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Abstract: Cancer is one of the leading causes of mortality and morbidity worldwide. According to
2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been
reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to
21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon,
and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer.
Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemother-
apy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming
increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins,
non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short
chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target
cancer cells in a selective manner, either directly or indirectly through specific pathways. This review
discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment
of cancer.
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1. Introduction

Cancer is one of the leading causes of death, according to 2022 statistics published by
the American Cancer Society [1]. At the 17th World Health Assembly [2], the WHO passed
the resolution “cancer prevention and control in the context of an integrated approach” and
predicted that the number of cancer cases world-wide could increase to 21.6 million by 2030.
The American Cancer Society predicted 1.9 million new cancer cases and 609 360 deaths in
the United States of America in 2022, rating cancer as the second leading cause of death [1].
According to the latest statistics from the South African National Cancer Registry (NCR),
published by the National Institute for Communicable Diseases (NICD), 85 302 new cancer
cases have been reported in 2019 [3]. Of all cancers, breast, lung, prostate, colon, rectum,
bladder, kidney, renal, pelvis, pancreatic, thyroid and liver cancer are most common [4].

Cancer is normally treated with radiotherapy or chemotherapy and tumours are
surgically removed. Less severe cancers are treated with hormone-, immune- and antibody-
based therapies [5]. Most of these treatments, however, do not discriminate between
normal cells and cancer cells, and vary concerning the ability to infiltrate tumours. Pa-
tients that receive radiotherapy or chemotherapy complain of adverse side effects such
as flu-like symptoms, heart problems, diarrhoea, nausea, lockjaw (trismus) and chronic
bladder spams [6–9]. Radiotherapy of the neck and head may elicit difficulty in swallowing
(dysphagia), dry mouth feel (xerostomia), necrosis, inflammation of the spinal cord, and
even permanent trismus or neurological damage [6,10]. Approximately 90% of patients
with advanced cancer experience severe pain after surgery [11] and need to take opioids.
This may lead to drug abuse [12]. In some cases, cancer cells have developed resistance
to conventional treatments [13], which emphasizes the need to search for alternative treat-
ments and anticancer drugs. This led to the search for anticancer compounds produced
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by plants, marine organisms, fungi, algae, and bacteria [14]. Several toxins, antibiotics,
bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids,
purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer proper-
ties, mostly produced by bacteria, have been described [15]. The challenge is to identify
compounds that only target cancer cells and not normal cells.

Cancer cells differ from normal cells by having more fluidic cell membranes [16], a
net negative charge (due to elevated levels of phosphatidylserine, O-glycosylated mucins,
sialylated gangliosides and heparin sulfates), and more microvilli, thus a larger surface
area [17–20]. Because of these characteristics, cationic peptides such as bacteriocins may
find it easier to adhere to cancer cells than normal cells [21,22].

The aim of this review is not to discuss various cancers and symptoms, nor the
advantages and disadvantages of conventional therapies, but to provide the reader with the
latest developments in the use of bacterial toxins, antibiotics, bacteriocins, non-ribosomal
peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, SCFAs
and enzymes in cancer treatment. The possibility of using lactic acid bacteria or their
bacteriocins as anticancer agents is investigated.

2. Bacterial-Mediated Cancer Therapy

Experiments with viable or attenuated microorganisms to treat cancer dates back more
than a century [7,23,24]. The first cancer vaccine, composed of viable Streptococcus pyogenes
cells, was developed by Dr Coley in 1891 [23–25]. The cells activated macrophages and
lymphocytes, and stimulated production of tumour necrosis factor α (TNFα) that regulates
inflammatory responses required to attack malignant neoplasm [26,27]. The “Coley-toxin”,
that consisted of heat-treated culture supernatants of S. pyogenes and Serratia marcescens,
was rejected by the USA Food and Drug Administration (FDA) in 1962 due to lack of
unequivocal scientific support and reports of organ damage [23,28]. Subsequent reports
of Clostridium, Corynebacterium, Bacillus Calmette-Guérin, Salmonella, Escherichia coli, Bifi-
dobacterium and Listeria associated with cancer cells [29–33] led to renewed interest in the
search for bacterial cells with anticancer properties, especially species autochthonous to
the human gut. Several papers have been published advocating the use of Salmonella in
cancer treatment.

Salmonella typhimurium VNP20009 was made less toxic by deleting msbB encoding
lipopolysaccharide (LPS) production [34]. By deleting purI the strain became auxotrophic
for adenine [35]. In a later study, King et al. [36] engineered strain VNP20009 to express
cytosine deaminase (CD) that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU).
Fluorouracil, commercially known as Adrucil, is a cytotoxin used in treatment of colorectal,
oesophageal, stomach, pancreatic, breast, and cervical cancers [37]. In murine models 5-FU
formed at tumour sites, resulting in a dramatic repression of cell growth [36,38]. A CD-
expressing strain of Salmonella enterica yielded similar results when tested in mice [39],
raising the hope that engineered strains of Salmonella may be used to activate cytotoxic
drugs within tumour cells. Another strain of S. typhimurium (TAPET-CD, also referred to as
VNP20029) expressed genes encoding CD and colonized tumour cells for at least 15 days.
The strain converted 5-FC to 5-FU in 2 of the 3 patients treated [40]. No reports of follow-up
clinical trials with any of these strains have been reported.

Inducible promoters responding to specific conditions in tumour cells (e.g., hypoxia)
were used to design delivery systems for anti-cancer treatment [41]. The hypoxia-inducible
promoter (HIP) and a fluorescent marker were cloned into S. typhimurium VNP20009 [42].
A 15-fold increase in fluorescence was recorded in HCT116 human colorectal carcinoma
cells. Non-cancerous cells did not fluoresce [42], which suggested the Salmonalla delivery
vector is very specific. Other HIPs experimented with included those regulating the
expression of pflE and ansB [43]. Swofford et al. [44] transformed the luxI/luxR quorum-
sensing system of Vibrio fischeri into S. typhimurium VPN200010. These reporter genes
were expressed in 4T1 mammary tumours, but only when cell densities were above a
certain threshold.
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Other strains of S. typhimurium tested for anti-cancer therapy included strain AR-1,
an arginine and leucine auxotroph defective in ppGpp synthesis (strain ∆ppGpp) [45],
and strain SF200 with mutations in lipid A and flagella synthesis [46]. Clinical trials on
metastatic cancer patients intravenously injected with maximum tolerable cell numbers
of strain VNP20009 (3 × 108 cfu/m2) proved ineffective [47]. Higher cell numbers led
to anaemia, low platelet counts, bacteraemia, high blood bilirubin, nausea, vomiting,
diarrhoea, hypophosphatemia, and an increase in alkaline phosphatase [47]. A genetically
engineered strain of VNP20009 that produced TNF-related apoptosis-inducing ligand
(TRAIL) under control of a γ-irradiation-inducible RecA promoter, stimulated caspase-3-
mediated apoptosis in 4T1 mammary carcinoma cells [48]. S. typhimurium ∆ppGpp that
expressed tissue inhibitor of metalloproteinases 2 (TIMP-2) reduced the size of glioma
brain tumours in BALB/c mice and increased survival by 60% [49]. Modification of S.
typhimurium ∆ppGpp to express the mitochondrial targeting domain of Noxa (MTD), fused
with the cell-penetrating peptide DS4.3 (DS4.3-MTD), led to the complete destruction of
colon carcinoma tumours [50]. An engineered strain of Salmonella choleraesuis that expressed
the angiogenesis inhibitor thrombospondin-1 inhibited the growth of B16F10 melanoma
cells in mice [51]. No clinical trial data have been published on any of these genetically
engineered strains.

A strain of S. typhimurium genetically engineered to produce truncated human interleukin-2
(SalpIL2), reduced adenocarcinoma metastases of the liver [52–55]. Sorensen et al. [56] reported
that metastatic osteosarcoma in a mouse model could be treated with a single oral dose of
attenuated SalpIL2-producing S. typhimurium. Barnett et al. [57] have shown that SalpIL2
reduced the volume and mass of retroperitoneal neuroblastoma tumours in a murine model.
In vitro experiments have shown that SalpIL2-producing strains invade and divide within K7M2
osteosarcoma cells [58], suggesting that SalpIL2 may persist for long periods in malignant tissue.

Significant lysis of tumor cells in mice were recorded with Clostridium histolyticum
treatment [58]. Shrinking of tumor cells were observed when these cells were exposed to
Clostridium tetani [59]. Clostridium novyi, made non-pathogenic by deleting the gene encod-
ing α-toxin NT, destroyed tumours and secreted liposomase [60]. The latter has been exper-
imented with in enhancing the release of liposome-encapsulated drugs within tumours [61].
Endospores of C. novyi-NT colonized the hypoxic regions of tumours, elicited cell lysis
and an immune inflammatory response that resulted in immunogenic cell death [60,62].
In a phase I study, injection of C. novyi-NT into tumour cells led to a decrease in the size of
the cells, resulted in a systemic cytokine response and enhanced systemic tumor-specific
T-cell responses [63]. Bettegowda et al. [64] reported a long-term remediation effect when
tumours in a mice model were treated with a combination of C novyi-NT endospores and
radiation therapy. The authors suggested that a combination of radioactive iodine with C
novyi-NT might enable patients to be treated with lower doses of radiolabeled antibodies,
which limits injury to normal tissue such as bone marrow.

Nuyts et al. [65] has shown that the recA and recN genes in Clostridium acetobutylicum
DSM792 could be activated with a radiation dose of 2 Gy. The authors argued that the
activation of the recA promoter could increase TNFα production in recombinant clostridia.
In a later study, Jiang et al. [66] showed that E coli K12, harbouring plasmid pAClyA,
produced higher levels of cytolysin A, which enhanced the therapeutic effects of radiation.

Cloning the genes encoding nitroreductase from E. coli to Clostridium beijerinckii re-
sulted in the activation of CB1954 (nontoxic) into a drug with anticancer properties. Intra-
venous injection of activated CB1954 into mice destroyed tumours [67]. Clostridium spp.
engineered to deliver CD to tumours [68] have also been modified to secrete TNFα [69]
and may, in future, be used in cancer therapy. Li et al. [70] suppressed the growth of Heps
mouse liver cancer cells in vivo by using a genetically engineered strain of Bifidobacterium
adolescentis. Bifodobacterium spp. have also been used to deliver active CD enzymes to
hypoxic regions of solid tumours in mice [71–74].

The first report using Listeria monocytogenes to direct an immune response to tumours
was published by Pan et al. [75]. The authors have genetically engineered L. monocytogenes
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to secrete influenza virus nucleoprotein and have shown that the protein could repress tu-
mours in colon and renal cancer models. Several other model studies were published using
recombinant strains of Listeria to repress cervical, head and neck, breast, skin, and renal can-
cers; reviewed by Guirnalda et al. [76] and Cory and Chu [77]. An immunotherapy-based
treatment for cervical cancer was developed based on live attenuated L. monocytogenes
that secretes the fusion protein Lm-LLO-E7 [78]. The protein, referred to as ADXS11-001
(ADXS-HPV), targets human papillomavirus (HPV)-associated tumours. The immune
response elicited by the ADXS11-001 vaccine against HPV oncoprotein E7 led to the
reduction in tumour cells in animal models. Phase I and II clinical studies were later
conducted [79–81]. Clinical trials are being conducted to evaluate another genetically
engineered vaccine, protein ADXS-504, for treatment of biochemically recurrent (early)
prostate cancer (https://tinyurl.com/2p8zcac7; https://tinyurl.com/yunwkcdx, assessed
on 15 August 2022).

E. coli Nissle 1917 was genetically engineered to convert NH3 to L-arginine (L-arg).
The recombinant strain, referred to as SYNB1020, reduced systemic hyperammonemia in
mouse models [82]. A phase 1 clinical study showed that SYNB1020 was well tolerated at
daily doses of up to 1.5 × 1012 cfu (colony-forming units) administered for up to 14 days.
An increase in urinary nitrate, plasma 15N-nitrate and urinary 15N-nitrate was reported,
suggesting that SYNB1020 could be used to treat hyperammonemia, including urea cycle
disorders and hepatic encephalopathy [82]. Another genetically engineered strain of E. coli
Nissle 1917, strain SYNB1618, yielded promising results when tested for the ability to
alleviate phenylketonuria (PKU), a disorder caused by defective phenylalanine hydrolase,
thus the inability to convert phenylalanine (Phe) to tyrosine [83]. Dose-responsive increases
were observed in plasma (trans-cinnamic acid) and urine (hippuric acid) levels of Phe
metabolites, suggesting that genetically engineered E. coli may be used in the treatment of
rare metabolic disorders [83].

Intestinal bacteria influence various inflammatory and immune processes, many of
which are implicated in tumour etiology, such as in colorectal cancer (CRC) [84]. Bacteroides
fragilis and Fusobacterium spp. are directly associated with tumours, including CRC [85,86].
Fusobacterium nucleatum suppresses the immune response that leads to the induction of
chronic inflammation [85]. Bacteroides fragilis alters (damages) the DNA of host cells,
increases cell proliferation, and induces pro-inflammatory processes through the production
of toxins [86]. A gene encoding B. fragilis toxin detected in colonic mucosa is associated
with late-stage CRC [86]. Further research is required to determine if these species could be
genetically modified to prevent the proliferation of cancer cells.

Although gut microbiota may prevent CRC, they also pose a risk of inducing CRC. This
is mostly diet related. High levels of secondary bile acids (BAs) are produced from a high fat
content diet [87,88]. Abnormal high levels of BAs in the colon induces inflammation [89,90]
and forms reactive oxygen species that disrupts cell membranes and mitochondria [88].
Species primarily responsible for production of BAs are Clostridium scindens, Clostridium
hiranonis, Clostridium hylemonae and Clostridium sordellii [91]. A diet rich in proteins and
low in carbohydrates my also cause CRC, as reported by Russel et al. [92]. Fermentation of
proteins in the distal colon leads to the production of toxic ammonia, amines, phenols and
sulfides [93]. Lithocholic acid (LCA), a derivative of cholic acid, is an exception to the rule,
as it inhibits the growth of human prostate cancer cells LNCaP and PC-3 by induction of
caspase-3, 8 and 9 mediated apoptosis [94]. LCA not only induces endoplasmic reticulum
(ER) stress that triggers the unfolded protein response (UPR) activating cell death [95],
but transforms growth factor-β in HepG2 liver cancer cells, and suppresses the growth
of breast cancer cells [96]. In addition, LCA induces oxidative phosphorylation, inhibits
epithelial-mesenchymal transition and expression of vascular endothelial growth factor A,
and stimulates antitumor immunity [96].

The anticarcinogenic properties of lactic acid bacteria (LAB) is addressed in far fewer
publications and focuses mainly on exopolysaccharides (EPS), peptidoglycan, nucleic acid,
bacteriocins, and S-layer proteins [97]. Viable cells of Lactobacillus casei BL23, intranasally
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administered using the human pappilomavirus (HPV)-induced model, reduced tumour
growth [98]. Lactobacillus reuteri BCRC14652, tested in vitro, damaged the cell membranes
of colon carcinoma HT29 cells [99], suppressed tumor necrosis factor (TNF)-induced NF-κB
activation, and repressed the growth of cancer cells by apoptosis [100]. EPS produced by
Lactobacillus acidophilus and Lactobacillus rhamnosus repressed the growth of HT-29 cells by
inducing the activity of Beclin-1 (an autophagy protein) and GRP78 (an endoplasmic reticu-
lum chaperone) directly, and indirectly by regulating apoptosis through stimulation of Bcl-2
(B-cell lymphoma 2) and Bak, a pro-apoptotic gene of the Bcl-2 family [101]. A combination
of L. acidophilus and L. casei, used with 5-FU, induced apoptosis of LS513 cancer cells [102],
suggesting that these species may be used as adjuvants in anticancer chemotherapy.

Anti-tumor activities were also reported for cell-free supernatants of LAB, and irradiation-
inactivated and heat-killed cells of LAB [99,102–105]. Exopolysaccharides (EPS) produced by
L. casei 01 reduced the cytotoxicity of 4-nitroquinoline N-oxide (4-NQO), a pro-mutagen [106].
EPS isolated from L. acidophilus 606 repressed the growth of cancerous cells [103] and EPS from
Lactobacillus plantarum and L. acidophilus significantly reduced tumour growth [107–109]. An in-
teresting observation is that the repression of tumour growth exerted by an EPS-producing
strain of L. acidophilus (strain LA1) may be associated with the suppression of lactate dehydro-
genase (LDH) and alkaline phosphatase (ALP). Inhibition of LDH in the glycolytic pathway of
cancer cells results in lower ATP production, hence slower growth [110,111]. EPS116, produced
by L. plantarum NCU116, binds to TLR2 and activates the TLR2/MyD88/TRAF6/MKK7 path-
way, which, in turn, activates JNK/c-Jun that upregulates the transcription and translation
of Fas and Fasl. The Fas/Fasl signaling pathway activates FADD of caspase-8 and caspase-3.
Activated Caspase-3 facilitates apoptosis by upregulating the expression of cellular target pro-
teins PARPs and Rock1, followed by cleavage of PARP1 and inhibition of CT26 growth [112].
Many probiotic LAB produce EPS and may, in future, be used as alternative or complementary
treatment of cancer. The anticancer properties of EPS are reviewed by Wu et al. [113].

Several reports highlighted the importance of LAB in the prevention of CRC, reviewed
by Zhong [114]. The health and quality of life of patients that underwent surgical resec-
tion of CRC were significantly improved when administered L. acidophilus and Bacillus
natto [115]. Despite this, there is no consensus on the role LAB play in CRC treatment. It
is, however, certain that a select few LAB activate mechanisms involved in the killing or
repression of cancer cells, and that they regulate immune response [116]. This includes
neutralizing free radicals [117] and inactivation of reactive oxygen species (ROS) by NADH
oxidase/peroxidase and catalase [118,119]. Strains of Bifidobacterium longum and L. aci-
dophilus displayed antioxidative activity by inhibiting linoleic acid peroxidation [120]. Heat-
killed cells of L. acidophilus 606 and EPS produced by the strain has potent antioxidative
activity [103]. According to Kumar et al. [121] and Annuk et al. [122], obligate homofermen-
tative lactobacilli display high antioxidant activity, but is highly strain-dependent among
facultative and obligate heterofermentative lactobacilli.

LAB play an important role in stimulating the immune system, especially anti-
inflammatory cytokine IL-10 [123]. Lipoteichoic acid, present in the cell walls of all LAB,
stimulate DCs through Toll-like receptor 2, resulting in the release of cytokines [124,125].
Some lactobacilli stimulate DCs to produce IL-12 and IL-10 [126,127]. Disruption of LTA in
L. acidophilus resulted in the production of IL-10 by DCs and the downregulation of IL-12,
which led to T cell-mediated colitis in mice [128]. It thus seems possible to treat CRC by
altering the cell surface components of L. acidophilus. A strain of L. acidophilus deficient in
LTA (strain NCK2025) repressed the growth of colonic polyps by downregulating IL-12,
TNF-α and IL-10. This activated CD4+ T-cells, as observed in a mice model [129]. In vivo
studies have shown an increase in cytoplasmic levels of TNF-α, interferon-γ (IFN-γ) and
IL-10 in animals administered L. casei and B. longum [130]. This correlated with an increase
in T cells, NK cells and MHC class II+ cells, and CD4-CD8+ T cells in a murine model [131].
L. casei Shirota (LcS) suppressed chemically induced carcinogenesis [131], supported by an
increase in IFN-γ, interleukin-β (IL-1 β) and TNF-α levels [132]. A butanol extract prepared
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from the cell-free supernatant of B. adolescentis significantly increased the production of
TNF-α and NO, which regulated immune modulation and repressed tumor growth [133].

Messenger RNA (mRNA) and interferon gamma (IFN-γ) levels of leukemia KHYG-1
cells increased when treated with a combination of Lactococcus lactis subsp. lactis, Lactococcus
lactis subsp. cremoris, L. Lactococcus lactis subsp. lactis biovar diacetylactis, L. plantarum,
Leuconostoc mesenteroides subsp. cremoris, and L. casei [134]. The six LAB enhanced the
cytotoxicity to human chronic myelogenous leukemia K562 cells and colorectal tumor
HCT116 cells [134]. L. reuteri ATCC-PTA-6475 reduced the growth of mammary tumors
in Swiss mice by blocking NFκ-B-p65 nuclear translocation and the expression of c-jun,
an oncogenic transcription factor [135]. Phenyllactic acid (PLA), hydroxyphenyllactic
acid (OH-PLA), lactic acid, and indole lactic acid (ILA) produced by L. plantarum UM55
inhibited the growth of Aspergillus flavus and thus production of carcinogenic aflatoxins in
food products [136].

Peptidoglycan isolated from Bifidobacterium infantis ATCC 15,697 repressed the growth
of Meth A fibrosarcoma in BALB/c mice [137]. A cell wall-derived polysaccharide-
peptidoglycan complex (PSPG) from L. casei Shirota prevented the activation of IL-6/STAT3
signalling and repressed ileal cancer [138]. Peptidoglycan from Lactococcus and Bifidobac-
terium inhibited the growth of bladder cancer HT-1376, colon cancer DLD-1 and SNUC2A
cells, and kidney cancer A498 cells [139]. S-layer proteins from L. acidophilus CICC 6074
up-regulating the expression of p53, p21, and p16 and down-regulated the expression of
CDK1 (cyclin-dependent kinase) and cyclin B in colon cancer HT-29 cells [140].

RNA extracted from the cell-free supernatant of Lactobacillus DM9811 inhibited the
growth of colon cancer HT-29 cells and mouse ascites hepatoma cells [141]. The authors
ascribed the anticarcinogenic activity to increased activity of NK and CD4+ T cells and
the upregulation of cellular immunity. DNA fragments of Lactobacillus bulgaricus and
Streptococcus thermophilus promoted mitosis in mouse spleen B and Pierre spot cells, result-
ing in enhanced immune functions [141]. These studies may be the first towards nucleic
acid-based vaccines in cancer therapy.

Probiotic LAB and bifidobacteria inhibit signaling of epidermal growth factor receptor
(EGFR) pathways [142], leading to an increase in phosphorylation of cytoplasmic tyrosine
kinase domains. This causes the activation of cell proliferation, apoptosis, migration and
differentiation [143].

Jackson Laboratory (JAX) mice, known to be easily colonized by commensal microbes,
had higher cell numbers of Bifidobacterium in their colons. These mice showed reduced
growth of skin cancer cells and had higher levels of antitumor cytotoxic T lymphocytes
(CTL). Species linked to antitumor immune responses were Bifidobacterium breve, B. longum
and B. adolescentis [144]. Mice devoid of these species recovered from melanoma and
showed an increased in tumour specific CTLs when administered B. breve or B. longum [144].
Once administered, bifidobacteria proliferate in the nutrient-rich environment created by
cell death and necrosis [144]. The specific mechanism by which bifidobacteria or other
intestinal bacteria stimulate antitumor immune responses is unknown. They may stimulate
the maturation of dendritic cells (DCs) that, similar to antigen-presenting cells (APC), play
a role in T-cell activation. B. longum BB536 stimulate the development and maturation of
interferon γ (IFN-γ) secreting cells. Newborn infants showed an increase in the ratio of IFN-
γ/IL-4 secreting T helper (Th) cells (Th1/Th2) when they received B. longum BB536 [145].

Enterococcus faecalis downregulates the expression of the FIAF (angiopoietin-like pro-
tein 4) gene associated with the development of some cancer types [146]. In a mouse model
of ulcerative colitis, E. faecalis inhibited inflammation by suppressing T helper (Th)-1 and
Th17 responses [147]. Heat-killed cells of E. faecalis YM-73 enhanced immune modulation
by increasing Th1 and reducing Th2-associated cytokines [148].

Gut bacteria could also be used to reduce normal tissue damage during or after radio-
therapy. Several studies have shown that probiotic strains of Lactobacillus and Bifidobacterium
reduce radiotherapy side effects [149–153].
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LAB are of paramount importance in the prevention of CRC. Insights into the cellular
and molecular mechanisms which include apoptosis, antioxidant, immune responses,
and epigenetics opened the door for the development of novel therapeutic approaches.
Although a wide range of studies has shown the remarkable potential of LAB strains in
interfering with colorectal carcinogenesis, conclusive clinical evidence supporting the role
of probiotics in CRC treatment is still lacking. More epigenetic studies on LAB are required
to demonstrate their effects in cancer prevention. Although several mechanisms of action
of LAB in carcinogenesis have been described in in vitro and animal model studies, we are
still far from pinpointing the exact cellular signals.

3. Bacterial Toxins

Bacterial toxins with medicinal applications have been well studied, especially those
produced by Bacillus thuringiensis [154], Clostridium spp. and Bacillus spp. [155]. Botulinum
neurotoxin (BoNT), produced by Clostridium botulinum, is widely used in ophthalmology,
dermatology, and neurology [156]. To date, 108 clinical trials have been registered to evaluate
the anticancer properties of bacterial toxins and an additional 98 trials have been registered to
study the anticancer properties of immunotoxins (https://www.clinicaltrials.gov/, accessed
on 1 June 2022).

3.1. Diphtheria Toxin

In 1884, Loeffler injected a pure culture of Clostridium diphtheriae into rabbits and
pigeons and described the formation of lesions in several organs [157]. Follow-up studies
have shown that these lesions were caused by diphtheria toxin (DT), encoded by the
tox gene located on the genome of corynebacteriophage β [157,158]. The toxin targets
elongation factor II (aminoacyl transferase II) and inhibits peptide synthesis [159,160].
The mode of action of DT is summarised in Figure 1.

In many human cancer cells, including hepatocarcinoma, melanoma, and colon,
breast, myeloma, prostate, bladder and oral tumours, the HBEGF gene, encoding the
membrane-anchored precursor of proHB-EGF, is significantly upregulated [161]. Increased
levels of proHB-EGF and HB-EGF have been implicated in resistance to chemotherapeutic
agents [162]. Cross-reactive material 197 (CRM197), a non-toxic variation of DT, binds
to pro-HB-EGF and HB-EGF and inhibits the mitogenic action of HB-EGF by preventing
its binding to ErbB (epidermal growth factor) receptors [163]. CRM197 has been used in
the treatment of oral squamous cell carcinoma [161]. Tumour formation was completely
inhibited in vivo when CRM197 was used in combination with cisplatin, a chemothera-
peutic drug [164]. In humans, CRM197 led to an increase in neutrophil and TNF α levels,
and a decrease in lymphocyte numbers. The drug, also referred to as BK-UM, proved
effective in the treatment of resistant cancers [162,164]. Nam et al. [164] tested the efficacy
of intravenously administered BK-UM against the triple-negative breast cancer cell line
MDA-MB-231. The size of tumours treated with BK-UM decreased after two weeks. Fur-
thermore, no adverse side effects such as weight loss were reported. In phase I clinical
studies, BK-UM was tested against recurrent ovarian and peritoneal cancer cells [162]. Pa-
tients were administered four dose levels (1.0, 2.0, 3.3 and 5.0 mg/m2), of which 2.0 mg/m2

was the most effective. Those treated with 3.3 mg/m2 complained of nausea, hypotension,
fever, and irritation of the peritoneum [162]. A truncated version of DT, in which the cell
receptor-binding domain was replaced by proteins that selectively binds to the surface of
cancer cells (referred to as DT385), inhibited angiogenesis and decreased tumour growth in
chick chorioallantoic membranes [165]. DT385 also inhibited the growth of Lewis lung car-
cinoma (LLC) tumours in mice models [165]. Although the results were promising, DT385
entered cells without its R-domain, which triggered non-specific toxicity. To circumvent
the problem, immunotoxins that target specific receptors on cancer cells and biochemical
processes were developed and approved by the FDA in 1978 [166].

https://www.clinicaltrials.gov/
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Figure 1. Mode of action of diphtheria toxin (DT). (A) The receptor (R domain) of DT, shown here 
as green speres, binds to the membrane-anchored precursor of heparin-binding epidermal-like 
growth factor (proHB-EGF). (B) DT is nicked and the DT-HB-EGF enters a clathrin-coated vesicle 
through endocytosis. Furin or furin-like proteases converts DT to mature form. (C) An early endo-
somal vesicle (EEV) is formed by replacing clathrin proteins with the GTPase Arf-1 and coat protein 
COPI (not shown). (D) EEV is acidified by the transport of protons (H+) across the membrane, insti-
gated by vacuolar adenosine triphosphatase (vATPase). (E) The T-domain is translocated across the 
membrane, exposing the C-domain to the cytosol. (F) The disulphide bridge is reduced to liberate 
the catalytic C-domain. (G) The free C-domain catalyses the ADP-ribosylation of eukaryotic elonga-
tion factor 2 (eEF2) to ADPR-eEF2, which inhibits translation. This illustration was made using Bi-
oRender (https://biorender.com/, accessed on 12 May 2022). 

In many human cancer cells, including hepatocarcinoma, melanoma, and colon, 
breast, myeloma, prostate, bladder and oral tumours, the HBEGF gene, encoding the 
membrane-anchored precursor of proHB-EGF, is significantly upregulated [161]. In-
creased levels of proHB-EGF and HB-EGF have been implicated in resistance to chemo-
therapeutic agents [162]. Cross-reactive material 197 (CRM197), a non-toxic variation of 
DT, binds to pro-HB-EGF and HB-EGF and inhibits the mitogenic action of HB-EGF by 
preventing its binding to ErbB (epidermal growth factor) receptors [163]. CRM197 has 
been used in the treatment of oral squamous cell carcinoma [161]. Tumour formation was 
completely inhibited in vivo when CRM197 was used in combination with cisplatin, a 
chemotherapeutic drug [164]. In humans, CRM197 led to an increase in neutrophil and 
TNF α levels, and a decrease in lymphocyte numbers. The drug, also referred to as BK-
UM, proved effective in the treatment of resistant cancers [162,164]. Nam et al. [164] tested 
the efficacy of intravenously administered BK-UM against the triple-negative breast can-
cer cell line MDA-MB-231. The size of tumours treated with BK-UM decreased after two 
weeks. Furthermore, no adverse side effects such as weight loss were reported. In phase I 
clinical studies, BK-UM was tested against recurrent ovarian and peritoneal cancer cells 
[162]. Patients were administered four dose levels (1.0, 2.0, 3.3 and 5.0 mg/m2), of which 
2.0 mg/m2 was the most effective. Those treated with 3.3 mg/m2 complained of nausea, 

Figure 1. Mode of action of diphtheria toxin (DT). (A) The receptor (R domain) of DT, shown here as
green speres, binds to the membrane-anchored precursor of heparin-binding epidermal-like growth
factor (proHB-EGF). (B) DT is nicked and the DT-HB-EGF enters a clathrin-coated vesicle through
endocytosis. Furin or furin-like proteases converts DT to mature form. (C) An early endosomal
vesicle (EEV) is formed by replacing clathrin proteins with the GTPase Arf-1 and coat protein COPI
(not shown). (D) EEV is acidified by the transport of protons (H+) across the membrane, instigated by
vacuolar adenosine triphosphatase (vATPase). (E) The T-domain is translocated across the membrane,
exposing the C-domain to the cytosol. (F) The disulphide bridge is reduced to liberate the catalytic
C-domain. (G) The free C-domain catalyses the ADP-ribosylation of eukaryotic elongation factor
2 (eEF2) to ADPR-eEF2, which inhibits translation. This illustration was made using BioRender
(https://biorender.com/, accessed on 12 May 2022).

First-generation immunotoxins developed were antibodies randomly linked to non-
binding toxins or derivatives thereof [167]. These immunotoxins were non-specific and
targeted several receptors on cell surfaces. Second-generation immunotoxins were without
cell surface-receptor domains and were much larger, which made penetration of solid
tumours more difficult. Both generations of immunotoxins caused severe side effects, such
as vascular leak syndrome, haemolytic uremic syndrome and pleuritis [166]. Progress in
recombinant DNA technology led to the development of third-generation immunotoxins
with less side-effects and improved tumour-penetrating properties. In these immunotoxins
the non-specific receptor-binding domain is replaced by the Fv domain of an antibody, either
genetically or chemically. Despite being more specific in the targeting of cancer cells, third-
generation immunotoxins were not effective in patients vaccinated against diphtheria [168].
Attempts to suppress immune responses with anti-monoclonal antibodies [169] and binding
to polyethylene glycol (PEGylation) were unsuccessful [170]. This led to the developing of
humanized immunotoxins, i.e., immunotoxins containing a human protein with anti-cancer
properties [168]. The first FDA approved humanized immunotoxin, Denileukin Diftitox
(Ontak, DAB389 IL-2, Eisai Medical Research, Inc., Tokyo, Japan), was constructed by
fusing human interleukin-2 (IL-2) with fragment A of DT [171]. IL-2 was genetically fused

https://biorender.com/
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to the first 388 amino acids of DT, thereby replacing the R-domain [167]. Success rates with
Ontak ranged from 30% to 50% [172]. Side effects reported were nausea, diarrhoea and
vascular leak syndrome [173]. Despite difficulties encountered in purification of the first
recombinant protein expressed by E. coli [173], several humanized immunotoxins were
developed, all based on DT (Table 1).

Table 1. Humanized immunotoxins developed from fusion to diphtheria toxin (DT).

Immunotoxin Toxin/Fragment Targeting Moiety Cancer or Cell
Line Result Reference

Ontak DT389 IL-2
Adult T-cell

leukaemia and
CTCL

Significant activity. FDA
approval for CTCL treatment [171]

mVEGF-DT DT386 mVEGF TC1-induced solid
tumours

Tumour regression and an
increase in survival rate [174]

DTAT C- and
T-domains of DT N-terminal of uPA Glioblastoma cells Selective killing and

regression in tumour growth [175]

DT386-BR2 DT386 Buforin II (BR2)
MCF-7 and HeLa

cells
K-562

Specific and significant
reduction in survivability and

apoptosis
[176,177]

Tagraxofusp
(ElzonrisTM) DT388 IL-3 BPDCN, AML,

CMML, & MM
FDA approval for BPDCN

treatment [178]

DT389GCSF DT389 GCSF HL-60 Specific apoptotic death and
nuclease activity [179]

hDT806 DT390 HuBiscFv806 4 HNSCC cell lines
Apoptosis, tumour size

reduction and EGFR
signalling disruption

[180]

PD1-DT DT386 PD1 C57BL/6
tumorous mice

67% decrease in tumour
volume [181]

DT389-YP7 DT389 hYP7 scFv HepG2 HCC Decreased cell viability and
specific toxicity [182]

CTCL: cutaneous T-cell lymphoma; mVEGF: mouse vascular endothelial growth factor; DTAT: DT fused to the
amino (N)-terminal of uPA; uPA: urokinase-type plasminogen activator; BPDCN: blastic plasmacytoid dendritic
cell neoplasm; AML: acute myeloid leukaemia; CMML: chronic myelomonocytic leukaemia; MM: multiple
myeloma; GCSF: granulocyte colony-stimulating factor; HuBiscFv806: humanized bivalent single-chain variable
fragment of monoclonal antibody 806; HNSCC: head and neck squamous cell carcinoma; EGFR: epidermal growth
factor receptor; PD1: programmed cell death protein-1; hYP7 scFv: humanized YP7 single-chain variable fragment;
HCC: hepatocellular carcinoma.

3.2. Clostridium perfringens Enterotoxin

Clostridium perfringens enterotoxin (CPE) is a polypeptide of 319 amino acids [183],
arranged in three domains. Domain I represents the binding domain (residues 162 to 309)
and domains II and III the cytotoxic domains [184,185]. CPE is produced intracellularly
and is only released during endospore germination [183]. Mutations in the TM1 region
of CPE (amino acids 81 to 106) resulted in loss of membrane insertion, indicating that
it plays a role in pore formation. The mode of action of CPE is illustrated in Figure 2.
The amphipathic TM1 region forms a β-hairpin and a β-barrel pore once inserted into the
membrane [186]. Amino acids at positions 45 to 53, located upstream of the TM1 region,
are responsible for CPE oligomerization [187]. Domains II and III consist of eight β-sheets
(two of which span the entire length of the module), two α-helices, and two 310 helical
segments [185]. Domain I is a nine-stranded β-sandwich [188]. Briggs et al. [189] reported
only two domains. Despite the discrepancy in the number of domains, both studies agreed
on the structure of CPE and that the N-terminal domain is divided into two sections.
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cytochrome C from the mitochondrion. (F) Activation of caspase 3/7 and formation of a large new 
CH-2 complex (approximately 600 kDa, consisting of CLDNs, occludins and the CPE hexamer. (G 
and H) Apoptosis, leading to DNA fragmentation. This illustration was constructed using BioRen-
der (https://biorender.com/, accessed on 12 May 2022). 
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orescent protein (GFP), resulting in pcDNA3-optCPE-GFP (optCPE-GFP). This construct, 
and recombinant CPR (recCPE) were used to transfect different cell lines, including CaCo-2 
and HT-29, and isogenic Sk-Mel5 and Sk-Mel5 Cldn-3-YFP melanoma cell lines. Colon car-
cinoma cell lines that overexpressed CLDN 3 and 4 were highly sensitive to recCPE and 
optCPE, but cells transfected with optCPE displayed rapid cytotoxic effects such as mem-
brane disruption and necrosis. This suggested that suicide gene therapy may be used to 
suppress colon cancer in cells overexpressing CLDN 3 and 4. Gabig et al. [203] compared 
the cytotoxicity of CPE against the chemotherapeutics Dasatinib (Das) and Mitomycin C 
(MMC) used in the treatment of bladder cancer. The cells were killed within one hour when 
exposed to CPE, compared to 24 h when treated with Das or MMC. Furthermore, after one 

Figure 2. Clostridium perfringens enterotoxin (CPE) mode of action. (A) Tyrosine residues in the
C-terminal of CPE interact with the second extracellular loop (ECL-2) of a receptor claudin (CLDN)
and form small complexes. (B) Approximately six small complexes oligomerize to form a larger CPE
hexamer 1 (CH-1; prepore). (C) β-hairpin loops of CPE assemble to form a β-barrel that inserts into
the cell membrane to create a cation-permeating pore. (D) Influx of Ca2+ ions disrupts the osmotic
equilibrium and activates Ca2-dependent proteases to lyse the cell that forms calpain. (E) Release of
cytochrome C from the mitochondrion. (F) Activation of caspase 3/7 and formation of a large new
CH-2 complex (approximately 600 kDa, consisting of CLDNs, occludins and the CPE hexamer. (G
and H) Apoptosis, leading to DNA fragmentation. This illustration was constructed using BioRender
(https://biorender.com/, accessed on 12 May 2022).

CPE, encoded by genes α, β, ε and ι located on the genome or on a plasmid, are
transcriptionally regulated [190]. The spo0A gene, encoding the master sporulation regula-
tor Spo0A, in conjunction with NanR, a transcriptional regulator, and three sporulation-
associated sigma factors (SigE, SigK and SigF), are responsible for CPE production and gene
regulation [191]. Transcriptional regulation of CPE expression has not been fully elucidated.
However, a proposed mechanism of regulation has been compiled from various stud-
ies [188,192,193]. An Agr-like quorum-sensing (QS) system phosphorylates Spo0A, which
activates the transcription of SigF, SigG, SigK and SigE [190]. SigK and SigE are required
for CPE production, as they bind promotors to the cpe open reading frame (ORF) [190].
Three promoters (P1-P3) are located upstream of the ORF, with P1 being SigK-dependent,
and P2 and P3 SigE-dependent [194].

The β-hairpin loops inserted in the membrane of the target cell create a pore through
which cations are channelled. CPE binds to claudins (CLDNs) 3, 4, 5, 6, 7, 8, 9, 14 and
19 [187,188,195,196]. CLDN 4 is localized at tight junctions in normal human prostate ep-
ithelial cells (PrECs) but are distributed along the entire surface of cancer PrECs [197].
The size of cancerous tumours treated with CPE was reduced by 59%, suggesting that
CLDN 4-targetted CPE treatment may be used to treat prostate cancer. Abedi et al. [198]
constructed a recombinant plasmid containing the CPE and prostate stem cell antigen
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(PSCA) and named it pBudCE4.1-CPE-PSCA. The expression of transgenes introduced into
cancer cells, referred to as suicide gene therapy, may be the first step towards developing
a vaccine against prostate cancer. The authors [198] reported a 62.6% death rate of PC3
prostate cancer cells. Genes encoding apoptosis were overexpressed, whereas genes encod-
ing cell cycling were repressed. The influx of Ca2+ ions activates Ca2-dependent proteases
and causes cell lysis. Cytochrome C is released from the mitochondrion and caspase 3/7 is
activated, leading to apoptosis [13,187,188,199–201].

Pahle et al. [202] used suicide gene therapy to treat mice with colorectal cancer.
The authors amplified cDNA of CPE by PCR from plasmid pCpG-optCPE to construct a
translation-optimized CPE vector (optCPE) and fused the amplicon to genes encoding green
fluorescent protein (GFP), resulting in pcDNA3-optCPE-GFP (optCPE-GFP). This construct,
and recombinant CPR (recCPE) were used to transfect different cell lines, including CaCo-2
and HT-29, and isogenic Sk-Mel5 and Sk-Mel5 Cldn-3-YFP melanoma cell lines. Colon
carcinoma cell lines that overexpressed CLDN 3 and 4 were highly sensitive to recCPE
and optCPE, but cells transfected with optCPE displayed rapid cytotoxic effects such as
membrane disruption and necrosis. This suggested that suicide gene therapy may be used
to suppress colon cancer in cells overexpressing CLDN 3 and 4. Gabig et al. [203] compared
the cytotoxicity of CPE against the chemotherapeutics Dasatinib (Das) and Mitomycin C
(MMC) used in the treatment of bladder cancer. The cells were killed within one hour when
exposed to CPE, compared to 24 h when treated with Das or MMC. Furthermore, after one
hour of treatment, 75% of primary bladder cancer cells died (in a 3D culture). Normal cells
and cells derived from highly aggressive tumours survived all treatments.

Despite the success of CPE with experimental models, its use in treatment of cancer
is limited due to the abundance of CLDNs in normal cells [204]. Shim et al. [200] tested
DOX-C-SNP (doxorubicin-loaded C-CPE-polysialic acid) nanoparticles against pancreatic
tumour cells in vitro and in vivo and have shown that DOX-C-SNPs accumulated only in
tumour cells, without displaying significant cytotoxicity towards non-target cells [200].
A 5.9-fold increase in apoptosis was recorded in orthotopic murine models. Gao et al. [204]
reported a decrease in CLDN 4 expression when epithelial ovarian cells (EOCs) were treated
with C-CPE and ascribed this to the disruption of TJ proteins. CLDN 4+ EOC cell lines were
also more sensitive to chemotherapeutic agents, as shown with 59% suppression of tumour
growth when cells were treated with a combination of C-CPE and Taxol [204]. Treatment
with C-CPE also resulted in the upregulation of genes in the ubiquitin-proteasome pathway
that regulates apoptosis and angiogenesis, and downregulated genes involved in metabolic
pathways. Becker et al. [205] linked gold nanoparticles (AuNPs) to C-CPE to form a C-CPE-
AuNP complex that targets CLDN-overexpressing cancer cells. The Strep-Tag Strep-Tactin
fusion system developed by Becker et al. [205] could also be used to conjugate C-CPE to
chromophores, thereby allowing imaging and detection of cancer cells. Photonic activation
of the AuNPs, referred to as AuNP-mediated laser perforation (GNOME-LP), used in
combination with C-CPE is highly specific and targets only CLDN+ cells. A 30% and
40% reduction in cell viability was recorded for MCF-7 and OE-33 cells, respectively [205].
C-CPE-targeted GNOME-LP had no significant effect on the survival of cells in the control
group. Gabig et al. [203] have shown that C-CPE treatment of RT4 (non-invasive superficial)
cancer cells enhanced the toxicity of Das and MMC. Moreover, a drastic decrease in CLDN
4 expression was recorded, without affecting normal cells [203]. Nanoparticles loaded with
fluorescent rhodamine dye and superparamagnetic iron oxide, linked to C-CPE (CPE290–319)
were used to target CLDN 3 and CLDN 4 in cancer cells [206]. This technique may be used
to determine the aggressiveness of cancer tumours.

3.3. Botulinum Toxins

Botulinum toxins (BoNT), produced by C. botulinum, Clostridium butyrricum, Clostrid-
ium barati, and Clostridium argentinensis are used in the treatment of muscle disorders [207],
anismus [208], tremors [209], dystonia [210], cancer [211], and severe pain [212]. The inac-
tive single-chain polypeptide is nicked by a protease to form a di-peptide of 100 kDa and
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50 kDa [207]. The light chain (LC) is located at the N-terminal and contains the catalytic
domain (C-domain), whereas the heavy chain (HC) is divided into the central translocation
(T) domain and the C-terminal receptor-binding (R) domain [213]. The toxin associates with
non-toxic neurotoxin-associated proteins (NAPs) to form a 300 to 900 kDa protoxin resistant
to stomach acid and improved ability to be translocated across the intestinal epithelial
barrier [207]. Eight types of botulinum toxins (A, B, C1, C2, D, E, F, and G) and a novel
serotype (BoNT/H), isolated from an infant with botulism, have been described [207,214].
The mode of action of BoNT is illustrated in Figure 3.Microorganisms 2022, 10, 1733 13 of 41 
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2 or Syt-mediated endocytosis. (B) The synaptic vesicle is acidified with vesicular proton pumps, 
which in turn (C) activates Ach transporter proteins. The activated transporter proteins import ace-
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chain (HC) domain. (E) Heat shock protein 90 (Hsp90) and thioredoxin reductase-thioredoxin 
(TrxR-Trx) cleaves the LC and (F) liberates it into the cytosol. (G) The C-domain is a Zn2+-dependent 
endopeptidase that cleaves proteins in the soluble N-ethylmaleimide-sensitive adaptor receptor 
(SNARE) protein complex. This complex is responsible for exocytosis and the fusing of acetylcho-
line-containing vesicles with the plasma membrane, allowing the release of acetylcholine. The 
cleaved SNARE component is non-functional, thereby blocking the release of acetylcholine from the 
presynaptic membrane to muscles. Blocking exocytosis of acetylcholine leads to failed skeletal mus-
cle contracture. This representation was constructed using BioRender (https://biorender.com/, ac-
cessed on 12 May 2022). 

BoNT binds to ecto-acceptors (polysialogangliosides) on the presynaptic cell surface 
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for exocytosis and the fusing of Ach-containing vesicles with the plasma membrane, al-
lowing the release of Ach. For more information BoNT mode of action, the reader is re-
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Figure 3. Botulinum neurotoxin (BoNT) mode of action. (A) BoNT binds to ecto-acceptors (polysialo-
gangliosides) on the presynaptic cell surface of cholinergic neurons and is internalized via SV-2 or
Syt-mediated endocytosis. (B) The synaptic vesicle is acidified with vesicular proton pumps, which in
turn (C) activates Ach transporter proteins. The activated transporter proteins import acetylcholine
(Ach) and the light chain (LC) of BoNT is translocated to the cytosol (D) with the heavy chain (HC)
domain. (E) Heat shock protein 90 (Hsp90) and thioredoxin reductase-thioredoxin (TrxR-Trx) cleaves
the LC and (F) liberates it into the cytosol. (G) The C-domain is a Zn2+-dependent endopeptidase
that cleaves proteins in the soluble N-ethylmaleimide-sensitive adaptor receptor (SNARE) protein
complex. This complex is responsible for exocytosis and the fusing of acetylcholine-containing
vesicles with the plasma membrane, allowing the release of acetylcholine. The cleaved SNARE
component is non-functional, thereby blocking the release of acetylcholine from the presynaptic
membrane to muscles. Blocking exocytosis of acetylcholine leads to failed skeletal muscle contrac-
ture. This representation was constructed using BioRender (https://biorender.com/, accessed on
12 May 2022).

BoNT binds to ecto-acceptors (polysialogangliosides) on the presynaptic cell surface of
cholinergic neurons and is internalized via synaptic vesicles (SVs) or membrane-trafficking
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proteins (synaptotagmins). Acidification of the SVs leads to the activation of acetylcholine
(Ach) transporter proteins that import Ach, the LC and HC domains of BoNT. Heat shock
protein 90 (Hsp90) and thioredoxin reductase-thioredoxin (TrxR-Trx) cleaves the LC and
liberates it into the cytosol. The C-domain is a Zn2+-dependent endopeptidase that cleaves
proteins in the soluble SNARE protein complex. This complex is responsible for exocytosis
and the fusing of Ach-containing vesicles with the plasma membrane, allowing the release
of Ach. For more information BoNT mode of action, the reader is referred Nigam and
Nigam [156], Gul et al. [213], Dolly et al. [215], Choudhury et al. [216] and Huang et al. [217].

Huang et al. [217] performed one of the earliest studies using BoNT/A to treat HIT-T15
insulinoma cells. Although the authors did not determine whether BoNT/A can be used to
kill cancer cells, they showed that a transient transfection with the toxin can inhibit insulin
expression. This paved the way for more in vivo and in vitro studies using BoNT. Treatment
with BoNT/A render cancer cells radiosensitive [218] and may be used in the treatment
breast and prostate cancer [211,219]. BoNT may also be used as an immunotoxin [220].
Toxin A induces apoptosis, inhibits the proliferation of LNCaP (infraclinical prostate cancer)
cells, as shown with in vitro and in vivo studies [219]. In a separate study [221], toxin A
showed cytotoxicity against cell lines LNCaP and PC-3 (prostate cancer), most probably
due to the phosphorylation of phospholipase A2. Cell death of T47D breast cancer cells
was attributed to the induction of caspase 3- and 7-dependent apoptosis [222]. Toxin
C induced apoptosis and cell death in differentiated human neuroblastoma cells (SH-
SY5Y and SiMa) [223]. Other cell-line anticancer studies performed with BoNT are listed
in Table 2.

Table 2. Studies using BoNT as an anti-cancer agent.

Cancer or Cell Line Study Type Methodology Results Reference

VCap cells
Cancerous human

prostate

In vivo
In vivo

OnaA injection into VCap cells
transplanted into murine prostate

OnaA injection into prostate before
prostatectomy

Inhibited cancer progression and
increased apoptosis

Increased incidence of apoptosis
[224]

MIA PaCa-2 cells In vivo

Co-injection of cancer cells and
20 U/kg BoNT, or BoNT injection
followed by cancer cell injection

(murine study)

Increase in apoptosis and a
decrease in tumour size [225]

SiMA and SH-SY5Y cell
lines In vitro BoNT/C injection into retinoic

acid-treated Increase in apoptosis [223]

3T3 fibroblast cells In vitro BoNT/A treatment Cytoplasmic degradation and
decreased cell viability [211]

SCC-25 and HUVEC
cells In vitro Cells grown in the presence of BoNT No effect on cell growth [226]

DBTRG glioblastoma
cell line In vitro BoNT/A and BoNT/A + AMG Increased apoptosis and

decreased cell proliferation [227]

Abbreviations: OnaA: OnabotulinumtoxinA (Botox); DBTRG: Denver Brain Tumour Research Group; AMG: tran-
sient receptor potential vanilloid 1 receptor antagonist.

BoNT inhibits the release of neurotransmitters [207] and may be used as a painkiller
in cancer treatment. Van Daele et al. [6] were the first to report on the analgesic effect
of BoNT/A. The authors treated patients with painful spams of the sternocleidomastoid
muscle. Injection with BoNT/A relieved the pain in four of six patients. Wang et al. [228]
administered BoNT/A to a lung cancer patient with Raynaud phenomenon and previously
treated with chemotherapy. Conventional treatment of neoplasms is generally ineffective.
However, after BoNT/A treatment patients reported relief in symptoms, with no adverse
side effects. Incobotulinumtoxin A (INCO), a BoNT/A preparation used in clinical settings,
has also been used in the treatment of cancer-related pain [12]. Twelve patients with head,
neck and breast cancer were enrolled in the study. Two patients passed away due to
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advanced cancer, one developed a skin rash, and another did not return due to poor general
health. Three of the remaining eight patients reported an improvement in their quality of
life. Pain amelioration was assessed using the Visual Analog Scale (VAS). All eight patients
reported a significant improvement. A significant satisfaction of treatment was reported
by seven of the eight patients by self-assessment using the Patients’ Global Impression of
Change Scale. Dana et al. [10] used Botox and Dysport to test the efficacy of BoNT/A in
pain relief of neck and head cancer patients suffering from radiotherapy-induced trismus
and masticator spasms. One month after BoNT/A injection, a significant improvement in
pain and spams were recorded, but no improvement in trismus. No adverse side effects
were observed and the authors concluded that BoNT/A may be prescribed to patients with
radiotherapy-induced pain or muscle spasms. De Groef et al. [229] studied the effect of a
single BoNT/A injection in conjunction with physical therapy on breast cancer patients that
underwent a mastectomy. Of the 50 patients, 25 received the injection (intervention) and 25
a placebo. After three months of treatment, a significant change in pain was observed in
the upper limb of patients from the intervention group. Other studies using BoNT/A in the
treatment of cancer-related or cancer therapy-related pain that were successful included
post-radiosurgical neck contracture [230], frontotemporal glioblastoma related pain [231],
and postoperative pain in patients that underwent a mastectomy and tissue expander
reconstruction [232].

3.4. Pseudomonas aeruginosa Toxin

Pseudomonas aeruginosa produces a potent 66-kDa A-B toxin (PE, also known as exo-
toxin A or ETA) that inhibits protein translation [233,234]. The A domain has enzymatic
activity, and the B domain acts as a cell-binding moiety [235,236]. The first 25 amino acids
form a highly hydrophobic signal sequence that is removed during secretion [237]. The re-
maining 613 amino acids is divided into three domains. Domain Ia is the receptor binding
domain (first 252 amino acids) that attaches to target cells, domain II (amino acids 253–364)
facilitates the translocation of PE across the cell membrane, and domain Ib (amino acids aa
365–404) together with domain III (amino acids 405–613), represents the catalytic part of
toxin PE [238]. When secreted, the terminal amino acid residue of PE (lysine 613) is cleaved
by a host plasma carboxypeptidase, which converts the REDLK (amino acids 609–613)
motif into REDL (amino acids 609–612) [239]. PE interacts with the low-density lipoprotein
receptor-related protein 1 (LRP-1) via the Ia domain and is then internalized by endocyto-
sis. In the early endosome, which is acidic, PE dissociates from the receptor and changes
conformation, exposing the furin-cleavable motif to be cleaved by furin into two fragments
of approximately 28 kDa (279 amino acids) and 37 kDa (333 amino acids) [240]. The 28 kDa
fragment consists of domain Ia and parts of domain II. The 37 kDa fragment contains parts
of domain II, domains Ib, and domain III and has enzymatic activity. The 37-kDa fragment
migrates from the late endosome to the trans-Golgi network (TGN) and from there to the
ER via the retrograde pathway. The C-terminal REDL motif interact with KDEL receptors
on the TGN [241]. The mode of action of PE is illustrated in Figure 4.

Moxetumomab pasudotox [241] is a recombinant anti-CD22 immunotoxin consisting
of a single chain antibody fragment of a mouse anti-CD22 monoclonal antibody (scFv) fused
to a Pseudomonas endotoxin A (PE38 domain). The immunotoxin binds to CD22 antigen
expressed on B cells in various hematological malignancies. Upon internalization and
intracellular proteolysis, the cytotoxic fragment (PE38) is released, which then induces cell
death by apoptosis [241,242]. In September 2018, Moxetumomab pasudotox (LUMOXITI™;
AstraZeneca, Cambridge, UK) was approved by the U.S. Food and Drug Administration
(FDA) for the treatment of relapsed or refractory hairy cell leukemia [243]. Immunotoxins
containing PE are highly immunogenic in patients with normal immune systems, but less so
in patients with hematologic malignancies, whose immune systems are often compromised.
SS1P, a first-generation, mesothelin-targeted immunotoxin, demonstrated little activity
as a single agent [244]. In patients with solid tumors, neutralizing antidrug antibodies
(ADAs) directed against PE developed after only three infusions of SS1P. To delay the



Microorganisms 2022, 10, 1733 15 of 39

development of high-titer ADAs, SS1P was combined with a preconditioning regimen of
lymphocyte-depleting chemotherapy [245]. LMB-100, a second-generation recombinant
immunotoxin that targets the glycoprotein mesothelin on the surface of cancer cells is
composed of a humanized antimesothelin antibody fragment fused to a truncated PE
A [246]. The maximum tolerated dose (MTD) of LMB-100 was 140 µg/kg, administered
every other day over 3 weeks [246]. Although LMB-100 was less immunogenic than SS1P,
most patients developed antidrug antibodies after 2 cycles. Phase 2 clinical studies with
LMB-100 plus pembrolizumab is conducted on patients with mesothelioma and lung
cancer [246]. Several studies are devoted towards the developing of PE-based recombinant
immunotoxins (RITs), especially against mesothelin and other proteins on solid tumors.
For more information, the reader is referred to the review by Mazor and Pastan [247].
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Figure 4. Top of presentation: The four domains (Ia, II, Ib and III) of Pseudomonas exotoxin (PE), with
the sizes of each domain indicated in amino acid numbers. Interaction of PE-IT (immunotoxin) with
a cancer-specific antigen (CSA) or cancer-specific receptor (CSR) on the surface of cancer cells. Intra-
cellular events leading to cell death is illustrated below the phospholipid membrane. Abbreviations:
PE-L = Pseudomonas exotoxin A, fused to a cancer-specific ligand; Ab = antibody; EF2 = eukaryotic
elongation factor-2 on ribosomes; Mcl1 = gene encoding anti-apoptotic protein; BAK = Bak protein
involved in mitochondrion outer membrane (MOM) permeabilization; BCL-xL = B-cell lymphoma-
extra large that inhibits the activation of Bak, thereby preventing a loss of MOM integrity. This illus-
tration was constructed using BioRender (https://biorender.com/, accessed on 15 August 2022).

4. Antibiotics

Although antibiotics are mainly used as bactericidal or bacteriostatic agents, some
display anticancer properties and are classified as anthracyclines, of which Actinomycin
D (Dactinomycin), Bleomycin, Doxorubicin (adriamycin and doxil), Epirubicin (ellence),
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Cerubine and Daunorubicin (DaunoXome), Novantrone (mitoxantrone), Mitomycin C,
Spergualin and Epothilone are the best known.

4.1. Actinomycin D

Actinomycin D, produced by Streptomyces antibioticus and Streptomyces parvulus has
two pentapeptide lactone rings and a 2-aminophenoxazine-based chromophore [15]. In-
tercalation of the chromophore into DNA inhibits transcription and prevents the growth
of tumour cells [248]. Interaction of actinomycin D with DNA is facilitated by a GpC
(guanosine-cytosine) base pair. Increased binding was obtained with the formation of
hydrogen bonds between L-threonine residues in the pentapeptide rings and the amino-
terminal of guanosine [249]. Other amino acids of the two lactone rings, including proline,
N-methylglycine and methylvaline, facilitates the binding of actinomycin D to the minor
groove of DNA, thereby improving the stability of the interaction [15,249]. Despite the
toxic effects of actinomycin D, such as tissue necrosis, dermatoxicity and gastrointestinal
enterotoxicity, the drug has been approved for treatment of Wilms’ tumour, gestational
choriocarcinoma, neuroblastoma, germ cell cancers, trophoblastic tumours, Ewing sarcoma
and rhabdomyosarcoma [250–253]. Actinomycin D has also been used in combination
with antitumor agents to treat high-risk malignancies [249]. Actinomycin D increased the
therapeutic efficacy of antitumor agents such as RG7787, a mesothelin-targeting immuno-
toxin. RG7787 (also referred to as LMB-100) is a recombinant immunotoxin formed through
conjugation between exotoxin A of P. aeruginosa and anti-mesothelin Fab [246]. Synergistic
cytotoxicity of actinomycin D and LMB-100 towards mouse xenografts of pancreatic and
stomach cancer cells were illustrated with Phase I clinical trials [254]. This combination led
to apoptosis via an extrinsic pathway and resulted in noteworthy regression of the tumours.
Anticancer drugs containing Actinomycin D are available in the market under the trade
names Cosmegen and Lyovac [8].

4.2. Bleomycin

Bleomycin is produced by Streptomyces verticillus [255,256]. A combination of Bleomycin
A2 (C55H84N17O21S3, Mw. 1415.56 Da) and Bleomycin B2 (C55H84N20O21S2, Mw. 1425.52
Da) was approved by the FDA in July 1973 [207]. The mode of action is described as
a two-step process. In the first step Bleomycin chelates metal ions (primarily iron) and
produces a pseudoenzyme. The second step is the enzymatic conversion of oxygen to
superoxide and hydroxyl free radicals damaging DNA [257,258]. Bleomycin is used to
treat Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, testicular cancer, ovarian can-
cer, and cervical cancer [259,260], and is commercially available as Bleomycin USP and
Blenoxane [8].

4.3. Doxorubicin, Epirubicin, Daunorubicin and Novantrone

Doxorubicin (adriamycin and doxil; C27H29NO11), produced by Streptomyces peucetius
var. caesius [15,27,261], has amphipathic properties owing to a water-insoluble agly-
cone (adriamycinone, C21H18O9) and water-soluble amino sugar group (daunosamine,
C6H13NO3). Its anti-cancer properties was first reported in 1969 [8] and has been approved
by the FDA for treatment of malignant lymphoma, soft tissue sarcoma, and breast-, liver-,
ovary-, neck-, head-, gastric- and childhood cancers [15,213]. Doxorubicin binds to DNA
and RNA polymerases, which prevents DNA replication and transcription [261], interca-
lates with DNA and removes histones from chromatin during transcription [8]. The forma-
tion of covalent complexes between topoisomerase-II and DNA [15] leads to single- and
double-strand DNA breaks and apoptosis [261]. Doxorubicin also binds to cardiolipin and
mitochondrial creatine kinase [8]. Patients treated with doxorubicin displayed adverse side
effects such as fatal cardiotoxicity and nonspecific cytotoxicity [15]. A nano-drug delivery
system, based on liposome-encapsulation of doxorubicin (e.g., Doxil®), has been approved
for treatment of ovarian, breast- and AIDS-related Kaposi’s sarcoma. Doxorubicin and
mitomycin C encapsulated in polymer-lipid hybrid nanoparticles (PLNs) were 20 to 30
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times more active than the drugs in separate form and killed multidrug-resistant human
breast cells MDA435/LCC6 more effectively [262]. Examples of drugs containing doxoru-
bicin are Myocet, Doxorubicin-Ebewe, Adriblastine PFS, Caelyx, Doxorubicin medac, and
Doxorubicinum Accord [8].

Epirubicin (ellence) is a semisynthetic derivative of doxorubicin, with a hydroxyl
group in the 4′ position of the daunosamine ring [263]. It is mainly used in the treatment
of early or metastatic breast cancer, but also other tumours such as lung, bladder, gastric,
ovarian and hepatocellular carcinoma, and lymphatic cancers [264]. The mode of activity of
Epirubicin is similar to that of Doxorubicin and also inhibits topoisomerase II activity [265].

Daunorubicin or Daunomycin, also referred to as Cerubine, is produced by Strep-
tomyces peucetius and differs from doxorubicin by lacking a hydroxyl group at the the
14th position [266]. The name Daunomycin is derived from the pigment aglycone dauno-
mycinone and the amino sugar daunosamine [267]. The liposome-encapsulated form of
daunorubicin, referred to as DaunoXome, is more stable in an aqueous solution and is more
toxic towards certain types of solid tumours [266].

Novantrone (mitoxantrone) is chemically related to doxorubicin and acts as a potent
immunosuppressive agent for treatment of multiple sclerosis [268]. Novantrone inhibits
the proliferation of B and T lymphocytes as well as macrophages, kills antigen-presenting
cells, and suppresses the migration of activated leukocytes [269]. Other modes of action for
mitoxantrone include lowering the secretion of IFN-γ, TNF-α, and IL-2 [270].

4.4. Mitomycin C, Duramycin and Epothilones

Mitomycin C (C15H18N4O5, Mw. 334 Da), produced by Streptomyces caespitosus [271],
is an aziridine [(CH2)2NH]-containing antibiotic that cross-links DNA and inhibits alkyla-
tion [272]. The drug is used in the treatment of bladder, colorectal and pancreatic cancers,
head and neck sarcoma, and lung-, hepatic and esophageal carcinoma [273]. Spergualin
(C17H37N7O4, Mw. 403.53 Da), produced by Brevibacillus laterosporus BMG162-aF2, re-
pressed fibrosarcoma cells (M5076) and cell lines of rat hepatomas (AH66, AH66F), as well
as leukemia in mice models [274,275]. Duramycin induces apoptosis and reduces the prolif-
eration in tumour cells [276,277], a phenomenon that may be ascribed to its high affinity for
phosphatidylethanolamine [278]. The cytotoxicity of duramycin was reduced by fusion to
IgG [279,280]. This did not influence binding to phosphatidylethanolamine. Fusion to IgG
guide host immune cells to apoptotic cells, resulting in enhanced phagocytosis. Tumour
growth in mice was inhibited after treatment with duramycin-IgG [280]. Since duramycin
binds to PE and the Fc region (fused) IgG antibodies, it interacts with phagocytic cells to
enhance phagocytosis. Duramycin is cleared from the site effectively soon after inducing
apoptosis in cancer cells, via phagocytosis, which would explain its lower cytotoxicity
to surrounding normal cells. Epothilone A and B, produced by Sorangium cellulosum, is
classified as a macrolide polyketide [15]. Both variants inhibit mitosis and induce the
formation of α/β-tubulin polypeptide heterodimers [186]. Low dosages of epothilone
inhibits cell growth without blocking mitosis [186]. Ixabepilone (IXEMPRA), a synthetic
analogue of epothilone B, represses the growth of a variety cancer cells. In 2007, the FDA
approved IXEMPRA for treatment of breast cancer cells resistant to treatment with taxanes
such as paclitaxel and docetaxel, anthracycline and capecitabine. IXEMPRA combined with
capecitabine was more effective than capecitabine in the treatment of breast cancer cells
resistant to taxane and anthracycline.

5. Bacteriocins

Bacteriocins of Gram-negative bacteria are divided into four main classes: colicins,
colicin-like, phage-tail-like bacteriocins, and microcins [281]. Colicins are protease-sensitive,
heat-sensitive and has a high-molecular weight (30–80 kDa). Most E. coli strains have genes
encoding colicins. These proteins are expressed when cells experience stress and usually
leads to self-destruction due to co-expression with lysis protein [282]. Depending on the
mechanism of interaction with the target cell, colicins are divided into three main groups,
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i.e., pore-forming, nuclease, and peptidoglycan degrading. Bacteriocins of Gram-positive
bacteria are ribosomally-synthesized peptides with bacteriostatic or bacteriolytic activity
and are usually below 10 kDa in size. These antimicrobial peptides are grouped into
four classes. Class I are linear peptides, produced as pre-peptides, and are converted
to active, mature, peptides after post-translational modification. They contain several
disulphide bridges and unusual polycyclic thioether amino acids such as dehydrobutyrine,
dehydroalanine and lanthionine. Class II bacteriocins do not contain lanthionine and do
not undergo post-translation modification, except for the removal of the leader peptide [16].
Bacteriocins from both classes are thermostable. Class III bacteriocins are thermolabile and
have a molecular mass exceeding 10 kDa. Class IV bacteriocins are circular [9,283].

The first report of a bacteriocin displaying anticancer properties was published in the
late 1970s, but this was a crude extract [284]. Since then, several reports of bacteriocins with
anticancer properties (also from our own group, unpublished), have been reported [285].
To the best of our knowledge only three bacteriocins have been patented for their anticancer
properties, i.e., plantaricin A produced by L. plantarum C11 [8,286,287], microcin E492
produced by Klebsiella pneumoniae [288–291] and Pep27anal2, a 27-amino acid peptide
produced by Streptococcus pneumoniae [291,292]. Anticancer properties have also been
reported for bovicin HC5 produced by Streptococcus bovus HC5 [293,294], colicins A, E1, E3,
and U isolated from E. coli [295–300], pyocins from P. aeruginosa [301], nisin from Lactococus
lactis [302], and pediocins from Pediococcus and other lactic acid bacteria [303,304].

Pyocin S2, produced by P. aeruginosa M47 (PAO 3047), inhibited the growth of cancer
cells XC, TSV-5, mKS-A TU-7, HeLa-S3, and AS-II, but did not affect normal cells such as
mice cells BALB/3T3, rat kidney cells and human lung cells [305]. Abdi-Ali et al. [306]
reported cytotoxic activity of pyocin S2 towards HepG2 cells and human immunoglobulin
secreting (Im9) cells isolated from multiple myeloma [306]. Pep27anal2, an analog of signal
peptide Pep27, produced by S. pneumoniae, causes caspase-dependent and cytochrome
C-independent apoptosis in cancer cells, as shown with studies on OCI-AML-2 and HL60
(leukemia) cells, Jurkat cells, and MCF-7 and SNU-601 (adenocarcinoma) cell lines [292].
Bovicin (2.4 kDa), produced by Streptococcus bovis, showed cytotoxicity towards human
breast cancer (MCF-7) and human liver hepatocellular carcinoma (HepG2) cell lines in
a concentration-dependent manner [294]. Colicins, produced by E. coli, are larger than
the average bacteriocins (>20 kDa). Colicin E3 showed cytotoxic and cytocidal effects
against HeLa (human cervical cancer) cells and cleaves rRNA [297]. Colicin produced by
E. coli HSC10 degraded DNA and is cytotoxic towards mammalian cells [295]. Colicin from
the same strain, referred to as verotoxin 1, acted anticarcinogenic against human ovarian
cell lines but protected cells in a murine metastatic fibrosarcoma model [296]. Colicins
E1-E5 displayed cytotoxicity towards hamster V79 fibroblast cells [297]. Colicin A, E1, E3
and U caused cell cycle arrest in human fibroblast cell lines MRC5, MCF-7, MDA-MB-231
(mammary tumor), HOS (bone osteosarcoma), and HS913T (fibrosarcoma) [298]. In general,
colicins depolarize the cytoplasmic membrane, prevents the synthesis of peptidoglycan,
degrade DNA and RNA, seize cell cycles, and causes necrosis [299].

The interaction of bacteriocins with cancer cells is ill researched. Kaur and Kaur [16]
hypothesized that cancer cells increase the expression of negatively charged cell-surface
molecules when exposed to bacteriocins and, by doing so, promote cytotoxicity and apop-
totic cell death. Azurin, an anticancer copper-containing bacteriocin of 14 kDa (Figure 4)
produced by P. aeruginosa [307], provides some indication as to how bacteriocins may enter
cancer cells. The peptide enters human cancer cells through receptor-mediated endocyto-
sis [308] or, as reported with studies on breast cancer cells lines MCF-7, ZR-75-1 and T47D,
via caveolin-mediated pathways [309]. The p28 domain of azurin (Figure 5) facilitates cell
crossing and promotes apoptosis [310]. Sections within p28 have different adhesion and
cell penetration properties, as summarized in the legend of Figure 5. Once inside a cancer
cell, azurin attaches to the DNA-binding domain (DBD) of the tumor-suppressor protein
p53 (Figure 6) and increases the intracellular level of the protein by inhibiting the binding
of the E3 ubiquitin ligase COP1 to p53 [311]. This leads to repression of cell growth and
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apoptosis [312]. Amino acids 88 to 113 in the C-terminal of azurin repressed the growth of
MCF-7 breast- and DU145 prostate cancer cells [313]. More recent studies have shown that
azurin also interferes with non-receptor tyrosine kinase (NRTK) signalling pathways [314].
Increased intracellular levels of p53 and Bax protein (a central cell death regulator) were
detected in cells exposed to azurin [314]. This led to the release of cytochrome C in the
cytoplasm, and activation of caspases 9 and 7 [8]. Azurin also reduces VEGFR-2 tyrosine
kinase activity, thereby preventing the formation of new blood vessels and the expression
of P-cadherin, a glycoprotein maintaining the structural integrity in epithelial tissue [314].
Phase I clinical trials were performed with p28 on recurrent, difficult to treat, and pro-
gressive solid tumours in adults, and on tumours from the central nervous system (CNS)
of paediatric patients. No significant immune response or adverse side effects were re-
ported [315]. Protein p21, a short amino acid fragment of azurin overexpressed in MCF-7
cells, inhibited cyclin-dependent kinases and prevented cell growth [316].
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Figure 5. Azurin (128 amino acids), with an extended α-helix protein transduction domain, p28
(Leu50–Asp77), and four loop regions in its C-terminal (shown here in red, yellow, light blue and dark
blue). The p28 peptide of 28 amino acids (amino acids 50 to 77) facilitates cell crossing and promotes
apoptosis. Cell growth in tumours is repressed by 10 to 12 amino acids in the COOH terminal of p28.
The α-helix, stretching over 18 amino acids (Leu50–Gly67), shown here as peptide p18, has a high
affinity for cancer cells (less so for normal cells), excellent penetration abilities, and high binding to
the tumour repressor protein p53. Peptide p18b also contains 18 amino acids (Val60–Asp77) but has a
short α-helix and β-sheet and penetrates cancerous and normal cells. The p12 peptide of 12 amino
acids (Gly66–Asp77) does not have an α-helical structure, binds poorly to p35, and penetrates cancer
and normal cells. Adapted from Yaghoubi et al. [317].



Microorganisms 2022, 10, 1733 20 of 39Microorganisms 2022, 10, 1733 21 of 41 
 

 

 
Figure 6. Mode of action of Azurin. Once inside a cancer cell, azurin attaches to the DNA-binding 
domain of the tumour-suppressor protein p53 (middle of presentation) and prevents binding of the 
latter to E3 ubiquitin ligase COP1, resulting in an increase in cytoplasmic p53 levels. Cell growth is 
repressed, and cells are destroyed by apoptosis. Azurin also interferes with non-receptor tyrosine 
kinase (NRTK) signalling pathways. Bax protein (a central cell death regulator) and cytochrome C 
levels increase, and caspases 9 and 7 are activated. VEGFR-2 tyrosine kinase activity is reduced, 
preventing the formation of new blood vessels and the expression of P-cadherin. Prepared using 
BioRender (https://biorender.com/, accessed on 12 May 2022). 

An in vitro study showed that lacticin A164 and BH5, produced by L. lactis subsp. 
lactis, inhibited the growth of Helicobacter pylori [319], which is responsible for a sizeable 
number of gastrointestinal cancers. Probiotic preparations with these strains may thus be 
used to control of H. pylori infection and related intestinal cancers. Nisin, also produced 
by L. lactis subspecies lactis, has been used in the food industry for over 50 years [16,27]. 
Joo et al. [320] reported a decrease in the proliferation of head and neck squamous cell 
carcinoma (HNSCC) cells when exposed to nisin and illustrated decreased tumour growth 
in an oral cancer floor-of-mouth mouse model [320]. Athymic nude mice (NCr-nu/nu 
strain) were used. Gene array analyses performed on HSC-3 oral squamous cell carcinoma 
(SCC) cells treated with nisin revealed an increase in genes regulating calcium transport, 
membrane lipid functioning and apoptosis. The gene most upregulated encodes the cat-
ion transport regulator CHAC1 (ChaC Glutathione Specific Gamma-Glutamylcyclotrans-
ferase 1), which is known to be activated by oxidized phospholipids [320]. Since nisin in-
teracts with phospholipids in cell membranes, especially phosphatidylcholine, it is possi-
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Figure 6. Mode of action of Azurin. Once inside a cancer cell, azurin attaches to the DNA-binding
domain of the tumour-suppressor protein p53 (middle of presentation) and prevents binding of the
latter to E3 ubiquitin ligase COP1, resulting in an increase in cytoplasmic p53 levels. Cell growth is
repressed, and cells are destroyed by apoptosis. Azurin also interferes with non-receptor tyrosine
kinase (NRTK) signalling pathways. Bax protein (a central cell death regulator) and cytochrome
C levels increase, and caspases 9 and 7 are activated. VEGFR-2 tyrosine kinase activity is reduced,
preventing the formation of new blood vessels and the expression of P-cadherin. Prepared using
BioRender (https://biorender.com/, accessed on 12 May 2022).

A few bacteriocins produced by LAB are worth pointing out and are summarized here.
Plantaricin A (2.98 kDa), a peptide pheromone produced by L. plantarum C11, binds to nega-
tively charged phospholipids and glycosylated proteins in cell membranes of cancerous and
normal cells, leading to the destabilization of cytoplasmic membranes [318]. The peptide
also induces apoptosis and necrosis in Jurkat cells, accompanied by an increase in caspase 3
levels [286,287]. Microcin E492 (7.8 kDa) causes cell shrinkage, DNA fragmentation, release
of phosphatidylserine and calcium ions, and apoptosis of cancerous cells such as HeLa,
Jurkat. RJ2.25 and colorectal carcinoma cells [289]. Normal bone marrow cells, splenocytes,
KG-1, human tonsil cells, and nontumor macrophage-derived cells were not affected [289].

An in vitro study showed that lacticin A164 and BH5, produced by L. lactis subsp.
lactis, inhibited the growth of Helicobacter pylori [319], which is responsible for a sizeable
number of gastrointestinal cancers. Probiotic preparations with these strains may thus be
used to control of H. pylori infection and related intestinal cancers. Nisin, also produced
by L. lactis subspecies lactis, has been used in the food industry for over 50 years [16,27].
Joo et al. [320] reported a decrease in the proliferation of head and neck squamous cell
carcinoma (HNSCC) cells when exposed to nisin and illustrated decreased tumour growth
in an oral cancer floor-of-mouth mouse model [320]. Athymic nude mice (NCr-nu/nu
strain) were used. Gene array analyses performed on HSC-3 oral squamous cell carcinoma
(SCC) cells treated with nisin revealed an increase in genes regulating calcium transport,
membrane lipid functioning and apoptosis. The gene most upregulated encodes the cation
transport regulator CHAC1 (ChaC Glutathione Specific Gamma-Glutamylcyclotransferase
1), which is known to be activated by oxidized phospholipids [320]. Since nisin interacts
with phospholipids in cell membranes, especially phosphatidylcholine, it is possible that
CHAC1 may be a “downstream” nisin target. In in vitro experiments conducted with
nisin ZP on HNSCC cells and with NCr-nu/nu mice much higher levels of apoptosis were
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reported compared to treatment with nisin [321]. Apoptosis of HNSCC cells increased with
higher concentrations of nisin ZP [321]. This coincided with a decrease in cell proliferation,
clonogenic capacity, and sphere formation [321]. Nisin ZP induced apoptosis through a
calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes [321].
Apoptosis of human umbilical vein endothelial cells (HUVEC) induced by nisin ZP coin-
cided with a decrease in vascular sprout formation (in vitro) and lowering of intratumoral
microvessel density (in vivo) [321]. No abnormalities in organ tissue, inflammation, fibrosis
or signs of necrosis were observed in mice treated [321], suggesting that nisin ZP may
be a promising alternative in cancer therapy. Reports of nisin showing potential in the
treatment of colorectal cancers [321–323] and growth inhibition of blood, breast, brain,
colon, gastrointestinal, liver and skin cancer cells [324] have been published.

Preet et al. [325] studied the synergistic effect of nisin and doxorubicin on dimethyl-
benzanthracene-induced skin cancer in murine models. Doxorubicin-alone-treatment and
nisin-alone-treatment resulted in a mean tumour burden reduction of 51.3% and 14.18%, re-
spectively. Mice treated with a combination of nisin and doxorubicin displayed a reduction
of 66.82% in the mean tumour burden. Nisin combined with 5-FU killed skin cancer cells,
induced with 7,12-dimethylbenz(a)anthracene, in vivo [326]. Anticarcinogenic properties
was ascribed to modulation of apoptotic, angiogenic and cell proliferative pathways.

Pediocin PA-1, produced by Pediococcus acidilactici K2a2-3, is cytotoxic towards hu-
man colon adenocarcinoma (HT29) and HeLa cells [303]. Pediocin CP-2, produced by
P. acidilactici MTCC 5101 and rec-pediocin CP-2 (recombinant) cells are cytotoxic towards
MCF-7, HepG2, HeLa and mouse spleen lymphoblast (Sp2/O-Ag14) cells and induces
apoptosis [304].

Bacteriocins may thus play a key role in prevention of intestinal and skin cancers.
Only a few of such studies have been published and most were performed in vitro. Should
these results be confirmed by in vivo studies, methods will have to be developed to protect
these peptides from degradation by gastrointestinal enzymes and enhance their activity.
Bacteriocin-producing strains with anticarcinogenic properties may be included in probi-
otic supplements. We are, however, still a long way from understanding the efficacy of
bacteriocins in anticancer therapy and whether these peptides should be used alone or in
combination with chemotherapeutic agents.

6. Non-Ribosomal Peptides and Polyketides

Non-ribosomal peptide synthetases (NRPS) were discovered in 1968 by Gevers and
co-workers when they studied gramicidin S production by Bacillus brevis [327]. By adding
RNAse and puromycin (a ribosome inhibitor) to B. brevis extracts containing gramicidin S,
Gevers et al. [328] observed that aminoacyl-tRNA synthetases and tRNA were not used
in the production of gramicidin S. Subsequent studies have shown that non-ribosomal
peptides are produced by enzyme complexes in a nucleic acid-independent manner [329].
Further research is needed to determine if non-ribosomal peptides can be used in cancer
therapy [8]. Polyketides are produced non-ribosomally by type 1 polyketide synthetases
(PKSs) [330]. Almost one-third of all pharmaceuticals are polyketides which can be at-
tributed to their structural and biological diversity. Type 1 PKSs are modular enzyme
assemblies and act successively to elongate the polyketide chain. Different domains can be
found in PKSs such as ketoreductase, dehydratase, and enoylreductase with conserved do-
mains such as acyl carrier protein, ketosynthase and acyltransferase. Readers are referred to
Baindara and Mandal [8] for further information non-ribosomal peptides and polyketides.
Noteworthy is that no non-ribosomal peptides and polyketides with anticancer properties
have been reported for lactic acid bacteria.

7. Phenylpropanoids

Phenylpropanoid-derived metabolites from plants inhibits the growth of several cancer
cell types [331]. However, Bacteroides thetaiotaomicron, Bacteroides eggerthii, Bacteroides
ovatus, Bacteroides fragilis, Parabacteroides distasonis, Eubacterium hallii and Clostridium
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bartlettii ferment phenylalanine, tyrosine and tryptophan to phenylacetic acid (PAA) and 4-
hydroxylphenylacetic acid (4-hydroxyPAA) in the colon [332]. An increase in cell numbers
of Bacteroides fragilis was observed in patients with advanced stages III and IV) CRC [333].

The phenylpropanoid verbascoside protects the GIT from oxidative stress and represses
the growth of MKN45 gastric epithelial cancer cells, but also stimulates appetite [334,335].
Further research on the stability of phenylpropanoids is required. Acteoside, a verbascoside,
has anti-inflammatory properties [336] and prevents the onset of chronic diseases, including
cancer [337,338], but is degraded by gut microbiota [339]. Further research is required to
understand the degradation of phenylpropanoid by gut microbiota, and exactly how these
compounds modulate inflammatory and microbial processes.

8. Phenylflavonoids

Xanthohumol (XN), a prenylated flavonoid found in hops, has promising anticancer
properties [340]. Gut microbiota metabolites XN to 8-prenylnaringenin (8-PN), a very
potent phytoestrogen with anticancer activity, as demonstrated with SK-MEL-28 and BLM
human metastatic melanoma cells [341] and MCF7 breast cancer cells [342]. 8-PN also
inhibited cell proliferation of the HT-115 and HT-116 colon cancer cells [342,343].

9. Natural Purine Nucleosides

Adenosine and inosine (formed by the catabolism of adenosine) bind to adenosine
receptors, and initiates cAMP production and the phosphorylation of kinase-1 and -2 [344].
Inosine also enhances T cell antitumour activity in colorectal, bladder, and melanoma cancer
cells [345]. Studies on bladder cancer cells indicated that inosine enhanced the function
of anti-CTLA-4, causing to increase infiltration of IFN-γ+ CD4+ and IFN-γ+ CD8+ T-cells
into the tumour, as well as reducing overall tumour weight [345]. CTLA-4, also known
as CD152, is a protein receptor that functions as an immune checkpoint downregulating
immune responses, a process referred to as immune checkpoint blockade (ICB). Inosine
produced by Bifidobacterium pseudolongum increased the activation of a cDC-dependent
TH 1 cell circuit and led to the enhancing of ICB in murine models with intestinal and
epithelial tumours [345].

10. Short Chain Fatty Acids

Diet plays an important role in CRC and may promote the formation of tumours [346].
SCFAs such as butyrate, acetate, propionate and lactate are largely produced in the colon
by Bifodobacterium, Lactobacillus, Lachnospiraceae, Blautia, Coprococcus, Roseburia, Faecalibac-
terium, Clostridium, Eubacterium, and species converting lactate and acetate, e.g., Anaerostipes
spp. [347,348]. These SCFAs adhere to free fatty acid receptors (FFARs), e.g., GPR43 (FFAR2)
and GPR41 (FFAR3) located on the surface of IECs [349]. Patients diagnosed with CRC
had less Bifidobacterium spp. and lower levels of SCFAs [350]. Butyrate also protects in-
testinal barrier function by up-regulating the tight junction protein claudin-1 [351–353].
Other functions of butyrate include maintaining a balanced state of oxygen [301] and
suppressing inflammatory responses [354,355]. The latter is achieved by downregulating
histone deacetylase (also referred to as lysine deacetylase) inhibitors (HDACi) [354,355].
An increase in de-acetylated histones (due to the inhibition of HDACi), together with a
decline in gene transcriptions, leads to autophagic cell death, the activation of extrinsic
and/or intrinsic apoptotic pathways, an increase in production of reactive oxygen species
(ROS), and a decrease in the expression of pattern recognition receptors, kinases, transcrip-
tion regulators, cytokines, chemokines, and growth factors [356,357]. Molecules released
from dying cells are recognised by nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs) and form specific protein-protein interactions. These interactions, also
prevalent in lymphocytes, macrophages and dendritic cells, play a key role in the regula-
tion of cytokines, chemokines and the expression of genes coding for the production of
antimicrobial compounds, collectively referred to as the innate immune response [358–360].
Downregulation of NLRs prevents the formation of multi-protein inflammasomes, the
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signaling of caspase-independent nuclear factor kappa B (NF-κB) and mitogen-activated
protein kinase (MAPK). These cascades of events counteract autoimmune and inflammatory
disorders and as recently shown, represses the growth of cancerous cells [361].

Butyrate and propionate are more effective than acetate in inhibiting the growth of
HT29 cells [362]. Butyrate significantly increased apoptosis in cancer cells [363] and acti-
vates ornithine decarboxylase, resulting in the inhibition of polyamine metabolism and
an increase in alkaline phosphatase activity [364]. Butyrate also activates GPR41/GPR43
receptor signaling pathways [364], thus preventing the proliferation of cancer cells [365].
GPR43 is predominantly present in the large intestine of healthy cells, but less so in colon
cancer cells [366]. Manipulation of HCT8 human colonic adenocarcinoma cells to express
the GPR43 receptor led to an increase in apoptosis and G0/G1 cell cycle arrest [366]. Con-
cluded from these studies, the GPR43 receptor serves as a tumour suppressor. SCFAs were
ineffective against HCT-116 colon cancer cells with a deletion in the p21 gene, suggesting
that p21, a cell cycle inhibitor and anti-proliferative effector, is important in repressing
tumour growth. Another study has shown that p21 is regulated by the p53 transcription
factor [367]. Diets rich in SCFAs suppresses T cell-mediated autoimmune responses, most
probably through regulation of cytokine expression [364]. The ability of butyrate to de-
repress epigenetically silenced genes in cancer cells, such as cell cycle inhibitor p21 and the
pro-apoptotic protein Bcl-2, has important implications for cancer prevention and therapy.
Lightfoot et al. [368] tested possible epigenetic modifications induced by LTA-deficient
L. acidophilus and found that oral NCK 2025 enhances the expression of tumor suppressor
genes [368,369]. This indicates that differential epigenetic regulation of CRC-related genes
by NCK2025 represents a potential therapy against CRC.

Overall, SCFAs are promising specifically in the context of colon cancer. Future studies
should evaluate the effect of SCFAs on other cancer types, e.g., pancreatic and gastric cancer.
Studies should also explore the impact of SCFAs on the efficacy and safety of standard
chemotherapy and the prognosis of cancer.

11. Enzymes

Four enzymes with anticancer properties have been reported, i.e., arginine deiminase
(ADI), produced by Mycoplasma hominis and Mycoplasma arginine, asparaginase (ASNase),
produced by E. coli and Erwinia chrysanthemi, glutaminase [370] and methionase [371]. ADI
converts arginine to citrulline and ammonia in vivo [372]. Pegilation of ADI (ADI-PEG20)
significantly increased the half-life of ADI in serum and decreased its antigenicity [373], ren-
dering ADI much more effective against cancerous cells. The mode of activity of ADI-PEG20
is ascribed to loss of argininosuccinate synthetase (ASS) activity and, thus, the inability to
synthesize arginine from citrulline [374]. Due to this, growth of hepatocellular carcinoma
cells (HCC), auxotrophic to arginine, were repressed, with evidence of apoptosis [375].
Treatment of metastatic hepatocellular carcinoma cells with ADI-PEG20 entered phase II
clinical trials [376]. Autophagy was induced in prostate cancer cells (CWR22Rv1) treated
with ADI-PEG20 [374]. ASNase degrades asparagine, which results in a severe reduction
in protein synthesis and thus growth inhibition of cancer cells [377,378]. Studies performed
with human cells lines (pediatric medulloblastoma, DAOY, and glioblastomas GBM-ES
and U87) indicated that inhibition of cell growth by ASNase is dose-dependent [379].
ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute
myeloid leukemia, ovarian carcinoma, myelosarcoma, Hodgkin lymphomas, and extra-
nodal NK/T cell lymphoma [380–383]. Glutaminase, specifically glutaminase 1 (GLS1)
expressed in mitochondria, converts glutamine to glutamate [384], but also stimulates
the growth of tumour cells [385] and is involved in autophagy [386], signal transduc-
tion [387], and radioresistance [388]. Recent evidence emerged showing that GLS1 might be
involved in tumorigenesis and progression of human cancers [370]. GLS1 is overexpressed
in metastatic lymph nodes and colorectal cancer cells [370]. Methionase, also known as
L-Methionine-γ-lyase (EC 4.4.1.11; MGL), methioninase, L-methionine-γ-demethiolase,
and L-methionine methanethiol-lyase (deaminating), is produced by Pseudomonas putida,
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Pseudomonas ovalis, Micrococcus luteus, Arthrobacter spp., Corynebacterium glutamicum, Staphy-
lococcus equorum, Citrobacter spp., Clostridium sporogenes, Trichomonas vaginalis and Entamoeba
histolytica, but has also been isolated from protozoans, fungal, archaeon, and plants [371].
Melignant tumours are highly dependent on methionine. Depletion of methionine through
methionase-based therapy may be an important strategy to control the growth of cancer
cells. One approach experimented with was linking L-methionase to human annexin-V to
generate a fusion protein. The fusion protein catalyzed the conversion of nontoxic prodrug
selenomethionine into toxic methylselenol and restricted the growth of tumour cells by
depriving the cells from access to methionine [389–391]. The advantage of using the fusion
protein is that it does not require to be delivered directly to the tumour cells but only to
the bloodstream.

12. Conclusions and Future Directions

Cancer is a major health concern and treatment remains a challenge due to cells
developing resistance. Despite numerous efforts to use viable bacteria in the treatment
of cancer, the idea is still viewed with scepticism, as many strains experimented with are
considered obsolete or opportunistic pathogens. To date, bacterial anticancer compounds
studied were either toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides,
phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs)
or enzymes. Other natural antitumor compounds discovered are spliceostatins, such as
spliceostatin B purified from cell-free extracts of Pseudomonas sp. 2663 and pladienolide B,
a macrolide produced by Streptomyces platensis Mer-11107. More research on spliceostatins
is required. It is interesting to note that many of the bacteria that produce anticancer
compounds are either obligate or facultative anaerobes. Many anticancer compounds
naturally produced by bacteria are specific in their mode of action, and some are selective in
attacking only cancerous cells. Lactic acid bacteria form a major part of the gut microbiome,
yet the role they play in cancer treatment is ill researched. The combined use of natural
anticancer compounds with conventional anticancer therapy warrants further research.
Progress in metagenomics, proteomics, heterologous gene expressions and nanotechnology,
combined with the use of artificial intelligence software such as AlphaFold 2 (https://
alphafold.ebi.ac.uk/) and Chemistry42 (https://arxiv.org/abs/2101.09050, accessed on 10
May 2022), may lead to the discovery and design of novel anticancer molecules.
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