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Abstract 

Study Objectives:  Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstruc-
tive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum 
proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum 
after 6 hours of sleep deprivation at night.

Methods:  Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spec-
trometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken 
after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinfor-
matic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic 
datasets.

Results:  Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. 
Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered 
regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated 
gene sets.

Conclusions:  This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing 
that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological 
conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are 
available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, 
sleep disorders, and circadian rhythms including translational approaches Collection.
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Sleep deprivation is becoming increasingly prevalent. Several 
conditions such as night or alternating shift work have been 
proven to lead to circadian rhythm disruption or sleep depriva-
tion that affects cellular processes and molecular mechanisms. 
These effects result in altered gene and protein expression and 
are proposed to be involved in the development and progression 
of various mental, cardiovascular, metabolic, immune, and neu-
rodegenerative disorders [1–8].

Loss of sleep is also a symptom of several diseases such as 
obstructive sleep apnea (OSA) and depression, thereby causing 
sleep deprivation to be bidirectionally linked to several of its 
pathologies by changes in cellular mechanisms. Insufficient sleep 
or altered circadian rhythms change the transcription and trans-
lation. This can be detected by measuring the changes in mRNA 
and protein levels [3, 4, 9, 10].

Cellular and molecular changes due to sleep deprivation 
measured in blood and/or urine can provide a molecular signa-
ture related to conditions caused by sleep deprivation such as 
OSA. Such biomarkers could potentially be used diagnostically. 
However they could also be used prognostically and as predictors 
of comorbidities [11, 12]. The molecular mechanisms affected 
by sleep deprivation are still not fully understood even though 
sleep–wake associated studies using the omics-methodology, as 
well as technologies used to characterize and quantify molecules 

and their interactions at the genome-wide level, are increasing 
[4]. The effects of partial sleep deprivation using a proteomic and 
systems biological approach are still sparse [5, 9, 10, 13, 14].

This research project is part of an ongoing study that exam-
ines the effects of sleep deprivation in human blood serum. We 
aim to expand the existing pool of molecular signatures for sleep 
deprivation by protein expression profiling in serum and saliva. A 
recently published paper from our research group has identified 
several differentially expressed proteins (DEPs) in human serum 
after 6 hours of sleep deprivation that could be linked to various 
biological processes and pathological conditions [15]. The goal of 
the present study was to conduct statistical and system biological 
analyses of human blood serum proteome changes after 6 hours 
of sleep deprivation at night using a different part of the human 
serum proteome. Different bioinformatic software and biological 
databases have been used with the aim of discovering biological 
processes and functions that are affected by one night of sleep loss.

Materials and Methods
Experimental setup, data acquisition, and data 
preanalysis
Human blood serum samples were acquired from eight self-
reported healthy voluntary female participants, 22 to 57 years 

Statement of Significance 

The affected cellular mechanisms, biological processes and molecular functions after acute sleep deprivation are reflected in 
the differentially expressed proteins in human blood serum. Our study contributes to the protein profiling of sleep deprivation, 
which has profound implications for several physiological and metabolic processes. The identification of possible biomarkers 
in one of the most clinically used specimen, human blood serum, are needed. Furthermore, achieving more knowledge of the 
affected cellular and molecular mechanisms of compromised sleep is essential for the development of tools for managing lack of 
and mistimed sleep as in shift work. More knowledge on the cellular level is also needed for the management and treatment of 
sleep-related disorders improving sleep quality, sleep quantity, and overall quality of life.
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old, non-medicated, and with no history of neurological or psy-
chiatric disease and analyzed using mass spectrometry (Orbitrap 
Eclipse) in combination with high-pressure liquid chromatog-
raphy (HPLC Dionex Ultimate 3000 Basic HPLC System). All 
of the participants gave their informed consent to take part in 
this study and approval for the study was given by the Regional 
Ethical Committee (REK, 2019/254).

Each participant was their own control, and two samples were 
taken from each of them. The first sample was obtained after 6 
hours of sleep at night, after the participants went to bed at 22:00, 
and the second sample after 6 hours of sleep deprivation the fol-
lowing night. Both samples were taken at 4:00 a.m. The samples 
were depleted for the most abundant proteins for proteins with 
a lower abundance to be detected (Thermo Fishers High SelectTM 
Top 14 Abundant Protein Depletion Resin mini spin column) and 
trypsinated. After fragmentation, mass spectrometry and liquid 
chromatography were used for the analysis. The number of pep-
tides identified for a protein determined the confidence of the 
protein identification. Detailed descriptions of study participants, 
sleep monitoring (Oura-ring and Somnofy) and serum sampling 
can be found in Bjørkum et al. 2021 [15].

Digestion
The samples were depleted for the top 14 most abundant proteins 
using Thermo Fisher’s High Select™ Top 14 Abundant Protein 
Depletion Resin mini spin columns, 10 µL of serum were added 
to each column. The protein concentration was measured using 
Pierce BCA protein Assay. In Eppendorf lo-bind tubes the samples 
were mixed with paramagnetic beads (Sera-Mag Speed beads, GE 
healthcare) in a 1:10 ratio. The peptide-bead mixture was then sub-
jected to agitation before the addition of 100% ethanol to 70% eth-
anol solution. The solution was agitated at 1000 rpm for 7 minutes 
in RT. The sp3 reaction mixture was placed on a magnetic rack and 
the supernatant was removed. The procedure was repeated twice 
with 80% ethanol to remove the remaining lysis buffer.

Digestion buffer containing 100 mM AmBic/1mM CaCl2 and 
trypsin concentration of 0.2 µg/µL. 50 µL digestion buffer were used 
for each sample. The samples were sonicated for 30 seconds and 
incubated for 16 hours at 37°C in a thermomixer at 1000 rpm. After 
digestion, the samples were centrifuged at 13 000 rpm at 24°C for 3 
minutes. The tubes were placed on the magnetic rack until the beads 
had settled onto the tube wall before the supernatant was moved to 
a fresh tube. 50 µL of 0.5 M NaCl in H2O was added to each sample.

Tubes were sonicated for 30 seconds in a water bath and cen-
trifuged at 13 000 rpm at 24°C for 3 minutes. The tubes were 
placed on the magnetic rack and when the beads settled onto 
the tube wall, the supernatant of these tubes were moved to the 
tube with the previous supernatant. The amount should be 100 
µL and combining these two supernatants would release all pep-
tides from the beads. Next, 200 µL of 0.1% TFA was added to make 
the total solution amount 300 µL.

Desalting
Oasis 96 well cartridges, Waters, USA, was used for desalting. 
Cartridges were activated by adding 500 µL of 80% ACN, 0.1% 
formic acid (FA), **centrifuge 200 ×g for 1 minute, and discard 
the flow through. Wash cartridges by adding 500 µL of 0.1% TFA, 
the centrifuge 200 ×g for 1 minute, and allow the discard to flow 
through, and then repeat this step twice. Add samples and cen-
trifuge 100 ×g for 3 minutes, discard flow through. Wash twice 
with 500 microliters of 0.1% TFA, centrifuge 200 × g for 1 minute. 
Elute the sample using 100 microliters of 80% ACN, and 0.1% FA. 

Centrifuge 100 × g for 3 minutes. This time, keep the flow through. 
Elute sample in 96 well elution plate. 100 microliters of 80% ACN, 
0.1% FA. Centrifuge 100 × g for 1 minute, repeat once. The sam-
ples were freeze-dried prior to TMT labeling.

Mass spectrometry
About 0.5 μg protein as tryptic peptides dissolved in 2% acetonitrile 
(ACN), 0.5% FA, were injected into an Ultimate 3000 RSLC system 
(Thermo Scientific, Sunnyvale, CA, USA) connected online to Orbitrap 
Eclipse mass spectrometer (Thermo Scientific) equipped with EASY-
spray nano-electrospray ion source (Thermo Scientific). For the trap-
ping and desalting process, the sample was loaded and desalted on 
a pre-column (Acclaim PepMap 100, 2 cm × 75 µm ID nanoViper col-
umn, packed with 3 µm C18 beads) at a flow rate of 5 µL/minute for 5 
minutes with 0.1% TFA (trifluoroacetic acid). Peptides were separated 
during a biphasic ACN gradient from two nanoflow UPLC pumps (flow 
rate of 250 nL/minutes) on a 25 cm analytical column (PepMap RSLC, 
50 cm × 75 µm ID EASY-Spray column, packed with 2 µm C18 beads). 
Solvents A and B were 0.1% FA (vol/vol) in dH2O and 100% ACN, 
respectively. The gradient composition was 5% B during trapping (5 
minutes) followed by 5%–7% B over 30 seconds, 8%–22% B for the next 
145 minutes, 22%–28% B over 16 minutes, and 35%–80% B over 15 
minutes. Elution of very hydrophobic peptides and conditioning of the 
column were performed during 15 minutes of isocratic elution with 
90% B and 20 minutes of isocratic elution with 5% B, respectively. The 
eluting peptides from the LC column were ionized in the electrospray 
and analyzed by the Orbitrap Eclipse. The mass spectrometer was 
operated in the DDA mode (data-dependent acquisition) to automati-
cally switch between full scan MS and MS/MS acquisition. Instrument 
control was through Tune 2.7.0 and Xcalibur 4.4.16.14.

Survey full scan MS spectra (from m/z 375 to 1500) were 
acquired in the Orbitrap with resolution R = 120 000 at m/z 200 
after accumulation to a target value of 4e5 in the C-trap, and ion 
accumulation time was set as auto. FAIMS was enabled using 
two compensation voltages, −45V and −65V, respectively. During 
each CV, the mass spectrometer was operated in the DDA mode 
(data-dependent acquisition) to automatically switch between 
full scan MS and MS/MS acquisition. The cycle time was main-
tained at 0.9 s/CV. The most intense eluting peptides with charge 
states 2 to 6 were sequentially isolated to a target value (AGC) of 
2e5 and maximum IT of 120 milliseconds in the C-trap, and isola-
tion width maintained at 0.7 m/z, before fragmentation was per-
formed with a normalized collision energy of 30%, and fragments 
were detected in the Orbitrap at a resolution of 30 000 at m/z 200, 
with first mass fixed at m/z 110. The spray and ion-source param-
eters were as follows: ion spray voltage = 1900 V, no sheath and 
auxiliary gas flow, and capillary temperature of 275°C.

The raw files were searched in Proteome Discoverer 2.5 and 
data were curated using the Perseus package.

The raw data were loaded into Protein Discoverer 2.5 
(ThermoFisher) and searched against the human database 
uploaded from Uniprot.org [16]. The results were then preproc-
essed in Perseus [17]: The data were log2-transformed since pro-
teomics studies normally work with log-transformed values, and 
verified to be normally distributed which was a prerequisite for 
subsequent statistics. To assess the strength of the correlation of 
the protein expression between the samples, Pearson correlation 
analysis was performed. Of the 793 proteins identified by mass 
spectrometry, only 494 proteins were considered for further anal-
ysis after manual filtering based on valid values. From 7904 val-
ues (494 proteins × 16 samples), 831 were missing and replaced 
using normal distribution.
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Data analysis and statistics
A paired two-tailed t-test for the 494 proteins was performed 
using the t.test function in the statistical computing software R 
[18] version 4.2.2 in order to identify the proteins with significant 
differential expression (p-values ≤ .05 were considered statistically 
significant) after 6 hours of sleep deprivation. Multiple hypothesis 
testing (MHT) was performed using Bon-Ferroni, as well as the less 
strict Benjamini-Hochberg approach; however, with no significant 
results. Using a paired t-test ensured that the correlation between 
the two groups (control and sleep deprivation) was accounted for 
(each participant was their own control) and it reduced the varia-
bility within the data and increased the power of the test.

Of the 71 significantly changed proteins found, only those 
with no more than four values missing (of the 16 values obtained 
by mass spectrometry for each participant) were considered for 
further analysis. For the 66 proteins fulfilling these criteria, the 
fold-change was calculated from the log2-transformed data to 
compare the relative difference in the protein expression levels of 
the control and sleep deprivation conditions.

Gene ontology analysis
The SwissProtIDs of the 66 significantly changed proteins were 
put into two different databases WebGestalt and STRING to per-
form systems biological analyses.

In WebGestalt, an over-representation Analysis (ORA) was first 
carried out using our data and the human genome as a reference 
set as well as default advanced settings (correction for MHT via 
Benjamini-Hochberg) [19]. By gene ontology (GO) slim classifica-
tion, the affected biological process, cellular compartment, and 
molecular function categories were identified. Furthermore, top 
enriched biological process categories based on their significance 
level could be pointed out by the ORA.

Secondly, the STRING database with the default settings was 
used to create a network that showed the interactions between the 
significantly changed proteins based on known information and 
statistical calculations [20]. All of the active interaction sources 
were considered. The network was exported into the open-source 
software Cytoscape [21] version 3.9.1. After importing the list of 
fold-changes into Cytoscape as well, the nodes in the network rep-
resenting the proteins were grouped and colored according to the 
fold-change after sleep deprivation of the respective proteins. In 
Cytoscape, network-based functional enrichment analysis with 
default settings (correction for MHT via FDR) was performed 
regarding the biological process, cellular compartment, and molec-
ular function categories to identify the biological themes that were 
overrepresented in the dataset of the significantly changed pro-
teins. The results were compared with those from WebGestalt.

Further analyses were conducted with the ClueGO App [22] 
version 2.5.9 within Cytoscape that does not rely on protein–pro-
tein interactions and is a more traditional approach to identifying 
enriched functional categories. The functional analysis per-
formed within ClueGO was carried out for the biological process, 
cellular compartment, molecular function, and immune system 
process gene ontology categories. The default settings were used 
(correction for MHT via Bonferroni).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed in the GSEA 
software [23, 24] version 4.3.2 to find the gene signatures that 
were significantly enriched and associated with our sleep dep-
rivation data. GSEA focuses on gene sets, pathways, and pro-
cesses with common biological function or regulation, and tests 

how they are distributed within a dataset. For the analysis, the 
accession IDs and intensities of the proteins of the dataset were 
required. First, the 494 proteins in our dataset were ranked based 
on the correlation between their expression and the class distinc-
tion (in our case control and sleep deprivation). The metric for 
ranking genes was set to tTest. The number of permutations was 
set to 250 to match the default from Perseus where our data was 
preprocessed, and all of the other parameters were left on default 
(correction for MHT via FDR).

Statistical testing was then carried out on all the different gene 
sets collections downloaded from the MSig database [25] to deter-
mine whether these gene sets were distributed randomly through-
out our ranked dataset or if hits were mainly found at the extremes 
regarding gene expression (lowest or highest degree of expression) 
which could indicate a correlation between sleep deprivation and 
the tested gene set. The enrichment score (ES) described the max-
imum deviation from zero and to which degree the tested gene set 
was overrepresented at the extremes of our ranked gene expres-
sion dataset. The leading-edge subset consisted of genes of the 
tested gene set that appeared in our ranked dataset at or shortly 
before the ES and made up the core of the gene set that accounted 
for the enrichment signal and core enrichment (CE).

By using gene sets instead of single genes or proteins (as in the 
GO analyses), the strengths of GSEA include higher reproducibil-
ity and easier interpretation. It considers all of the genes of an 
experiment and not only those above an arbitrary cutoff in terms 
of significance, thereby capturing the collective behavior of the 
gene expression levels related to health and disease.

Only gene sets created from human data were considered dur-
ing the evaluation. For the significantly enriched gene signatures 
associated with our sleep deprivation group, we also analyzed the 
overlap of the genes of the CE and the gene symbols of our 66 
significantly changed proteins after sleep deprivation and were 
identified with the classical t-test in R.

Comparative analysis with other sleep-related 
datasets
To further analyze our data, the significantly changed proteins 
after sleep deprivation were made into a separate gene signature 
by translating our significantly changed proteins back into their 
corresponding gene symbols and into a GMT file. It was then tested 
with GSEA how our proteins were distributed in other sleep-related 
datasets that have been published online (using the same settings 
as before) and if our gene signature of significantly changed pro-
teins was significantly enriched in any of them. The datasets from 
different studies and their additional information were found 
and retrieved via the Proteomics Identifications Database Archive 
(identifier PXD) [26] and NCBI Gene Expression Omnibus (identifier 
GSE and GPL) [27]. The distribution of our gene signature of signif-
icantly changed proteins after sleep deprivation was tested within 
the data of the following studies (more details on the individual 
study protocols can be found in the original papers).

The data with the accession number PXD032734 modeled a 
study from Cheng et al., 2022 where DEPs in the serum of chil-
dren with different severities of OSA were identified using a 
tandem mass tag (TMT) based proteomic analysis [14]. The par-
ticipants were 2–13 years old, and the study randomly selected 12 
serum samples, three samples from each group (mild, moderate, 
and severe OSA, and control), for proteomics analysis in which 
they identified 752 proteins. In the process of GSEA, the UniProt 
Knowledgebase was used throughout for protein searches and ID 
conversions via the ID mapping tool [16].
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To match the methods of this study better with our own, it was 
also tested which proteins of PXD032734 from Cheng et al. 2022 were 
differentially expressed in the OSA groups when undergoing a t-test 
in R, and how these DEPs overlapped with the CE of the GSEA as well 
as our 66 significantly changed proteins after 6 hours of sleep depri-
vation at night. However, the difference is that the t-tests performed 
on this other dataset from Cheng et al. 2022 were unpaired since they 
had different participants for the control and intervention group, 
whereas the eight participants in our study were their own control.

After our gene signature of significantly changed proteins after 
sleep deprivation was significantly enriched in the moderate phe-
notype of OSA (which also leads to sleep deprivation) from the 
dataset PXD032734 in Cheng et al. 2022, it was tested in another 
pediatric OSA study from Becker et al. 2014 in which morning and 
bedtime urine samples were collected from 13 healthy children 
and 14 children with OSA, who were 2–12 years old [28]. The sam-
ples were analyzed using liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) analysis that led to 674 urine proteins 
being identified across all of the patient samples.

The dataset GSE98582 from Uyhelji et al. 2018 consisted of a 
study where 17 healthy adults were assigned to two groups that 
both spent seven consecutive days in a sleep laboratory [29]. After 
a baseline phase of 2 days with normal sleep of 10 hours each, 
11 participants underwent continuous wakefulness for 62 hours 
(sleep deprivation group) while six control participants continued 
to have 10 hours of sleep every night. Blood was collected at 12 
timepoints (T) at regular intervals to determine the gene expres-
sion using Affymetrix GeneChip Human Gene 1.0 ST arrays. T1-4 
and 9–12 were during the baseline phase and the recovery phase, 
respectively, and the participants went to bed at 10 pm (in line 
with our own sleep protocol). Blood was obtained at 8 am the 
next day. During the experimental phase (starting at 8 am on day 
three), T5-8 marked different sleep deprivation durations for the 
sleep deprivation group on day 4: 10, 14, 18, and 22 hours of sleep 
deprivation, respectively. In this study, 8623 peptides were found 
in total, and a gene symbol could be assigned for 8007 of them.

The Affymetrix IDs were converted to gene symbols using R 
and the respective file from platform GPL6244 (Affymetrix Human 
Gene 1.0 ST Array) so that the data could be used for GSEA. Our 
gene signature was tested in each of the timepoints 5–8 in order 
to see if it was enriched in any of these conditions.

Results
DEPs (66) after one night of sleep deprivation
In this study, 793 proteins were identified in human blood serum 
by Orbitrap Eclipse mass spectrometry analysis. The Pearson cor-
relation analysis that was performed showed a relatively good 
correlation between the samples with correlation coefficients 
from 0.86 to 0.98 (Figure 1). After filtering criteria and adjust-
ments, as described in the materials and methods section, out 
of 494 proteins identified and considered for further analysis, 66 
proteins were found to be significantly differentiated by the paired 
t-test in R after 6 hours of sleep deprivation at night (uncorrected 
p-value ≤ .05; Table 1). Out of 66 proteins, 63 proteins were upreg-
ulated, and three proteins were downregulated.

The protein-protein interaction network that was created in 
STRING and Cytoscape for the 66 proteins significantly changed 
(Figure 2) showed that 61 of the 66 proteins were linked to one or 
more proteins based on databases (e.g. text mining), experiments, 
and predicted interactions such as protein homology, gene neigh-
borhood, or co-expression.

Enriched proteins after 6 hours of sleep 
deprivation are involved in wound healing and 
metabolism
Functional enrichment analyses performed in WebGestalt 
and Cytoscape using the ClueGO plugin regarding the biologi-
cal process, cellular function, and molecular function catego-
ries revealed the most affected GO categories (Supplementary 
Figure S1a and S1b) based on the 66 DEPs after sleep deprivation. 
There was a large overlap between the results from WebGestalt 
and those from Cytoscape: more than 75% of the proteins were 
involved in the following biological process categories: biological 
regulation, regulation of the cellular process, response to stimu-
lus and metabolic process, and in the cellular compartment cate-
gories extracellular space and (membrane-bound) organelle. Two 
of the categories of molecular function, protein binding, and ion 
binding, included more than half of the proteins.

In WebGestalt, GO analysis revealed the top 5 enriched biolog-
ical processes (based on the significance level) of the DEPs after 
sleep deprivation that were related to the categories of protein 
activation cascade, platelet degranulation, (blood) coagulation, 
and hemostasis (Table 2). Three of the sixty-six proteins were 
involved in all the top 5 enriched biological processes: APOH, 
KNG1 and SERPING1.

Further functional analysis was carried out in the Cytoscape 
plug-in ClueGO and revealed enriched GO groups in the cat-
egories biological process, cellular compartment, molecular 
function, and immune system process, as well as the most rep-
resented terms within these groups having the greatest number 
of our DEPs involved (Table 3). In the biological process and cel-
lular compartment categories, around two-thirds of the terms of 
the individual GO categories were associated with either wound 

Figure 1.  Column Pearson correlation analysis performed in Perseus, 
indicating a high correlation between the serum samples. C for the 
control sample and SD for the sleep deprivation sample. The scale 
represents the correlation coefficient were 10 is 100% correlation.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpae042#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpae042#supplementary-data
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Table 1.  Significantly Changed Proteins (66) in Human Serum After 6 Hours of Sleep Deprivation

SwissprotID Gene 
symbol

 Protein name P-value Fold-change 
(log2)

# of 
peptides

Upregulated proteins (63)

P06727 APOA4 Apolipoprotein A-IV .0010 1.016 45

P08514 ITGA2B Integrin alpha-IIb .0025 1.107 8

O43852 CALU Calumenin .0028 1.054 6

P05556 ITGB1 Integrin beta-1 .0035 1.053 5

Q6ZNG0 ZNF620 Zinc finger protein 620 .0042 1.037 1

Q14515 SPARCL1 SPARC-like protein 1 .0055 1.051 11

Q9NPY3 CD93 Complement component C1q receptor .0073 1.099 6

P06733 ENO1 Alpha-enolase .0075 1.070 4

P02549 SPTA1 Spectrin alpha chain, erythrocytic 1 .0081 1.028 1

A1L4H1 SSC5D Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D .0122 1.044 1

P21926 CD9 CD9 antigen .0123 1.095 1

Q13201 MMRN1 Multimerin-1 .0125 1.033 14

Q8WUA8 TSKU Tsukushi .0125 1.063 3

P04180 LCAT Phosphatidylcholine-sterol acyltransferase .0133 1.030 10

Q14766 LTBP1 Latent-transforming growth factor beta-binding protein 1 .0140 1.047 18

P24593 IGFBP5 Insulin-like growth factor-binding protein 5 .0143 1.047 6

P09172 DBH Dopamine beta-hydroxylase .0146 1.034 15

Q15113 PCOLCE Procollagen C-endopeptidase enhancer 1 .0156 1.037 8

P10909 CLU Clusterin .0166 1.020 21

Q6UXB8 PI16 Peptidase inhibitor 16 .0168 1.040 8

P22891 PROZ Vitamin K-dependent protein Z .0178 1.022 10

Q15582 TGFBI Transforming growth factor-beta-induced protein ig-h3 .0178 1.022 16

Q03591 CFHR1 Complement factor H-related protein 1 .0179 1.028 12

O95445 APOM Apolipoprotein M .0180 1.008 11

P35443 THBS4 Thrombospondin-4 .0213 1.070 10

Q12860 CNTN1 Contactin-1 .0214 1.056 7

P08253 MMP2 72 kDa type IV collagenase .0226 1.029 11

O00533 CHL1 Neural cell adhesion molecule L1-like protein .0246 1.048 22

P05109 S100A8 Protein S100-A8 .0248 1.064 2

P04114 APOB Apolipoprotein B-100 .0251 1.004 309

P10720 PF4V1 Platelet factor 4 variant .0254 1.021 5

Q5SYB0 FRMPD1 FERM and PDZ domain-containing protein 1 .0262 1.027 1

Q92496 CFHR4 Complement factor H-related protein 4 .0285 1.032 9

P35542 SAA4 Serum amyloid A-4 protein .0290 1.017 5

Q06033 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3 .0292 1.019 24

P33151 CDH5 Cadherin-5 OS = Homo sapiens .0298 1.030 14

P07359 GP1BA Platelet glycoprotein Ib alpha chain .0298 1.038 7

P00746 CFD Complement factor D .0309 1.028 11

P98160 HSPG2 Basement membrane-specific heparan sulfate proteoglycan core protein .0311 1.059 24

P12111 COL6A3 Collagen alpha-3(VI) chain .0313 1.043 27

Q07954 LRP1 Prolow-density lipoprotein receptor-related protein 1 .0330 1.054 9

P01042 KNG1 Kininogen-1 .0331 1.019 42

Q6UY14 ADAMTSL4 ADAMTS-like protein 4 .0344 1.154 4

P07996 THBS1 Thrombospondin-1 .0350 1.020 53

P04196 HRG Histidine-rich glycoprotein .0356 1.020 28

P23142 FBLN1 Fibulin-1 .0359 1.021 21
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healing or cholesterol transport as well as high-density lipopro-
tein particle or vesicle lumen, respectively. For the molecular 
function categories, half of the terms were associated with groups 
within which lipoprotein particle receptor binding was the most 
represented function. Granulocyte chemotaxis comprised more 
than two-thirds of the terms as the most represented process in 
the immune system process categories.

Enriched gene signatures identified with GSEA 
map changes in molecular pathways caused by 6 
hours of sleep deprivation
There were 24 gene sets/signatures with common biological func-
tion or regulation that were significantly enriched (p-value ≤ .05) 
within the sleep deprivation condition of our ranked dataset of 
494 proteins and overrepresented at the extremes (top or bot-
tom) of it, indicating a correlation between the respective gene 
sets and our dataset (Supplementary Table S1). In half of these 
gene signatures, the CE compromised ≥ 30% of our significantly 
changed proteins after sleep deprivation.

From the GO collections, such notable enriched gene sets were 
the regulation of the protein catabolic process, transmembrane 
receptor protein serine-threonine kinase signaling pathway and 
muscle structure development in the GO biological process cate-
gory, vesicle membrane, (plasma) membrane protein complex and 
endoplasmic reticulum lumen in the GO cellular compartment 

category, and growth factor binding in the GO molecular function 
category. In the cell type signature gene sets collection, the CE of 
a gene set associated with skeletal muscle endothelial cells con-
sisted of almost half of our DEPs. They also compromised a third 
of the CE of a gene set related to the up-regulated genes in ana-
plastic thyroid carcinoma (compared to normal thyroid tissue).

With one of our main focuses being on the altered biological 
processes caused by sleep deprivation, we looked further into 
those gene sets: 6 of the 24 significantly enriched signatures were 
part of the GO biological process collection and the most abun-
dant protein from our list of significantly changed proteins within 
the CE of these gene sets was LRP1, as part of the CE in four of the 
six gene sets. PCSK9, ITGB1, and LTBP1 were each involved in two 
of the six gene sets.

The 66 DEPs after 6 hours of sleep deprivation 
gave a signature related to the protein profile of 
moderate OSA
Testing the distribution of the gene signature of our 66 DEPs 
after sleep deprivation within PXD032734 from Cheng et al. 2022 
revealed that it was significantly enriched in the phenotype mod-
erate OSA (p-value < .01), but not in the other two phenotypes, mild 
and severe OSA. In the moderate condition, 15 of our 66 signifi-
cantly changed proteins compromised the core of the gene signa-
ture that accounted for the enrichment signal (Figure 3). The shift 

SwissprotID Gene 
symbol

 Protein name P-value Fold-change 
(log2)

# of 
peptides

P02649 APOE Apolipoprotein E .0374 1.016 24

Q13093 PLA2G7 Platelet-activating factor acetylhydrolase .0376 1.091 3

P02776 PF4 Platelet factor 4 .0390 1.016 4

P00748 F12 Coagulation factor XII .0395 1.015 21

P13473 LAMP2 Lysosome-associated membrane glycoprotein 2 .0411 1.040 4

P02765 AHSG Alpha-2-HS-glycoprotein .0416 1.022 13

P00734 F2 Prothrombin .0425 1.016 37

P51884 LUM Lumican .0430 1.020 13

P02753 RBP4 Retinol-binding protein 4 .0434 1.016 12

Q9NZP8 C1RL Complement C1r subcomponent-like protein .0441 1.024 11

Q92859 NEO1 Neogenin .0444 1.070 3

P02749 APOH Beta-2-glycoprotein 1 .0451 1.020 21

P05155 SERPING1 Plasma protease C1 inhibitor .0457 1.020 21

Q12913 PTPRJ Receptor-type tyrosine-protein phosphatase eta .0469 1.125 5

P02766 TTR Transthyretin .0469 1.021 11

O00391 QSOX1 Sulfhydryl oxidase 1 .0482 1.025 20

Q8NBP7 PCSK9 Proprotein convertase subtilisin/kexin type 9 .0484 1.052 6

Downregulated proteins (3)

Q9NWX6 THG1L Probable tRNA(His) guanylyltransferase .0332 0.962 1

O00187 MASP2 Mannan-binding lectin serine protease 2 .0380 0.969 12

P0DJI8 SAA1 Serum amyloid A-1 protein .0420 0.927 4

All significantly changed proteins in human serum after 6 hours of sleep deprivation with no more than four missing values (out of 16), up- (63) and 
downregulated (3) with p-values ≤ .05. Each protein is listed with their SwissProtID, gene symbol and protein name. The fold-change (log2) shows the degree of 
change in the protein concentration in the sleep deprivation samples compared to the control samples. The number of peptides indicates how many peptides 
have been found for the respective protein. Proteins that have been identified by two or more peptides are shown in italics. The adjusted p-values after the 
Bonferroni correction, as well as after the less strict Benjamini-Hochberg correction, were all non-significant, which is why they are not listed here. This was to be 
expected due to the low sample size of this pilot study and the large number of proteins tested in the analysis.

Table 1. Continued

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpae042#supplementary-data
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of the hits toward the left shows the positive correlation between 
the upregulated proteins of the moderate OSA condition and our 
DEPs after sleep deprivation, which were also mostly upregulated. 
Two of the fifteen proteins of the CE, APOH, and TTR, were also sig-
nificantly upregulated (p-value ≤ .05) in moderate OSA versus con-
trol when testing the PXD032734 data in an unpaired t-test in R.

When testing the distribution of our gene signature in the data-
set from Becker et al. 2014, the enrichment was not significant. 
However, an overlap of five of the nine proteins of the core enriched 
genes from Becker et al. 2014, with the CE proteins from Cheng et 
al. 2022 could be observed: RBP4, AHSG, APOH, TTR, and IGFBP5.

Our gene signature was also not significantly enriched within 
the GSE98582 sleep deprivation data from Uyhelji et al. 2018. 
However, when testing the gene signature within the data of 
timepoint 6 (14 hours of sleep deprivation), the family-wise error 
rate (the probability of making at least one error among all the 
tests conducted) and, therefore, corrected for MHT, was the low-
est (0.144) of all the timepoints and the enrichment plot of the 

GSEA showed a trend toward a positive correlation of the upreg-
ulated proteins of the sleep deprivation condition and our gene 
signature (Supplementary Figure S1).

Discussion
In this study of human blood serum, out of 494 proteins, 66 were 
found to be differentially expressed after 6 hours of sleep depriva-
tion at night, 63 upregulated and three downregulated. We suggest 
that these proteins could serve as biomarkers for sleep deprivation 
and be considered as a part of a protein signature for OSA.

Sleep deprivation of 6 hours at night affects 
coagulation, hemostasis, platelet, and 
endothelial function
The use of systems biological databases enabled us to find pos-
sible clinically relevant trends in cellular and molecular changes 
reflected in serum level changes of DEPs in our dataset. Both 

Figure 2.  Protein-protein interaction (PPI) network of the significantly differentially expressed proteins after 6 hours of sleep deprivation. Each node 
in the figure represents a protein described with its gene symbol and the lines between the boxes represent physical or functional protein-protein 
interactions. The different shades of the nodes represent the respective degree of fold-change (log2) of the protein after 6 hours of sleep deprivation 
at night (higher saturation corresponds to a higher fold-change). PPI enrichment score p-value < 1.0e-16. The network was created using STRING 
database version 12 and modified in Cytoscape version 3.9.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpae042#supplementary-data
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findings from Webgestalt and ClueGO (Cytoscape) indicate a 
change in the biological processes of wound healing and coag-
ulation after sleep deprivation. In our study, APOH, KNG1, and 
SERPING1 were upregulated after sleep deprivation and were all 
involved in the wound healing ClueGO term as well as the top 
5 enriched biological processes in Webgestalt ranked by the sig-
nificance level and that relate to the categories of protein acti-
vation cascade, platelet degranulation, blood coagulation, and 
hemostasis. KNG1 was also found to be significantly upregulated 
in the serum of adults with OSA [30] and strongly expressed in 
the serum of rats in chronic sleep deprivation [31]. Kininogen 1 
(KNG1) is a proinflammatory mediator that is essential for the 
intrinsic blood coagulation pathway and its higher expression 
has been associated with several cardiovascular diseases such as 
pulmonary artery hypertension and thrombosis [32–34] as well as 
neurodegenerative diseases such as Alzheimer’s and Parkinson’s 
disease [35–37]. Serpin Family G Member 1 (SERPING1), also 
increased in the present study, exhibits protease inhibitory activ-
ity and thereby negatively regulates coagulation, complement 
activation, and vascular endothelial permeability [38] and it was 
also found to be related to chronic sleep deprivation and cardio-
vascular function [31]. However, in our previous study, Bjørkum 
et al. 2021, SERPING1 was decreased. This was in line with two 
earlier reports by Thompson et al. 2010 after 6 hours of sleep dep-
rivation [39] and by Becker et al. 2014, in urine from a pediatric 
OSA study. We have seen discrepancies in both our own and other 
studies regarding the possible biomarkers for sleep deprivation 
most likely due to different sleep deprivation protocols and sleep 
disorders resulting in a different amount of lack of sleep, comor-
bidities, preanalytical and methodological issues as well as the 
measurement of the gene transcripts or proteins in different tis-
sues or body fluids. However, the only solution is to repeat and 
continue to try to nail down the real effects of sleep deprivation 
in these different contexts for being able to have more certainty 
over time to reveal the affected cellular and molecular changes 
after sleep deprivation in different cells and tissues as well as in 
body fluids such as serum, which is one of the most used clinical 
analytical specimens.

Two other proteins, Prothrombin (F2) and Platelet factor 4 (PF4), 
which were both involved in four of the top 5 enriched biological 
processes in Webgestalt and the wound healing term in ClueGO, 
were also found to be significantly upregulated in the proteomic 
profiles of patients with insomnia [40]. Our results match those 
of another insomnia study where PF4 was again significantly 
overexpressed in patients with insomnia compared to controls 

[41], and those from a study where sleep deprivation in rats led 
to higher release levels of PF4 and altered platelet activation [42]. 
Prothrombin (F2) plays a critical role in blood coagulation pro-
cesses as well as platelet activation and is activated by thrombin 
in the final enzymatic step of the coagulation pathway. That is 
also important, in addition to the coagulation process, in biologi-
cal processes such as inflammation and atherosclerosis [43]. The 
consequent massive thrombin generation holds a large risk of 
thromboembolic complications with high morbidity and mortal-
ity [44].

Sleep deprivation of 6 hours at night affects 
lipid- and cholesterol profile and transport
Analyses performed with ClueGO in the GO biological process 
category further showed altered cholesterol transport function 
after sleep deprivation. Altered lipid metabolism and compro-
mised lipid transport were shown to affect neurons and glial 
cells and they are bidirectionally linked to sleep duration and 
circadian rhythms [45]. Two of our significantly changed proteins 
that were associated with this ClueGO term, low-density lipo-
protein receptor-related protein 1 (LRP1) and proprotein conver-
tase subtilisin-kexin 9 (PCSK9), were also two of the four most 
abundant proteins of our DEPs after sleep deprivation within the 
CE of the GO biological process gene sets that were significantly 
enriched when testing our data in GSEA. The proprotein conver-
tase subtilisin-kexin nine is involved in systemic inflammation, 
endothelial dysfunction, and the development of cardiovascular 
diseases. Among other mechanisms, PCSK9 can bind to LRP1 to 
promote lipoprotein concentration [46]. Inhibitors of PCSK9 are 
used worldwide to treat hypercholesterolemia patients by low-
ering lipid concentrations as well as to reduce the incidence of 
atherosclerosis [47].

Our findings are also associated with changes in the immune 
responses/activation of inflammation associated with immune-
associated thrombosis events, atherosclerosis, or cardiovascular 
diseases. In addition, low-density lipoprotein receptor-related 
protein 1 (LRP1) is also a major receptor for APOE, which was 
among our DEPs after sleep deprivation, and is involved in 
Aβ clearance and turnover in the brain as well as connected 
to Alzheimer’s disease in which Aβ accumulation is one of the 
pathological hallmarks [48]. Apolipoprotein E (APOE) transports 
triglycerides and cholesterol in multiple tissues and, thereby, 
plays an essential role in lipoprotein metabolism. High plasma 
levels of APOE appear to be associated with a higher risk of 

Table 2.  Top Five Enriched Biological Processes of the 66 Significantly Changed Proteins

Biological process Enrichment ratio (ER) Proteins involved (gene symbol)

Protein activation 
cascade

36.8 APOH, C1RL, CFD, CFHR1, CFHR4, CLU, GP1BA, F2, F12, 
FBLN1, KNG1, MASP2, SERPING1

Platelet 
degranulation

30.8 AHSG, APOH, CD9, CFD, CLU, HRG, ITGA2B, ITIH3, KNG1, 
LAMP2, MMRN1, PF4, QSOX1, SERPING1, THBS1

Blood 
coagulation

13.7 APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, 
KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1

Coagulation 13.6 APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, 
KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1

Hemostasis 13.5 APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, 
KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1

The processes are sorted by the highest enrichment ratio (ER). The ER describes the proportion of proteins in our dataset of 66 proteins that belong to a particular 
biological process divided by the proportion of genes in the background set that belong to the same process. The respective associated significantly changed 
proteins after sleep deprivation are listed with their gene symbols. FDR ≤ 0.05 for all biological processes (values given in Cytoscape per default).
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Table 3.  Gene Ontology (GO) Biological Process, Cellular Component, Molecular Function and Immune System Process Groups of the 
66 Significantly Changed Proteins

Group # of 
terms

% of 
terms

Most represented term P-value # of 
proteins

Associated proteins (gene symbols)

GO biological process

Group11 63 43.15 Wound healing 1.75 ⋅ 10−14 20 APOE, APOH, CD9, CNTN1, F12, F2, FBLN1, GP1BA, HRG, 
ITGB1, KNG1, MMRN1, PF4, PF4V1, PROZ, S100A8, 
SAA1, SERPING1, THBS1, TSKU

Group10 38 26.03 Cholesterol transport 2.40 ⋅ 10−8 9 APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1, PCSK9, 
TSKU

Group9 10 6.85 Positive regulation of wound 
healing

2.52 ⋅ 10−7 7 APOH, CNTN1, F12, F2, HRG, ITGB1, THBS1

Group8 9 6.16 Cholesterol transport 2.40 ⋅ 10−8 9 APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1, PCSK9, 
TSKU

Group7 8 5.48 Cholesterol transport 2.40 ⋅ 10−8 9 APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1, PCSK9, 
TSKU

Group6 7 4.79 Negative regulation of 
endothelial cell migration

1.73 ⋅ 10−3 4 APOE, APOH, HRG, THBS1

Group5 4 2.74 Regulation of transforming 
growth factor beta1 
production

4.69 ⋅ 10−4 4 LTBP1, LUM, THBS1, TSKU

Group4 2 1.37 Acute inflammatory 
response

4.01 ⋅ 10−5 7 AHSG, CNTN1, F12, F2, S100A8, SAA1, SAA4

Group3 2 1.37 Vascular associated smooth 
muscle cell proliferation

1.04 ⋅ 10−2 3 DBH, IGFBP5, MMP2

Group2 1 0.68 Complement activation 8.47 ⋅ 10−5 7 C1RL, CFD, CFHR1, CFHR4, CLU, MASP2, SERPING1

Group1 1 0.68 Cell adhesion mediated by 
integrin

5.88 ⋅ 10−3 4 HRG, ITGA2B, ITGB1, MMRN1

Group0 1 0.68 Cysteine-type 
endopeptidase inhibitor 
activity

1.20 ⋅ 10−2 3 AHSG, HRG, KNG1

GO cellular compartment

Group6 8 40.00 High-density lipoprotein 
particle

5.02 ⋅ 10−17 10 APOA4, APOB, APOE, APOH, APOM, CLU, LCAT, PLA2G7, 
SAA1, SAA4

Group5 5 25.00 Vesicle lumen 9.14 ⋅ 10−13 16 AHSG, APOB, APOH, CFD, CLU, DBH, HRG, ITIH3, KNG1, 
MMRN1, PF4, QSOX1, S100A8, SERPING1, THBS1, TTR

Group4 3 15.00 Extracellular matrix 1.42 ⋅ 10−23 28 ADAMTSL4, AHSG, APOA4, APOE, APOH, CLU, CNTN1, 
COL6A3, F12, F2, FBLN1, GP1BA, HRG, HSPG2, KNG1, 
LTBP1, LUM, MMP2, MMRN1, PCOLCE, PF4, S100A8, 
SERPING1, SPARCL1, SSC5D, TGFBI, THBS1, THBS4

Group3 1 5.00 Ficolin-1-rich granule 
membrane

1.54 ⋅ 10−3 3 CD93, CLU, LAMP2

Group2 1 5.00 Blood microparticle 5.04 ⋅ 10−11 11 AHSG, APOA4, APOE, C1RL, CFHR1, CLU, F2, HRG, 
ITGA2B, KNG1, SERPING1

Group1 1 5.00 Platelet dense granule 1.73 ⋅ 10−4 3 APOH, ITIH3, LAMP2

Group0 1 5.00 Endoplasmic reticulum 
lumen

 6.51 ⋅ 10−16 18 ADAMTSL4, AHSG, APOA4, APOB, APOE, CALU, CLU, 
COL6A3, F2, IGFBP5, KNG1, LTBP1, PCSK9, PROZ, 
QSOX1, SERPING1, SPARCL1, THBS1

GO molecular function

Group11 11 33.33 Lipoprotein particle receptor 
binding

4.17 ⋅ 10−8 6 APOB, APOE, CLU, HSPG2, LRP1, PCSK9

Group10 7 21.21 Lipoprotein particle receptor 
binding

4.17 ⋅ 10−8 6 APOB, APOE, CLU, HSPG2, LRP1, PCSK9

Group9 2 6.06 Opsonin binding 2.42 ⋅ 10−5 4 CD93, CFHR1, CFHR4, MASP2

Group8 2 6.06 Fibronectin binding 2.42 ⋅ 10−8 6 FBLN1, IGFBP5, ITGB1, MMP2, SSC5D, THBS1

Group7 2 6.06 Apolipoprotein binding 7.09 ⋅ 10−4 3 LCAT, LRP1, PCSK9

Group6 2 6.06 Serine-type endopeptidase 
activity

1.08 ⋅ 10−9 13 C1RL, CFD, CNTN1, COL6A3, F12, F2, HRG, ITIH3, 
MASP2, MMP2, PCSK9, PROZ, SERPING1

Group5 2 6.06 Heparin binding 6.03 ⋅ 10−11 12 APOB, APOE, APOH, F2, HRG, KNG1, PCOLCE, PF4, 
PF4V1, SAA1, THBS1, THBS4
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ischemic heart disease, possibly mediated by triglyceride-rich 
lipoproteins [49]. APOE is also closely related to the nervous 
system and the regulation of expression has important connec-
tions to several neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, and multiple sclerosis. However, 
many associations between APOE and the risk of pathogenesis 
in those diseases remain unclear [50].

Sleep deprivation of 6 hours at night affects 
immune- and cell-proliferating mechanisms
Of all the DEPs after 6 hours of sleep deprivation, the protein 
ADAMTSL4 showed the highest fold-change compared to the 
control condition. ADAMTS-like (ADAMTSL) proteins are secreted 
glycoproteins residing in the extracellular matrix that have cru-
cial roles in major biological pathways reflected in evolutionary 
conservation [51]. ADAMTSL4 was significantly increased in our 
study and is strongly associated with immune-related biologi-
cal processes in glioblastoma multiforme (GBM, WHO grade IV), 
making it a promising prognostic biomarker for primary GBM [52]. 
Evidence has been provided that ADAMTSL4 also has the poten-
tial to serve as a diagnostic and prognostic indicator for Burkitt 
lymphoma, one of the most aggressive forms of non-Hodgkins 
lymphomas [53]. Hong et al. 2023 showed that ADAMTSL4 was 
expressed at higher levels in thyroid cancer [54]. In alignment 
with the results from Hong et al. 2023, we found a gene signa-
ture of anaplastic thyroid carcinoma to be significantly enriched 
within our dataset of 494 proteins using GSEA. From our DEPs, 
two other interesting proteins were found in the CE of this gene 
set: ENO1 and ITGB1. Alpha-enolase (ENO1) is a multifunctional 
oncoprotein whose overexpression can be observed in a variety of 
cancer types and that makes it an important cancer biomarker 
[55]. ENO1 enhances processes such as cancer cell proliferation 
and invasiveness via different signaling pathways [56]. As a sub-
family of integrins (cell surface receptors), integrin-beta 1 (ITGB1) 
also plays an important role in cancer. The ITGB1-induced 

focal adhesion kinase pathway causes the upregulation of anti-
apoptotic proteins and is associated with critical processes such 
as migration and angiogenesis in several cancer types [57].

Therefore, an association of the overexpression of proteins 
such as ADAMTSL4, ENO1, and ITGB1 with various tumor pheno-
types indicates how sleep deprivation might affect tumor devel-
opment and progression.

Sleep deprivation of 6 hours at night can affect 
neuronal and muscular functions
Several gene sets (24) from the Molecular Signatures Database 
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb) were found 
to be significantly enriched in the sleep deprivation condition 
of our dataset of 494 proteins when testing them in GSEA. One 
enriched gene set from the GO biological process category was 
the transmembrane receptor protein serine-threonine kinase 
signaling pathway. Cyclin-dependent kinase-like 5 (CDKL5), 
which is a gene encoding a serine-threonine kinase, regulates 
neuronal migration, axonal growth, and synaptic development 
[58]. The characteristics of CDKL5 deficiency are severe sleep 
disruption [59] and sleep apnea [60]. The gene sets “protein cata-
bolic process” and “muscle structure development” from the GO 
biological process category, the gene set “growth factor binding” 
from the GO molecular function category and a gene set associ-
ated with skeletal muscle endothelial cells were also found to be 
enriched within our dataset.

Sleep deprivation of 6 hours at night versus 
OSA—comparison of proteomic datasets and 
single proteins
Moreover, our signature of DEPs after 6 hours of sleep depriva-
tion was found to be significantly enriched within the moderate 
pediatric OSA condition of the proteomic dataset from Cheng et 
al. 2022, indicating an overlap and correlation between their OSA 
dataset and our sleep deprivation dataset. In the present study, 

Group # of 
terms

% of 
terms

Most represented term P-value # of 
proteins

Associated proteins (gene symbols)

Group4 1 3.03 Cysteine-type 
endopeptidase inhibitor 
activity

2.86 ⋅ 10−3 3 AHSG, HRG, KNG1

Group3 1 3.03 Fibrinogen binding 3.16 ⋅ 10−6 3 CDH5, FBLN1, THBS1

Group2 1 3.03 Transforming growth factor 
beta binding

1.21 ⋅ 10−3 3 LTBP1, THBS1, TSKU

Group1 1 3.03 Collagen binding 3.71 ⋅ 10−6 6 ITGB1, LUM, PCOLCE, SPARCL1, TGFBI, THBS1

Group0 1 3.03 Integrin binding 3.45 ⋅ 10−5 7 CD9, FBLN1, ITGA2B, ITGB1, TGFBI, THBS1, THBS4

GO immune system process

Group2 5 71.43 Granulocyte chemotaxis 1.13 ⋅ 10−2 6 PF4, PF4V1, S100A8, SAA1, THBS1, THBS4

Group1 1 14.29 Antimicrobial humoral 
immune response 
mediated by antimicrobial 
peptide

2.47 ⋅ 10−2 4 F2, HRG, PF4, PF4V1

Group0 1 14.29 Complement activation 3.28 ⋅ 10−3 7 C1RL, CFD, CFHR1, CFHR4, CLU, MASP2, SERPING1

Functional analysis performed with the Cytoscape plug-in ClueGO. All p-values listed were adjusted for multiple hypothesis testing via Bonferroni correction 
(default setting in ClueGO) and p ≤ .05. The number of terms describes how many processes, components or functions are represented in each respective group 
of the GO category and the percentage of terms describes the relative representation of each group. Groups that have ≥ 20% of the terms assigned to them are 
marked in italics. The most represented term in every group of each GO category is the term with the greatest number of significantly changed proteins involved 
of all the terms in the group. The respective gene symbols of the proteins involved are listed in the associated proteins column. If there were multiple terms with 
the same number of proteins involved in a group, the term with the higher percentage of associated genes found in ClueGO was listed.

Table 3. Continued
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when testing our DEPs towards the OSA dataset, the CE was made 
up of 15 of our 66 DEPs of which some will be discussed in the fol-
lowing. Furthermore, Cederberg et al. 2022 used plasma to identify 
and quantify proteins assayed using the SomaScan aptamer-based 
multiplexed platform (SomaLogic Inc., Boulder, CO, USA), which 
utilizes aptamers and hybridization to quantify proteins from 
small amounts of human plasma, and found some of the respec-
tive assay proteins changed in OSA also related to pathways 
involving endothelial function, blood coagulation, and inflamma-
tory response which is in line with our findings in this pilot study.

From the 15 proteins, APOH and transthyretin (TTR) were 
also upregulated when testing the data from Cheng et al. 2022 
in an unpaired t-test in R. In addition, TTR was overexpressed in 
a study where they tested serum proteomic changes in adults 
with OSA [30], in which the APOH serum levels were signifi-
cantly higher in Chinese males with OSA and hypopnea [61]. 
Transthyretin (TTR) is a highly conserved protein that can bind 
to thyroid hormones and retinol-binding proteins, and plasma 
TTR is mainly secreted by the liver. Although TTR is negatively 

correlated with inflammation, cholesterol can bind to TTR and 
promote TTR aggregation/amyloid formation that contrib-
utes to oxidative stress and inflammation [62]. Furthermore, 
an independent association between OSA severity and higher 
total cholesterol were reported [63]. Apart from its carrier func-
tions, several functions of TTR in the nervous system have also 
been proposed and TTR levels were found to be elevated in the 
plasma and cerebrospinal fluid of neuronal pathologies such 
as frontotemporal dementia [64] and Parkinson’s disease [65]. 
However, the role of TTR in Alzheimer’s disease (AD) is contro-
versial as some studies report a protective role of TTR in AD 
[66].

COL6A3 was the protein with the highest rank of the 15 pro-
teins in the CE when ranking them with a tTest in GSEA, thereby 
being one of the most upregulated proteins of the moderate 
OSA condition of the Cheng et al. 2022 dataset. The extracellu-
lar matrix protein collagen VI isoform alpha 3 (COL6A3) has been 
reported to be involved in fibrosis and inflammation in adipose 
tissue and the upregulated expression of COL6A3 in adipocytes 

Figure 3.  Enrichment plot of our gene signature of significantly changed proteins within moderate OSA phenotype of the ranked dataset PXD032734 
from Cheng et al. 2022. The metric for ranking the proteins of the data were set to tTest within GSEA. The ranking causes the upregulated proteins of 
the moderate OSA condition to be on the left, the unchanged proteins in the middle, and the downregulated on the right. The vertical lines represent 
hits with proteins from our gene signature. The proteins of the core enrichment are listed with their gene symbols along with their rank.
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has been associated with insulin resistance [67]. Furthermore, 
COL6A3 was increased in osteosarcoma tissues and thought to 
create beneficial conditions for the development of tumors by 
contributing to the remodeling of the extracellular matrix as well 
as activating the PI3K/AKT pathway, which is one of the most 
important cancer-related pathways [68].

SAA1 was found in the CE of the OSA dataset from Becker et al. 
2014 and downregulated in our study. We also found SAA4 to be 
one of the significantly upregulated proteins after sleep depriva-
tion in our dataset. Sleep restriction was shown to increase Serum 
amyloid A (SAA) serum levels in healthy mice and humans, link-
ing sleep loss to some of its associated comorbidities such as obe-
sity and insulin resistance [69]. Study results vary regarding the 
connection between SAA and different neuronal diseases: SAA1 
was significantly downregulated in both the serum and skin of 
Parkinson’s disease patients [70], but there is also evidence that 
the continuous elevation of SAA is related to neuronal inflam-
mation and the development of amyloidosis which is a symp-
tom of Alzheimer’s disease [71]. However, in Bjørkum et al. 2021 
we found SAA4 to be downregulated, we reported in our Tab. 8 
that Maret et al. 2007 [72] and Thompson et al. 2010 too found 
SAA4 upregulated after 6 hours of sleep deprivation. Therefore, 
we concluded that most likely our previous measurement might 
have been more unreliable than the measurement in this study. 
Furthermore, Fibulin-1 (FBLN1) here in this dataset was downreg-
ulated but was increased in Bjørkum et al. 2021. Here, two other 
reports also went in the opposite direction regarding this protein, 
Thomson et al. 2010 found FBLN1 upregulated after 6 hours of 
sleep deprivation and Møller-Levet et al. 2013 found FBLN1 down-
regulated after 1 week of 5.7 hours of sleep per the 24 hours sleep 
deprivation protocol [73]. Therefore, as mentioned earlier, meth-
odological issues could possibly sometimes explain the discrep-
ancies in the changed level of mRNAs and proteins after sleep 
deprivation.

Complement factor H-related protein (CFHR4), which promotes 
complement pathway activation via binding to the C-reactive 
protein (CRP) [74], was also found to be significantly upregulated 
in the serum of patients with insomnia compared to the controls 
[41] and Multimerin 1 (MMRN1), which supports the adhesion of 
platelets and many other cell types, was highly related to chronic 
sleep deprivation in rats [31]. We also found both these proteins 
upregulated in this pilot study.

Retinol-binding protein 4 (RBP4) is a major transport pro-
tein of retinol (vitamin A) and is known to associate with TTR 
to form the retinol/RBP4/TTR complex that is released into 
the bloodstream [75]. Plasma levels of RBP4, which was also 
reported to be associated with APOH and insulin resistance 
[76], were higher in patients with OSA and positively correlated 
with visceral fat areas and triglyceride levels in those patients 
[77]. RBP4 was also significantly increased in the hippocampal 
transcriptional profiles of sleep-deprived rats compared to the 
control group [78]. With RBP4 being so closely linked to TTR 
and APOH, respectively, we observed all of them to be upregu-
lated after sleep deprivation.

The Serum Soluble Scavenger with 5 Domains (SSC5D) upreg-
ulated in our dataset is a member of the scavenger receptor 
cysteine-rich superfamily (SRCR-SF) that has essential roles in 
inflammation and immunity and is reported to be related to 
several cardiovascular diseases, and elevated serum levels of 
SSC5D were found to be significantly increased in patients with 
heart failure, making it a possible biomarker and therapeutic 
target [79].

In a recent study from 2023, 4 of the 15 proteins, APOH, F12, 
COL6A3 AND CFHR1, as well as F2, which was also among our 
DEPs after 6 hours of sleep deprivation, were downregulated in 
the serum of narcolepsy patients [80]. Although this is specula-
tive, it could be argued that it makes sense for these proteins to be 
downregulated in narcolepsy as it increases the total sleep dura-
tion during the day when we found them to be upregulated in a 
sleep-deprived setting.

Our results from some of the 15 proteins of the CE when testing 
our DEPs after sleep deprivation in the moderate OSA condition 
of the dataset from Cheng et al. 2022 suggest that improvements 
in sleep quality may reduce the levels of some of the previously 
discussed proteins that could be beneficial for the prevention 
of affected cellular mechanisms which, if repeated over time 
and maybe in the long run, lead to health complications such 
as insulin resistance, neuronal pathologies, hypertension, and 
inflammation.

Limitations
To validate our own data within related datasets has method-
ological limitations. In both OSA studies the participants were 
children [14, 28] and in the study from Becker et al. 2014, they 
used urine instead of serum samples. In the insomnia study by 
Uyhelji et al. 2018 gene transcripts were analyzed instead of pro-
teins in our study. In our study, the participants were exclusively 
female adults and there is evidence that suggests that females 
might have a higher degree of responsivity to sleep deprivation 
compared to males [81].

It is also important to acknowledge that our pilot study had 
only eight participants. However, we tried to validate our results 
in the context of larger datasets that have been published [14, 
28, 29]. Additionally, the participants underwent a short period, 
6 hours of sleep deprivation, during one single night. The pro-
teome changes in serum therefore might be limited. Our findings, 
in this pilot study only, provide indications of the possible cellular 
and physiological effects long-term or recurrent sleep deprivation 
might have over time.

In conclusion, our study was able to reveal another set of 
human serum proteins that were altered by sleep deprivation and 
could connect similar biological processes to sleep deprivation 
that have been identified before with slightly different methods 
applied in Bjørkum et al. 2021. Our results support our previous 
findings, in addition to results from other sleep-related studies, 
that sleep deprivation affects several biological functions based 
on DEPs classified into groups of proteins associated with regu-
lation, binding, or transport, and, thereby, also associates with 
protein changes that can be found in clinically relevant patho-
logical conditions like altered platelet function and coagulation, 
oxidative stress, impaired immune function, affected cardio-
vascular and neurodegenerative cellular mechanisms, and cell 
proliferation.
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