II).  

 Myocardial cell death, hypertrophy and fibrosis are the 
most frequently proposed mechanisms to explain cardiac 
changes in diabetic cardiomyopathy. Nevertheless, the sig-
naling pathways that regulate diabetic cardiomyopathy have 
not been fully elucidated. This review focuses on emerging 
evidence on oxidative stress and signaling pathways in the 
pathogenesis of the cardiovascular complications of diabetes, 
which underlie the development and progression of diabetic 
cardiomyopathy.  

DIABETES INDUCTION BY STREPTOZOTOCIN 

 Streptozotocin (STZ) is a glucosamine-nitrosourea com-
pound that shows selective cytotoxicity to pancreatic  cells 
and is used as an agent to induce experimental animal diabe-
tes. STZ is injected at a dose from 150 to 200 mg/kg body 
weight (BW) in mice. In our study, type-I diabetes was in-
duced in mice by a single i.p injection of STZ at a dose of 
150 mg/ kg BW [25, 26]. STZ action on beta cells is accom-
panied by characteristic alterations in blood insulin and glu-
cose concentrations. Two hours after injection, hyperglyce-
mia is observed with a concomitant drop in blood insulin. 
About six hours later, hypoglycemia occurs with high levels 
of blood insulin. Finally, blood insulin levels decrease and 
hyperglycemia develops. STZ is taken up by pancreatic  
cells via glucose transporter (GLUT)2. Intracellular action of 
STZ results in changes in DNA in pancreatic  cells causing 
its fragmentation. Recent experiments have proved that the 
main reason for STZ-induced  cell death is alkylation of 
DNA. The alkylating activity of STZ is related to its nitro-
sourea moiety, especially at the O6 position of guanine. 
Since STZ liberates nitric oxide (NO) when STZ is metabo-
lized inside cells, NO causes DNA damage in pancreatic islet 
cells; however, the results of several experiments provide 
evidence that NO is not the only molecule responsible for the 
cytotoxic effect of STZ. STZ was found to generate ROS, 
which also contribute to DNA fragmentation and evoke other 
deleterious changes in cells. Augmented ATP dephosphory-
lation increases the supply of substrate for xanthine oxidase 
(  cells possess high activity of this enzyme) and enhances 
the production of uric acid – the final product of ATP degra-
dation. Then, xanthine oxidase catalyses the reaction in 
which the superoxide anion is formed. As a result of super-
oxide anion generation, hydrogen peroxide and hydroxyl 
radicals are formed [27].  

 It can be stated that potent alkylating properties of STZ 
are the main reason for its toxicity; however, the synergistic 
action of both NO and ROS may also contribute to DNA 
fragmentation and other deleterious changes caused by STZ. 
NO and ROS can act separately or form highly toxic per-
oxynitrate (ONOO); therefore, intracellular antioxidants or 
NO scavengers substantially attenuate STZ toxicity. STZ-
induced DNA damage activates poly ADP-ribosylation. This 
process leads to the depletion of cellular NAD+, further re-
duction of ATP content, and subsequent inhibition of insulin 
synthesis and secretion [27]. 

 

 

DIASTOLIC DYSFUNCTION 

 Changes in diastolic dysfunction are a widely reported 
finding in diabetic animals [28, 29], and patients without 
evidence of heart disease caused by other factors [30, 31]. 
The presence of diastolic dysfunction in diabetic hearts may 
relate to uncoupling of the contractile apparatus (which 
drives early relaxation), without concomitant increases in 
chamber stiffness (which produces more late diastolic 
changes) [32]. Moreover, isoproterenol administration to 
hearts from 4-week-old diabetic rats reduced the peak rate of 
relaxation, although the rate of contraction increased nor-
mally [33]. Diastolic functional parameters in diabetic pa-
tients are analogues to those in animal studies, where the left 
ventricular (LV) diastolic dysfunction appears to be quite 
common in well-controlled type-II diabetic patients without 
clinically detectable heart disease [34].  

SYSTOLIC DYSFUNCTION 

 Animal studies have shown that diabetes is also associ-
ated with systolic dysfunction [35-37]. Similar findings were 
reported in intact animals; heart rate, systolic blood pressure, 
and fractional shortening were significantly reduced in dia-
betic animals compared with control animals [38]. Although 
a number of studies have confirmed the association of LV 
systolic dysfunction with diabetes mellitus, this finding has 
not been uniformly reported [39-42]; however, many patients 
who have normal LV systolic function at rest may show ab-
normalities during exercise or dobutamine stress [39, 43] 
indicating that LV systolic reserve is reduced in those pa-
tients. 

MYOCARDIAL STRUCTURAL CHANGES 

 A number of studies in both animals and humans have 
shown structural changes in parallel with functional changes 
in heart of diabetic disease, in the absence of hypertension, 
coronary artery disease, or intraventricular conduction de-
fects [44-48]. The most prominent histopathological finding 
in diabetic patients and animals is fibrosis, which may be 
perivascular, interstitial or both [40, 49, 50].  

METABOLIC DISTURBANCES 

 A significant reduction in myocardial glucose supply and 
utilization has been observed in isolated diabetic cardiomyo-
cytes [51] and diabetic patients [52]. A slow rate of glucose 
transport across the sarcolemmal membrane into the myo-
cardium, probably due to the cellular depletion of GLUTs 1 
and 4, mainly restricts glucose utilization in the diabetic 
heart [53, 54]; however, this can be corrected by insulin 
therapy [54, 55] and GLUT-4 overexpression [56]. A second 
mechanism of reduced glucose oxidation is via the inhibitory 
effect of fatty acid oxidation on pyruvate dehydrogenase 
complex due to high circulating free fatty acid (FFA) [57]. 

 Elevated FFA levels are believed to be one of the major 
contributing factors in the pathogenesis of diabetes [58, 59]. 
Elevation of circulating FFAs is caused by enhanced adipose 
tissue lipolysis, and high tissue FFAs are caused by the  
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hydrolysis of augmented myocardial triglyceride stores. 
Moreover, high circulating and cellular levels of FFAs may 
result in abnormally high oxygen requirements during FFA 
metabolism and the intracellular accumulation of potentially 
toxic intermediates of FFA, all of which lead to impaired 
myocardial performance and severe myocardial changes [58, 
59]. Furthermore, the availability of carnitine, an essential 
substrate for myocardial FFA metabolism, is usually reduced 
in diabetes [60].  

 Several sarcolemmal changes have been identified during 
diabetes which includes alterations in sarcolemmal calcium 
binding [61], Na

+
-K

+
 ATPase [62], and calcium pump activ-

ity [63]. Calcium transport by the sarcoplasmic reticulum 
(SR) is another major mechanism by which myocardial lev-
els of calcium, and thereby tension development, are modu-
lated. In diabetic hearts, SR Ca

2+
 binding, Ca

2+
-Mg

2+
 ATPase 

activity are decreased, leading to a defect in SR Ca2
+
 trans-

port [64], which then correlates with slower relaxation [65]. 
SR Ca

2+
 ATPase activity and calcium pump protein 

(SERCA2a) are reduced in diabetic hearts [66]. Abnormal 
systolic and diastolic functions were normalized after over-
expression of SERCA2a in STZ-induced diabetic rat hearts 
[67]. A number of studies have shown that Ca

2+
 ATPase ac-

tivities of myosin and actinomyosin are depressed, thus ac-
counting for decreased shortening velocity of the cardiac 
muscle, which is associated with a myosin isoenzyme shift 
from the more active V1 isoform to the less active V3 iso-
form [68]. In addition, mitochondrial oxidative capacity, 
Mg

2+
 ATPase activity, and Ca

2+
 uptake activity are all de-

pressed in the diabetic myocardium [69]. The above changes 
likely result from the accumulation of toxic molecules, such 
as long-chain acyl carnitines, free radicals, and abnormal 
membrane lipid content. Importantly, in several studies, ab-
normalities in metabolism and hemodynamics in diabetic 
animals were reversed by both islet transplantation and insu-
lin therapy [70].  

MYOCARDIAL APOPTOSIS IN DIABETES 

 Apoptosis is a tightly regulated mechanism for eliminat-
ing damaged or superfluous cells without harming their 
healthy neighbors. Controlled deletion of cells serves many 
useful functions in development and during stress to ensure 
the survival and integrity of the organism; however, when 
apoptosis is not balanced by cell replacement in the adult 
myocardium, functional impairment can occur. Cardiomyo-
cytes possess the necessary apparatus for cellular suicide and 
activate the process in response to a range of stresses, includ-
ing hypoxia, free radical stress, viral infection, adrenergic 
overstimulation, and work overload. Apoptosis occurs con-
comitantly with necrosis in the infarcted and reperfused 
myocardium [71], end stage heart failure [72], postinfarction 
LV remodeling [73], diabetes [74], and during the regression 
of hypertrophy [75]. 

 Several studies have indicated that diabetes induces myo-
cardial apoptosis in human patients [76] as well as in dia-
betic animal models [77-79]. STZ-induced diabetic rats and 
mice showed increased myocardial apoptosis on day 3-14 
and decreased on day 28 after STZ treatment [77-79]. It will 
be interesting to know whether myocardial apoptosis is spe-
cifically diabetes-dependent. Cardiac specimens from dia-

betic patients without hypertension showed an increase in 
myocardial apoptosis relative to non-diabetic patients [76]. 
However, no difference in myocardial cell death was ob-
served between diabetic patients with hypertension and dia-
betic patients without hypertension [76]. These results indi-
cate that myocardial apoptosis in diabetic patients is directly 
related to diabetes, but not to coexisting hypertension. The 
possibility that myocardial apoptosis secondary to the appli-
cation of STZ can be ruled out from the study of Cai et al. 
[79], who found no significant increase in myocardial apop-
tosis in the STZ-treated mice without hyperglycemia. 
Moreover, diabetic mice treated with insulin showed reduced 
elevation of blood glucose levels and inhibition of myocar-
dial apoptosis on day-3 after STZ treatment [79]. Since de-
hydration is a common phenomenon in diabetic subjects, 
dehydration-induced myocardial apoptosis can be excluded 
from the study [77], where both diabetes and restriction in 
food intake decreased BW and heart weight, leading to a 
modest depression of cardiac function, but only diabetic 
hearts showed an increase in myocardial apoptosis. These 
results indicated that myocardial apoptotic cell death was 
directly related to diabetic pathogenesis, not secondary to the 
application of STZ, and hypertension and dehydration coex-
isted with diabetes. In addition, several in vitro studies have 
indicated that a high level of glucose induces apoptosis in 
cultured adult cardiomyocytes, smooth muscle, and endothe-
lial cells [79]. 

MYOCARDIAL HYPERTROPHY AND FIBROSIS  

 The mammalian myocardium undergoes a period of hy-
pertrophic growth during postnatal maturation, which is 
characterized by an increase in the size of individual cardiac 
myocytes without cell division [80]. The pattern of devel-
opmental hypertrophy is reinitiated in the adult heart in re-
sponse to diverse mechanical, hemodynamic, hormonal, and 
pathologic stimuli [81]. Increased mechanical and neurohu-
moral load, such as hypertension, ischemic heart disease, 
valvular insufficiency, and cardiomyopathy, increases wall 
thickness and results in concentric hypertrophy [80]. At the 
cellular level, cardiac myocytes respond to diverse types of 
biomechanical stress by initiating several different processes 
that via the activation of transcription factors lead to hyper-
trophic gene expression and growth of individual myocytes. 
Initially, the response is beneficial, but when prolonged, it 
leads to pathological myocyte hypertrophy. The first genetic 
response to increased load is activation of a pattern of early 
response, or immediate early genes: c-fos, c-myc and c-jun 
[82]. This is followed by the induction of certain genes, such 
as atrial natriuretic peptide (ANP), brain natriuretic peptide 
(BNP),  –myosin heavy chain (MHC) and -skeletal actin 
(SkA), accompanied by the development of a hypertrophic 
phenotype characterized by an increased cell-surface area, 
protein concentration and protein to DNA ratio [83].  

 Myocardial fibrosis can occur in patients who have hy-
pertrophic cardiomyopathy in the absence of epicardial coro-
nary disease [84]. Fibrosis is attributed to replacement fibro-
sis caused by focal myocyte necrosis [85, 86] and increased 
interstitial fibrosis, in part due to the reaction of connective 
tissue cells to pathological loads [86]. Myocardial fibrosis 
and cardiac hypertrophy are the most frequently proposed 
mechanisms to explain cardiac changes in diabetic cardio-
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myopathy [50]. Indeed, diabetic heart disease may simply 
reflect increased interstitial fibrosis in the heart, because 
collagen accumulation occurs mainly as a result of an in-
crease in type III collagen in the diabetic heart [87]. Trans-
forming growth factor (TGF) 1 is present in both cardio-
myocytes and myocardial fibroblasts [88]. In the heart, 
TGF 1 has been shown to be expressed at high levels during 
cardiac development [89] and pathology [90]. 

SIGNALING PATHWAYS IN CARDIAC APOPTOSIS, 
HYPERTROPHY AND FIBROSIS 

 Hyperglycemia/diabetes-induced changes in myocardial 
structural and functional properties are mediated through the 
activation of various signaling pathways, e.g. via diacyl 
glycerol (DAG)-induced activation of PKC [91], ROS [92], 
AT-II [93], TGF 1 [94] etc. Recently, the involvement of 
various mitogen activated protein kinase (MAPK) activities 
has been characterized in different diabetic tissues, such as 
glomerular mesangial cells [95], human umbilical vein endo-
thelial cells (HUVEC) [96], bovine pulmonary artery endo-
thelial cells (PAEC) [97], and dorsal root ganglion [98]; 
therefore, the specific role of MAPKs in the diabetic myo-
cardium cannot be excluded. 

MAPK SIGNALING 

 There are multiple MAPK pathways in all eukaryotic 
cells, which allow the cells to respond differently to diver-
gent inputs. MAPK signaling cascades are usually divided 
into three parallel pathways: extra cellular signal regulated 
kinase (ERK), c-jun NH2 kinase (JNK) and p38 MAPK 
pathways. All MAPK pathways include three signaling lev-
els, i.e. MAPK kinase kinase kinase (MAPKKK) activating, 
MAPK kinase kinsae (MAPKK), which in turn activates 
MAPK. Activation of MAPKKKs results from translocation, 
oligomerization, and phosphorylation by upstream kinases 
[99, 100]. Active MAPKKKs phosphorylate serine and 
threonine residues in MAPKKs, which in turn activate tyro-
sine and threonine residues in the activation loop of MAPKs. 
Most physiological substrates of MAPKs possess specific 
binding sites for MAPKs that allow strong interactions with 
selectivity for MAPK subfamilies [101]. MAPKs also pos-
sess complementary docking sites, which allow them to in-
teract with MAPK binding domains on substrate proteins 
[102]. The signaling mechanism is coordinated by the inter-
action of components of the protein kinase cascade with 
scaffold proteins, such as JNK interacting protein-1 and 
MEK1 partner [103].  

JNK SIGNALING 

 Cardiomyocyte apoptosis can be stimulated by various 
factors, such as oxygen radicals, cytokines, autocoids, and 
sphingolipid metabolites, various physical and chemical 
stresses [76-79]. Diabetes-induced cardiomyocyte apoptosis 
was found in human patients [76] and various animal models 
[77-79]. MAPK family members play an important role in 
cardiac survival signaling [104], and modulation of MAPK 
activities has been characterized in various diabetic tissues 
[95-98]. We found enhanced activation of JNK and a higher 
percentage of apoptosis 3 and 7 days after diabetes induction 
in mice [25]. Also, activation of JNK and apoptosis in the 

diabetic myocardium were significantly correlated (P < 
0.0001, r = 0.9472). This study indicates the possible in-
volvement of the JNK pathway in mediating early stage dia-
betes-induced cardiomyocyte apoptosis in mice. Several 
other studies have reported that JNK activity leads to car-
diomyocyte apoptosis. For example, oxidative stress-induced 
cardiomyocyte apoptosis is mediated by the activation of 
JNK, which directly activates the mitochondrial death 
mechanism, and -adrenergic receptor-stimulated apoptosis 
in cardiac myocytes is mediated by JNK-dependent activa-
tion of mitochondrial pathway [105]. High glucose-induced 
apoptosis in HUVEC is mediated by the activation of JNK 
and caspase-3 [96]. Some studies have demonstrated that 
JNK induction appears to be upstream of interleukin-1  con-
verting enzyme (ICE/CED-3) proteases in apoptosis induced 
by ultraviolet C and -radiation [106] and anticancer drugs 
[107], whereas others documented the activation of JNK 
downstream of ICE/CED-3 proteases in the CD95 pathway 
[108].  

p38 MAPK SIGNALING 

 High glucose or diabetes induced the activation of p38 
MAPK in 1- and 2-month diabetic glomeruli [109], Re-
cently, in STZ-induced diabetic myocardium, p38 MAPK 
activation was found to be decreased 7 days after STZ injec-
tion [110]. Very recently, it has been reported that 7 days 
after STZ injection phosphorylated p38 MAPK was de-
creased in the diabetic rat myocardium when compared to 
non-diabetic rats [110]. In our study, we found enhanced 
activation of p38 MAPK 1, 28 and 56 days after STZ injec-
tion in mice [25, 26]. These results support earlier studies, in 
which p38 MAPK activity was significantly increased in one 
and two month diabetic glomeruli [109], and STZ-induced 
diabetes in rats activated p38 MAPK, resulting in the phos-
phorylation of heat shock protein 25 [111]. In contrast, high 
glucose did not activate p38 MAPK in HUVEC [96] and in 
bovine PAEC [97]. These discrepancies in the role of p38 
MAPK in high glucose diabetes may be partly explained by 
the difference in experimental models, presence of multiple 
p38 MAPK isoforms (p38 , p38 , p38  and p38 ), and the 
existence of several MAPKK, which activate p38 MAPK; 
however, the role p38 MAPK in diabetic myocardium is not 
clear. Moreover, different studies indicate that the activation 
of p38 MAPK can be ascribed either a pro-apoptotic [112] or 
anti-apoptotic role [113], depending on the type of stimulus 
in cardiac myocytes. In our study [25], no significant corre-
lation between p38 MAPK activation and apoptosis was 
found, but, the percentage of cardiomyocyte apoptosis was 
decreased when p38 MAPK activation was increased 1, 28 
and 56 days after diabetes induction, and an increase in 
apoptosis was found when p38 MAPK activation was mini-
mal 3 and 7 days after diabetes induction. Therefore, from 
our results, it can be speculated that p38 MAPK may play an 
anti-apoptotic and/or apoptotic role in diabetes-induced car-
diomyocyte apoptosis.  

ERK1/2 SIGNALING 

 Enhanced phosphorylation of ERK was found in the 
lumbar dorsal ganglia of diabetic rats [98] and markedly 
increased phosphorylation of ERK1/2 was found in the myo-
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cardium of diabetic rats [110]. As demonstrated in other 
studies [96, 97], we found that ERK1/2 were not activated 
during the course of diabetes in mice [25]. Recently, Zhang 
et al. reported that activated p38 MAPK directly interacts 
with ERK1/2 and blocks their phosphorylation by 
MAPK/ERK kinase1 (MEK1) [114] . 

APOPTOSIS SIGNAL REGULATING KINASE (ASK) 
1 SIGNALING 

 ASK1, a MAPKKK, is involved in biological responses 
such as apoptosis, inflammation, differentiation and survival 
in different cell types. Activated ASK1 relays signal to JNK 
and MAPK [115, 116]. We have recently reported that 
ASK1 activity was associated with de-phosphorylation at 
phospho-ASK1 (Ser-967), which has been identified as the 
14-3-3 protein binding site for ASK1 in the diabetic myocar-
dium [117]. High glucose-induced apoptosis in HUVEC is 
mediated by the activation of JNK and caspase-3 [96]. 
Moreover, we previously showed enhanced activity of the 
downstream effector of ASK1, JNK, and a higher percentage 
of apoptosis in mice 3 days after diabetes induction relative 
to normal mice [25, 117]. Hence we proposed that diabetes-
induced ASK1 activity mediates myocardial apoptosis by 
downstream activation of JNK. 

PKC SIGNALING 

 Cardiovascular tissues showed the up regulation of PKC 
activities in diabetic state. PKC activity was significantly 
increased in the membrane fraction of diabetic hearts com-
pared with controls, and the increased activity was accompa-
nied by a decrease in cytosolic PKC activity in these diabetic 
hearts [118]. The increase in membrane-bound PKC activity 
thus appears to be due to translocation of the enzyme from 
the cytosolic to membrane fraction. These results indicate 
that the development of diabetic cardiomyopathy is accom-
panied with a high membrane-bound PKC level [118]. This 
is probably caused by the de novo synthesis of DAG in re-
sponse to overflow of the glycolysis pathway in hypergly-
cemic conditions [119]. Accumulation of metabolites in the 
glycolysis pathway, such as glyceraldehyde 3-phosphate, 
will drive the synthesis of DAG, which in turn recruits 
primed PKC into the plasma membrane to render a compe-
tent kinase, a key event in its activation [119]. The level of 
DAG content in the diabetic heart is positively correlated 
with the blood glucose levels [120]. In the diabetic heart, 
PKC 2 has been preferentially found to be activated in the 
heart and aorta of diabetic animals [91, 120, 121]. Guo et al. 
[121] found that PKC 2 is significantly upregulated in the 
diabetic heart at both the transcriptional and translational 
levels. Moreover, targeted overexpression of PKC 2 in the 
mouse myocardium resulted in LV hypertrophy, fibrosis, and 
decreased LV performance, similar to diabetic cardiomyopa-
thy [122, 123]. Ventricles from patients with end-stage heart 
failure show increased expression of PKC 2 and increased 
membranous PKC activity within cardiac myocytes [124]. 
Oral administration of a PKC -specific inhibitor normalizes 
blood flow and vascular barrier function in several organs of 
diabetic animals [125-127]. Although it is generally agreed 
that PKC activation contributes to cardiovascular dysfunc-
tion [128, 129], no consensus has been reached regarding the 

molecular basis of PKC upregulation in hyperglycemia or 
diabetes. We [26] examined the role of PKC 2 in the dia-
betic myocardium of mice, and found that PKC 2 was sig-
nificantly increased 28 and 56 days after STZ injection in the 
LV cytosolic lysate of mice compared to control mice. The 
correlation coefficient (r) values obtained between the level 
of expression of PKC 2 and cardiac cell size, and between 
the level of expression of PKC 2 and fibrosis were higher in 
diabetic mice.  

GLYCOGEN SYNTHASE KINASE (GSK) 3  SIGNAL-
ING 

 Recently, we have reported [130] that GSK3  is up-
regulated in the early stage of STZ-induced diabetic myocar-
dium relative to normal. Activation of caspase 3 is reported 
to be a downstream event in GSK3  signaling in mediating 
myocardial apoptosis [131]. The expressions of activated 
caspase 3 and myocardial apoptosis were significantly in-
creased 3 days after STZ injection, and correlated with the 
enhanced activation of GSK3  and it was suggested for the 
first time that GSK3  plays an important role in mediating 
myocardial apoptosis in the diabetic myocardium. Previ-
ously, we have shown that the activation of JNK was corre-
lated with myocardial apoptosis [25]. Very recently, Enguita 
et al. [132, 133] reported that JNK as well as GSK3  signal-
ing pathways may mediate cell death pathways; therefore, it 
was worth examining the roles of GSK3  and JNK in medi-
ating myocardial apoptosis in the diabetic myocardium. 
GSK3  is shown to inhibit cardiac hypertrophy by prevent-
ing the nuclear translocation of nuclear factor of activated T-
cells (NFATc3) via the phosphorylation of NFATc3 [134]. 
NFATc3 is a transcription factor which activates several 
genes related to cardiac hypertrophy [135]. We found that 
the phosphorylation of GSK3  and the nuclear translocation 
of NFATc3 were elevated in mice 28 days after STZ injec-
tion, without a significant alteration in AKT activity, sug-
gesting that there are other possible upstream activators of 
GSK3  that control its signaling in the diabetic myocardium, 
converting the pro-apoptotic stimuli of GSK3  observed in 
early stages of the disease [130]. Recently, GSK3  was also 
shown to be inactivated by PKC [136], and several studies 
and our study also indicated that PKC 2 isoform is elevated 
in the diabetic myocardium [26, 130]. It is intriguing to note 
a parallel relationship between PKC 2 and the enhanced 
phosphorylation of GSK3  ser 9 (indicator of inactive 
GSK3 ) activity, which speculate that PKC 2 may nega-
tively regulate GSK3 , which may further activate the nu-
clear translocation of NFATc3 and the transcription of car-
diac hypertrophic genes in the diabetic myocardium. Future 
studies addressing the relationship among PKC 2, GSK3  
and p38 MAPK may reveal interesting findings in the dia-
betic myocardium. 

ROLE OF OXIDATIVE STRESS AND AT-II IN THE 
PATHOGENESIS OF DIABETIC CARDIOMYOPA-
THY 

 Mitochondrial damage is related to ROS formation and 
plays an important role in the development of diabetic car-
diomyopathy [137]. The increase in ROS serves to decrease 
the antioxidant capacity of the diabetic myocardium, con-
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tributing significantly to oxidative stress and the resultant 
myocardial damage. This damage causes cardiac morpho-
logical and functional abnormalities. Oxidative stress has 
recently been proposed as the unifying factor for the damag-
ing effect of hyperglycemia [138, 139]. Cell death is an im-
portant determinant of cardiac remodeling because it causes 
a loss of contractile units, compensatory hypertrophy of 
myocardial cells and reparative fibrosis [140]. Apoptotic cell 
death associated with increased oxidative stress in multiple 
organ systems of diabetes mellitus has been well docu-
mented [141, 142]; however, the precise mechanism(s) by 
which ROS accumulation leads to compromised heart func-
tion and the effect of antioxidant therapy in diabetic subjects 
is largely unknown. Therefore, it is important to study the 
signaling pathways and molecular mechanisms by which 
hyperglycemia-induced (or, presumably, STZ-induced) oxi-
dative stress leads to cell death and myocardial pathogenesis. 

 Several sources have been proposed for enhanced ROS 
formation in hyperglycemia. The renin-angiotensin system 
(RAS) is known to play a major role in the regulation of 
blood pressure and other functions of the cardiovascular sys-
tem [143]. Hyperglycemia activates the local RAS, resulting 
in the formation of AT-II, and it has been shown clinically 
and experimentally that AT-II induces oxidative damage by 
producing ROS through the NADH/NADPH oxidase system 
[76-78, 134]. Such effects of AT-II are mediated through 
AT1 receptor in the heart [76]. The contribution of RAS has 
been implicated in the pathogenesis of diabetic cardiomy-
opathy [144, 145]. Up-regulation of the local RAS in diabe-
tes may enhance oxidative damage, activating cardiac cell 
apoptosis, and necrosis [76]. 

 AT-II is a multifunctional hormone that regulates many 
important cellular processes, including vascular function, 
cell growth, apoptosis, migration, fibrosis and inflammation, 
[146]. AT-II elicits its actions via two distinct receptors; 
AT1 and AT-II type 2 (AT2) receptors [146]. Most known 
physiological and pathophysiological effects of AT-II are 
mediated via AT1 receptors. Current research in the field of 
vascular biology demonstrates that AT1 receptor activation 
stimulates non-phagocytic NADPH oxidase and the genera-
tion of •O2 – in various cell types [147, 148]. AT-II-mediated 
superoxide generation is upregulated in diabetes, hyperten-
sion and atherosclerosis, and is involved in redox-dependent 
signaling cascades [147]. The increased AT-II receptor lev-
els in the STZ-induced diabetic heart, and the number of AT-
II receptor sites per myocyte paralleled the change in myo-
cyte apoptosis [77].  

 The increase in interstitial fibrosis in the diabetic heart is 
mainly due to the accumulation of type III collagen [87]. The 
effects of AT-II may also be promoted by the production and 
release of TGF 1 by cardiac fibroblasts [149]. Treatment 
with an AT1 receptor antagonist has been demonstrated

 
to 

prevent interstitial fibrosis in the LV [150]. Myocardial re-
modeling such as decreased myofibrillar Ca

2+
-ATPase, 

Mg
2+

-ATPase and myosin ATPase activities were seen in 
diabetic animals, and were reversed by treatment with AT1 
receptor blocker [151]. Also, it has been shown that in STZ-
induced diabetic rats, the loss of -adrenergic-mediated en-
hancement of glucose uptake and abnormal electrophysi-
ological properties, such as the prolongation of action poten-

tial duration and decrease in transient outward current (Ito), 
were restored after treating animals with AT1 receptor 
blocker [93]. In our study, treating STZ-induced diabetic 
mice with an AT1 receptor blocker attenuated diabetes-indu-
ced cardiac hypertrophy and fibrosis, indicating that diabe-
tes-induced cardiac hypertrophy and fibrosis signaling is 
mediated through the AT1 receptor. Also, we found that 
treatment with AT1 receptor blocker reduced diabetes-indu-
ced cardiac expressions of ANP, TGF 1 and collagen III 
[130].  

 Blockade of AT1 receptor decreased perivascular fibrosis 
in obese mice [152] and OLETF rats [153]. The beneficial 
effects of AT1 receptor blockade in diabetic cardiomyopathy 
were explained through the activation of GLUT 4 [154], and 
peroxisome proliferator activated receptor (PPAR)  [155]. 
Previously, we have shown that diabetes-induced cardiac 
hypertrophy and fibrosis are exacerbated in mice 28 days 
after STZ injection [26], where PKC 2 increased in the LV 
tissue; however, the upstream signaling during diabetes-
induced cardiac hypertrophy and fibrosis is not known. 

 Nishikawa et al. have shown that hyperglycemia in-
creases ROS production, inducing oxidative damage, which 
in turn activates the death pathways leading to complications 
of diabetes [139]. Glucose autoxidation and protein glycation 
are both processes that are accelerated by high glucose and 
produce superoxide radical or other ROS [156]. NADPH 
oxidase has been shown to be stimulated by hyperglycemia 
in several cell types [157], and its mRNA in endothelial cells 
is induced 7-fold by high glucose [158]. High glucose can 
turn on NADPH oxidase by de novo synthesis of DAG 
[159], which activates PKC, which in turn can activate 
NADPH oxidase by phosphorylation of p22 phox and p47 
phox [160]. In addition to mitochondrial sources of ROS, 
superoxide anion can be derived from NO synthase [161] 
and NADPH oxidases [134, 148]. Recently, it has been 
shown that membrane-associated NADPH oxidases are the 
primary physiological producers of superoxide in several 
animal models including diabetes [162]. Also, a high glucose 
level stimulates ROS production through PKC-dependent 
activation of NADPH oxidases in smooth muscle cells and 
endothelial cells [159].  

 On the other hand, high glucose can turn on the activa-
tion of p22 phox, a component of NADPH oxidase by de 
novo synthesis of DAG [159], which can further activate 
PKC [163]. Moreover, it has been shown that AT-II-induced 
NADPH oxidase is partly mediated through PKC [163]; 
therefore, the possibility of indirect control of oxidative 
stress in GSK3  through PKC also exists in the diabetic 
myocardium. In our study, myocardial AT-II and oxidative 
stress are elevated in the diabetic myocardium [130].  

 Recently, we have reported treatment with an AT1 recep-
tor blocker as well as the antioxidant reduced the oxidative 
stress, suggesting that these events are essential for the de-
velopment of diabetic cardiomyopathy, and their inhibition 
improves molecular and pathological events in the diabetic 
myocardium [130]. Tempol, a super oxide dismutase mi-
metic, by blocking AT1 receptor and reducing AT-II levels, 
resulted in almost identical reduction of active GSK3 /JNK-
induced caspase-3 signaling 3 days after STZ injection. Also, 
treatment with either AT1 receptor blocker or tempol attenu
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Fig. (1). Schematic diagram showing the possible contributing factors to oxidative stress en route to onset of diabetic cardiomyopathy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Signaling pathways in diabetes induced cardiac dysfunction. 
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ated STZ-induced cardiac hypertrophy and fibrosis by at-
tenuating the inactivation of GSK3  and thus preventing the 
nuclear translocation of NFATc3, and also attenuated 
PKC 2 and p38 MAPK signaling 28 days after STZ injec-
tion. All the effects of AT1 receptor blocker and tempol 
were mediated through the attenuation of both myocardial 
AT-II and oxidative stress, as evidenced from the reduction 
in the number of AT-II-positive cardiomyocytes and the re-
duced expression of p22 phox [130]. Collectively, these re-
sults suggest that AT-II via AT1 receptor and oxidative 
stress play a major role in diabetes-induced myocardial 
apoptosis, hypertrophy and fibrosis, and treatment with ei-
ther an AT1 receptor blocker or an antioxidant will be bene-
ficial for diabetic cardiomyopathy. 

SUMMARY 

 Diabetic cardiomyopathy is a clinical problem that de-
velops in diabetes, and potentially involves oxidative stress, 
myocyte death, cardiac hypertrophy and fibrosis. These 
pathogenic changes may contribute to compromised ven-
tricular dysfunction in diabetes, which is one of the leading 
causes of death in the world today. It is critical to investigate 
the underlying causes of diabetic cardiomyopathy and the 
synergetic effects of oxidative stress in combination with 
antioxidant therapy on the development of heart dysfunction-
associated diseases. We have shown the signaling pathways 
of diabetes-induced myocardial apoptosis, hypertrophy, and 
fibrosis, and the multiple signaling pathways activated in 
diabetic cardiomyopathy are shown in Figs. (1 and 2). Stud-
ies are presently underway to identify the signaling pathways 
and oxidative stress in the development of diabetic cardio-
myopathy. 
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