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Abstract

Aims/Hypothesis: Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains
unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate
combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular
sensor.

Methods: In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid
arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric
and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either
knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signal-
regulated kinase (ERK) phosphorylation and Ki-67 expression were investigated.

Results: Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the
vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were
induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was
significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE.

Conclusion: RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanical
stretching with and without AGEs. It may serve as a common molecular bridge between the two, accelerating vascular
remodeling. This study provides potential drug targets and novel therapeutic strategies for the treatment of vascular
diseases resulting from diabetes with hypertension.
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Introduction

Diabetes and hypertension are independent risk factors of

atherosclerosis. However, up to 70% of patients with type 2 and

up to 40% of patients with type 1 diabetes have arterial

hypertension [1,2]. The combination of diabetes and hypertension

may amplify or accelerate the development and progression of

atherosclerosis [3,4,5]. There may be a common cut-in point or

pathway between diabetes and hypertension related to the

accelerated vascular remodeling. If so, it would be very valuable

in the treatment of diabetes with and without hypertension.

Diabetes-related vascular injury is closely associated with the

deposition of advanced glycation end products (AGEs) as a result

of prolonged hyperglycemia through non-enzymatic reactions

between glucose and long-lived proteins (e.g. vessel wall collagen),

lipids, and nucleic acids in plasma and tissues [6,7,8]. These

modified proteins interact with AGE receptor (RAGE) to initiate

intracellular signaling, e.g. extracellular signal-regulated kinase

(ERK) activation [9]. This triggers altered vascular structure and

function, which accelerates the progression of atherosclerosis and

hypertension in diabetic patients or animals [10,11,12,13,

14,15,16].

Once hypertension occurs, hypertension-induced abnormal

biomechanical stretching becomes the predominant stimulus

[17,18,19]. Hypertension increases cyclic strain stress on the

arterial walls by as much as 30%, which induces VSMC

hypertrophy and hyperplasia [17,18,19,20,21,22,23]. This leads

to continuously elevated peripheral vascular resistance and the

formation of macrovascular neointima. The saphenous vein
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conduits used for coronary artery bypass surgery (CABG) in

patients with ischemic heart disease also endure rapidly increased

arterial pressure resulting in vein graft occlusive disease in nearly

half of the conduits within 10 years. Patients with diabetes are

particularly at risk [20]. This implies that arteries and vein bypass

grafts in diabetic subjects with hypertension experience combined

stimulation from AGEs due to prolonged hyperglycemia and cyclic

stretching induced by increased blood pressure [6,7,15,16,17,

18,19,21,22,23,24,25]. To date, the underlying mechanism by

which this combined stimulation triggers accelerated vascular

remodeling remains unclear [5,26].

Murine venous bypass graft atherosclerosis in vivo and cell

signals induced by mechanical cyclic stretching in vitro are two very

important models, which permit mechanistic study of neointimal

formation and its relationship with hypertension with and without

different metabolic disorders [15,22]. Certain well-known chem-

ical materials (e.g. hormones, AGE, and drugs) can specifically

bind to their receptors, triggering activation of individual signal

pathways. However, to date, no data are available regarding the

presence of any specific mechanoceptors existing in cells in

response to mechanical stress. The means by which the vascular

cells sense and transduce mechanical stimulation into intracellular

biochemical signals and which receptors mediate those signals

remains unclear.

Several previous studies have indicated that some transmem-

brane receptors e.g. PDGFa-receptor in VSMCs, angiotensin II

type 1 receptor in cardiocytes, and FLK-1 and integrins in

endothelial cells can be directly activated by mechanical stress as

mechanoceptors [23,27,28], resulting in increased ERK phos-

phorylation and cell proliferation [29]. Assuming that RAGE is

one kind of transmembrane receptor present in VSMCs, we

proposed that RAGE would be a common sensor, capable of

simultaneously mediating signals induced by mechanical stretching

and AGEs, contributing to vascular remodeling in patients with

diabetes and hypertension. In the present study, we determined

the impact of diabetes with hypertension on vein graft neointimal

formation and that its mechanism involves the RAGE/ERK signal

pathway. This study provides new targets for drug development

and new strategies for the prevention and treatment of vascular

diseases in diabetes patients with hypertension.

Methods

An expanded methods section is available in Data S1.

Experimental animals
All animal procedures were consistent with the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals and approved by the Animal Care and Use Committee of

Sun Yat-sen University and similar to the protocols described

previously [25,29,30,31]. In brief, three-month-old male C57BL/

6J mice were purchased from the animal facility center of Sun Yat-

sen University (Guangzhou, China) and maintained on a light/

dark (12/12 h) cycle at 24uC and received food and water ad

libitum before experimentation.

Vein grafting of diabetic mice in vivo
The mice were used as donors and recipients for vein grafts

(N = 50, respectively) and divided into a non-diabetic vein graft

group and a diabetic vein graft group. The induction of

experimental diabetes was similar to that described by Zauli

[30]. The recipients received seven consecutive daily intraperito-

neal injections of 50 mg/kg streptozotocin (STZ) (Sigma) (diabetic

mice, D mice) or citrate buffer (nondiabetic mice, ND mice)

(N = 25, respectively). Blood glucose concentrations were mea-

sured a week later and hyperglycemia (blood glucose level

.16 mmol/L) was confirmed in the diabetic group (N = 24).

The mice were subjected to vein graft surgery in a manner similar

to that described previously [25,32]. In brief, the right common

carotid artery of the recipient was mobilized from the thoracic

inlet to the bifurcation, divided at its midpoint, inverted over the

polyethylene cuff and fixed with 8-0 silk sutures. The supradia-

phragmatic vena cava from an isogenic littermate donor mouse

was harvested and sleeved over the 2 cuffs and ligated as an

interposition graft. Vigorous pulsations confirmed successful

engraftment.

For histological analysis, perfusion was performed as described

previously [25]. After the mice were placed under anesthesia using

pentobarbital sodium (50 mg/kg body weight, i.p.), blood was

collected from each mouse’s left atrium for AGE measurement by

spectroscopy [33] (Varian, California, U.S.). Samples were

perfusion-fixed with 0.9% NaCl and 4% paraformaldehyde. The

vein grafts were harvested at 0, 4, and 8 weeks after the operation

and paraffin-embedded (N = 7, respectively) [25]. Sample sections

7 mm thick were stained with hematoxylin and eosin (HE) and

examined microscopically (Carl Zeiss, Oberkochen, Germany).

The thickness of the grafted vessel wall, including the distance

between the lumen intima and adventitia, was determined by

measuring four regions of each cross-section.

Immunohistochemical staining
Procedures were in accordance with the protocols provided by

Abcam (www.abcam.com/technical). Briefly, serial paraffin-em-

bedded sections were stained with a smooth muscle actin antibody

(1:200, Sigma-Aldrich, St. Louis, U.S.), AGE antibody (1:200,

Abbiotec, San Diego, U.S.), or RAGE antibody (1:100, Santa

Cruz, California, USA) or Ki-67 antibody (1:100, Santa Cruz) or

phosphorylated ERK1/2 (pERK1/2) antibody (1:200, Cell Signal

Tech., Inc., U.S.). The sections incubated with horseradish

peroxidase (HRP)-conjugated secondary antibody were developed

with chromogen (3,39-diaminobenzidine, DAB) (brown) and

counterstained with hematoxylin (blue). They were then inspected

and photographed using visible light microscopy (Carl Zeiss,

Oberkochen, Germany). The sections with TRITC-conjugated

secondary antibody were counterstained with 49, 6-diamidino-2-

phenylindole (DAPI) (blue). They were inspected and photo-

graphed using fluorescence microscopy (Olympus, Tokyo, Japan).

Nuclei and Ki-67-positive cells were counted and analyzed. Active

proliferating cells were identified by Ki-67-positive staining, and

the proliferation index was calculated as the percentage of active

proliferating cells versus the total cell count.

Cell culture
VSMCs were isolated by enzymatic digestion of aorta of

C57BL/6J mice using a modification of the procedure as

described previously [29,31]. The isolated cells grown in silicone

elastomer-bottomed, gelatin-coated 6-well culture plates were

cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Life

Technologies, California, U.S.) supplemented with 10% fetal calf

serum, penicillin and streptomycin at 37uC in a humidified

atmosphere of 5% CO2.

AGE preparation
AGEs were prepared in a manner similar to that described by

Kim [34]. In brief, 1 mM fatty acid-free BSA was dissolved in PBS

with 0.5 M glucose and incubated under sterile condition for 8

weeks at 37uC. Reaction mixtures were dialyzed against

phosphate-buffered saline (PBS) to remove free glucose and then
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passed through a specific column (Pierce, Illinois, U.S.) to remove

any endotoxins. Non-glycated control BSA was subjected to the

same conditions except that glucose was omitted. AGEs were

identified by fluorescence spectrophotometry [33].

Cyclic strain stress
Treated VSMCs were subjected to cyclic stretch stress as

described previously [29,35]. Serum-starved VSMCs achieving

70% confluence were subjected to cyclic stretch stress with a

computer-controlled cyclic stress unit [35]. Cyclic deformation (60

cycles/min) achieving 5% to 20% elongation in elastomer-

bottomed plates was performed with and without AGEs.

Cell treatment
RAGE small interfering RNA (siRNA-RAGE)-treated VSMCs

were serum-starved and subjected to cyclic stretching with and

without AGEs. They were then harvested for Western blot analysis

and immunocytochemical staining to assess of Ki-67 expression

(see below). We used procedures provided by Origene to establish

stable VSMC lines expressing RAGE. Resistant monoclonal cells

selected by G418 were used for the corresponding experiment.

Western blot analysis
Procedures were similar to those described previously, with

slight modifications [29]. Treated VSMCs were harvested in lysis

buffer using protease inhibitors. The lysate suspension was

centrifuged and protein concentration was assessed using a Bio-

Rad protein assay. Heat-denatured proteins were resolved by

SDS-PAGE and electrophoretically transferred onto nitrocellulose

membranes. These were probed with antibodies against phos-

phorylated ERK1/2 (pERKs) and RAGE and reprobed with b-

actin antibody. The bands were visualized using the enhanced

chemiluminescence (ECL) detection system. The intensity was

quantitated using densitometry.

RNA interference
The procedures used for this experiment were similar to that

described by Villacorta [36]. The RAGE small interfering RNA

(siRNA-RAGE) target duplex sequences [NM_007425] (Sense: 59-

GAGACACCCUGAGACGGGACUCUUU-39; Antisense: 59-

AAAGAGUCCCGUCUCAGGGUGUCUC-39) were synthe-

sized by Invitrogen (Carlsbad, U.S.). A non-targeting siRNA

duplex sequence (Invitrogen StealthTM RNAi) was used as a

negative control. VSMCs transfection was performed according to

the manufacturer’s recommendations. Serum-starved VSMCs

were subjected to cyclic stretch stress in the absence or presence

of AGEs for 10 minutes for Western blot analysis or for 1 hour.

They were cultured for an additional 24 hours for immunocyto-

chemical staining.

Statistical analysis
All analyses were performed with SPSS 16.0 (SPSS Inc,

Chicago, U.S.). Continuous variables are given as mean 6 SEM

and categorical variables are given as actual numbers and

percentages. ANOVA was used for continuous variables and

chi-square and Fisher exact tests were used for categorical

variables. There were no missing values, and P values were

adjusted for multiple comparisons of data with either the Scheffé

or modified Bonferroni method. P values,0.05 were considered

significant.

Results

Diabetic vein grafted model
Blood glucose levels in STZ-injected mice (D mice) were

significantly increased compared to those in citrate buffer-injected

mice (ND mice) (blood glucose in D mice with vein grafts at 0, 4,

and 8 weeks were 23.5361.29, 25.5661.84, and 26.2661.34

versus time-matched ND mice 6.8060.76, 6.9160.92, and

6.7460.79, respectively, P,0.05). Blood glucose levels showed a

slight increase over time in D mice but there were no significant

differences. Twenty-four mice from the D group and the same

number of mice from the ND group received a vein-grafted

operation. Turgor vitalis and vigorous pulsations of vein grafts

confirmed successful engraftment. At the point of euthanasia, data

from surviving mice in each group (N = 7) were collected for

statistical analysis.

Effects of combined increases in blood pressure and
blood glucose on neointima formation in mouse vein
grafts

Histological examination of all vein graft cross-sections was

performed on HE-stained sections. Each subject showed a

complete and circumferentially viable vein graft with a patent

lumen. The vena cava of both ND and D mice showed that

normal vein structure consists of intima (a monolayer of

endothelial cells), media (a single or double layer of smooth

muscle cells), and adventitia with a small amount of connective

tissue (Figures 1A-ND0w and 1B-D0w). The vein grafts taken from

ND mice at 4 and 8 weeks showed significantly thickened vessel

walls (e.g. up to 10 or 20 layers of cells and increased matrix

protein accumulation) (Figures 1C-ND4w and 1E-ND8w). A

marked increase in neointimal hyperplasia with various karyocytes

was observed in the vein grafts from D mice (Figures 1D-D4w and

1F-D8w) relative to time-matched vein grafts from ND mice. Most

of the cells in the vein grafts from both D and ND mice were

smooth muscle cells (Figure S1). These results indicate that

combined stimulation from rapidly increased blood pressure

(hypertension) and hyperglycemia (diabetes) had a significant

aggravated effect, promoting vein graft remodeling.

Effects of combined increases in blood pressure and
blood glucose on cell proliferation in mouse vein grafts

To determine whether the increased neointimal formation

mentioned above is directly associated with increased proliferation

of the vessel cells in intricate microenvironments, the vein grafts

were stained with antibodies against Ki-67, which is preferentially

expressed in the active proliferating cells but absent from resting

cells (G0 phase). Results demonstrated that Ki-67-positive cells in

the vein grafts of D mice (Figure 2B, 2D) were more numerous

than in time-matched vein grafts from ND mice (Figure 2A, 2C).

Notably, most of the Ki-67-positive cells were found in the

adventitia of the vein grafts of ND mice at 4 and 8 weeks

(Figures 2A-ND4w, and 2C-ND8w). More Ki-67 positive cells

were found in the vein grafts from D mice than in grafts from ND

mice, which were predominantly exhibited in the intima and

adventitia of the vein grafts at 4 weeks (Figure 2B-D4w) and in all

layers of the vessel wall at 8 weeks (Figure 2D-D8w). This indicates

that increased blood pressure and hyperglycemia may aggravate

vascular remodeling in different pathogeneses via increased

vascular cell proliferation. Furthermore, the proliferative effect

on cells closely linked to increased ERK phosphorylation in vein

grafts (Figure S3), consistent with results in vitro described below.

RAGE and Vascular Remodeling
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Effects of diabetic vein grafts on deposition of advanced
glycation end products (AGEs) and expression of AGE
receptors (RAGE)

Diabetes-induced vascular remodeling is closely associated with

increased deposition of AGEs in tissues resulting from increased

blood glucose. However, it is not clear whether increased AGE

deposition occurs in vein grafts. As shown in Figure 3A,

spectroscopic analysis indicated that characteristic fluorescence

intensity of AGEs in serum from D mice increased more than 2

times relative to that in serum from ND mice. Immunohisto-

chemical analysis also showed that a great number of AGEs were

deposited on the vessel wall of the vein grafts of D mice

(Figures 3C-D4w, and 3E-D8w), while very weak AGE signals

were detected in ND mice (Figures 3B-ND4w and 3D-ND8w).

Consistent with this, RAGE expression in the vein grafts of D mice

was significantly increased relative to ND mice (Figure S2). These

results imply that increased AGE/RAGE signals are closely

associated with increased vascular cell proliferation in the vein

grafts of D mice.

Effects of combined stimulation via mechanical
stretching and AGEs on activation of ERKs in VSMCs

Because VSMC proliferation plays a key role in neointimal

formation in vein grafts, we investigated the molecular mechanism

underlying the role of AGE/RAGE in VSMC proliferation. We

evaluated the effects of mechanical stretching and AGEs on the

activation of ERKs in VSMCs in vitro to imitate the vascular

remodeling that occurs in diabetic patients with hypertension in

vivo. Data showed that either AGEs or mechanical stretching alone

could induce some phosphorylation of ERK1/2 in a time-, dose-,

and elongation-dependent manner (Figures 4A, 4B, 4C). Further-

more, the level of ERK activation in the group treated with both

mechanical stretching and AGEs was higher than sum of either

single treatment (Figure 4D). These results suggest that the

combined stimulation with mechanical stretching and AGEs may

synergistically promote ERK activation.

Effects of RAGE on activation of ERK1/2 induced by
mechanical stretching and AGEs

It remains to be seen whether RAGE is involved in the

activation of ERKs induced by mechanical stretching with or

without AGEs. As expected, RAGE expression was elevated by the

presence of AGEs and by mechanical stretching (Figures 4I, 4J).

Neither pharmacological RAGE inhibitors nor RAGE-deficient

mice are commercially available, so we used siRNA-RAGE and

RAGE over-expression assays to evaluate the contribution of

RAGE to ERK1/2 activation. Figure 5A shows that VSMCs

transfected with siRNA-RAGE showed specifically suppressed

RAGE expression relative to siRNA controls. Significantly

reduced levels of ERK phosphorylation were induced by

mechanical stretching with and without AGEs (Figures 5B–5F).

Over-expression of RAGE significantly amplified the intracellular

signals initiated by mechanical stretching with and without AGEs

relative to normal VSMCs (Figures 5I–5L). These data suggest

that the process by which combined stimulation by mechanical

stretching and AGEs synergistically promotes activation of ERKs

is mediated via the RAGE signal pathway.

Effects of RAGE on increased Ki-67 expression induced by
mechanical stretching and AGEs

In the present study VSMCs transfected with siRNA-control

(SiC) or siRNA-RAGE (SiR) were treated by mechanical

stretching with or without AGEs, and then Ki-67 expression was

detected by immunocytochemical staining. Results demonstrated

that either AGEs (Figures 6A-d, -e, and -f) or mechanical

stretching (Figures 6A-g, -h, and -i) alone could induce some

increases in Ki-67 expression relative to negative controls (NC)

(Figures 6A-a, -b, and -c). However, combined stimulation with

both caused significant further increases in Ki-67 expression

(Figures 6A-j, -k, and -l). The increased Ki-67 expression induced

by mechanical stretching with and without AGEs was significantly

inhibited by SiR (Figures 6A-f, -i, and -l) relative to NC

(Figures 6A-d, -g, and -j) or SiC (Figures 6A-e, -h, and -k), which

had no visible effects on Ki-67 expression in VSMCs. Figure 6B

Figure 1. Representative photomicrograph of HE-stained
sections of mouse control veins and vein grafts. Under
anesthesia, the vena cava segments of mice were grafted into the
carotid arteries of (A, C, E) nondiabetic and (B, D, F) diabetic mice.
Animals were killed (A, B) 0, (C, D) 4, and (E, F) 8 weeks after surgery, and
the grafted veins were fixed in 4% phosphate-buffered (pH 7.2)
formaldehyde, embedded in paraffin, sectioned, and stained with HE.
Arrowheads and stars indicate the wall thickness and lumens,
respectively, of the (A, B) control vessel and (C–F) vein grafts. G shows
statistical graphs of wall thickness of vein grafts of different groups (0, 4,
and 8 weeks after operation). *P,0.05 versus normal control of ND
mice, #P,0.05 versus time-matched ND groups. Bar = 50 mm.
doi:10.1371/journal.pone.0035016.g001
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summarizes the statistical data related to the Ki-67 positive cell

ratio. These results suggest that RAGE may mediate significantly

increased VSMC proliferation induced by mechanical stretching

with and without AGEs.

Discussion

In diabetes patients and models, hyperglycemia may rapidly

alter the already warped vascular cell proliferation profile induced

by increased arterial blood pressure. This leads to accelerated

neointimal formation in mouse vein grafts. This altered prolifer-

ation profile is closely associated with increased AGE deposition

and RAGE over-expression in diabetic vein grafts. Our data show

that combined stimulation by mechanical stretching and AGEs has

significant synergistic effects on ERK activation and Ki-67

expression in VSMCs. While searching for an underlying

mechanism we found that RAGE mediates not only the individual

signals initiated by mechanical stretching and AGEs alone but also

the combined signals induced by both. In this way, RAGE

contributes significantly to the accelerated proliferation of

VSMCs. These findings could significantly contribute to under-

standing of the potential effects of hypertension-mechanical

stretching and diabetes-AGEs on vascular pathophysiology,

suggesting a new role for RAGE in the pathogenesis of

atherosclerosis.

Arteries exposed to sustained hypertension undergo marked

intimal and medial thickening. The veins that are used as bypass

grafts undergo similar histological changes [18,25]. This is why

vein grafts have been widely used as an indirect model of arteries

exposed to sustained hypertension, and a direct model of venous

bypass atherosclerosis in the diabetic setting [5]. Although a

significant increase in neointimal formation was noted in the

diabetic mouse vein grafts, no clear active cell proliferation profile

could be established for either diabetic or non-diabetic vein grafts

[5]. In this study, we found that rapidly increased blood pressure

Figure 2. Representative photomicrograph of Ki-67 immunohistochemically stained sections of mouse vein grafts. Paraffin-
embedded sections of the vein grafts of non-diabetic (Figures 2A-ND4w and 2C-ND8w) and diabetic (Figures 2B-D4w and 2D-D8w) mice killed 4
(Figures 2A-ND4w and 2B-D4w) and 8 (Figures 2C-ND8w and 2D-D8w) weeks after surgery were stained with primary Ki-67 antibody and TRITC-
conjugated (red) secondary antibody and counterstained with 49, 6-diamidino-2-phenylindole (DAPI) (blue). Arrowheads and asterisks indicate the
wall thickness and lumens, respectively, of the vein grafts (Figures 2A–2D). The red symbols indicate the Ki-67 antigens, while the blue symbols
indicate the nuclei of the vascular cells. Figure 2E shows a statistical graph of the proliferative ratio of the vessel wall cells in the vein grafts (mean 6
SEM) obtained from seven animals per group at each point in time. a, b, c, and d, P,0.05 versus ND4w, ND8w, ND4w, and ND8w, respectively.
doi:10.1371/journal.pone.0035016.g002
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may cause fewer cells to express Ki-67 in the adventitia of the vein

grafts in ND mice (15.1%). In diabetes, the active proliferating

profiles of the vascular cells change markedly. Significantly

increased numbers of active proliferating cells were found not

only in the adventitia but also in the intima of the grafted veins at

early stage (35.3%) (Figures 2A-D4w) and in all layers at a later

stage (53.5%) (Figures 2A-D8w). This eventually led to rapidly

increased neointimal formation (Figures 1A-D8w) relative to that

of time-matched ND mice. These results seem to tell us that the

vein grafts exposed to arterial blood pressure but not hypergly-

cemia may become arterialized vessels, while grafted veins exposed

to arterial blood pressure with hyperglycemia would rapidly

develop atherosclerosis.

The cause of the changed proliferation profiles of the vessel cells

in the vein grafts in D mice remains unclear. Our results suggest

that abundantly distributed AGEs in the serum and vessel walls

interact with increased RAGE and are closely associated with the

altered proliferation profiles. This is because numerous active

proliferating cells appeared at various sites that showed obviously

deposits of AGEs and elevated RAGE expression (Figures 3A-

D4w, -D8w and 3B, and Figure S2). This indicates that rapidly

increased blood pressure initiates cell proliferation in the

adventitia of the grafted veins. Increased AGE deposition or

RAGE expression may amplify these hypertension-induced signals

and eventually change the proliferation profiles of the vessel cells.

Hyperglycemia, AGE, and RAGE may play a pivotal role in

promoting the development and progression of atherosclerosis via

altered proliferation profiles of vascular cells in diabetic individ-

uals. These results suggest that hyperglycemia management and

RAGE inhibition are necessary before and after venous bypass

graft surgery in clinical settings.

The migration, proliferation and differentiation of VSMCs are

important to atherosclerosis. VSMCs are one of the most

predominant cell types in the vein grafts (Figure S1) [5,37,38].

The means by which the VSMCs sense and transduce the signals

initiated by mechanical stretching remains unknown. Previous in

vitro studies have indicated that some receptors on cardiovascular

cells, such as those on VSMCs, endothelial cells, and cardiomy-

ocytes, can be directly activated by mechanical stretching

[22,26,27]. These studies suggested that mechanical stretching

may activate all the receptors on the cell membranes in a non-

specific manner [22]. RAGE is a multiligand member of the

immunoglobulin superfamily. It is expressed at low levels in

vascular cells at homeostasis and is highly upregulated during

vascular pathology (Figure S2) [39,40]. RAGE activation in

neointimal formation in arterial injury has been reported

[41,42,43]. However, no prior reports are available concerning

AGE deposition or RAGE expression in mouse vein grafts. In the

present study, we proposed that the presence of AGEs may further

amplify mechanical stretch-activated RAGE signals in vascular

cells, accelerating pathophysiological consequences. Our results

strongly support this hypothesis. Levels of AGE deposition, RAGE

expression and ERK phosphorylation in D mice were found to be

notably elevated (Fig. 3, Figure S2, and Figure S3) compared with

that in ND mice, while either AGEs or mechanical stretching

could increase RAGE expression in VSMCs (Figures 4I and 4J).

Mechanical stretching and AGEs alone induced ERK activation

and proliferation of quiescent VSMCs, but co-treatment with both

triggered the highest levels (Figures 5–6). Stable over-expression of

RAGE in VSMCs significantly amplified the above-mentioned

effects (Figures 5I, 5J). In contrast, the suppression of RAGE

expression via siRNA-RAGE transfection caused significantly

decreased ERK activation and proliferation of quiescent VSMCs

(Figures 5A through 5H and Figure 6). These results suggest that

RAGE may mediate intracellular signals induced by mechanical

stretching with and without AGEs, indicating a novel role for

RAGE in vascular disease. Further study into RAGE and its

downstream molecules may provide new targets for drug

development.

Although the RAGE signal pathway plays a critical role in

mediating signals induced by mechanical stretching and AGEs,

other signal pathways also seem to affect VSMC proliferation. For

instance, the suppression of RAGE expression in VSMCs with

siRNA-RAGE transfection caused significant inhibition of VSMC

proliferation induced by AGEs, mechanical stretching, or both, to

Figure 3. Identification of AGEs in serum (spectroscopic
analysis) and vein grafts. Blood from the left atria of nondiabetic
(Figure 3A-3) and diabetic (Figure 3A-4) mice was collected and the sera
were separated for analysis of the characteristic fluorescence intensity
pike of AGEs via spectroscopy. Dialyzed AGE-BSA came from bovine
serum albumin (BSA) via incubation with high concentrations of
glucose (0.5 M) for 8 weeks was used as a positive control (Figure 3A-5).
PBS (Figure 3A-1) and BSA (Figure 3A-2) were used as negative controls.
The characteristic fluorescence intensity pikes of AGEs in the diabetic
serum were more than 2-fold relative to those observed in nondiabetic
serum. Paraffin-embedded sections of the vein grafts from non-diabetic
(Figures 3B-ND4w and 3D-ND8w) and diabetic (Figures 3C-D4w and 3E-
D8w) mice killed 4 (Figures 3B-ND4w and 3C-D4w) and 8 (Figures 3D-
ND8w and 3E-D8w) weeks after surgery were stained with primary AGE
antibody and HRP-conjugated (brown) secondary antibody and
counterstained with hematoxylin (blue). Significant AGE deposits
(brown) were observed in the vein grafts of diabetic mice (Figures 3C-
D4w and 3E-D8w). There were few brown deposits in the vein grafts of
nondiabetic mice (Figures 3B-ND4w and 3D-ND8w). Bar = 50 mm.
doi:10.1371/journal.pone.0035016.g003
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Figure 4. Effects of AGEs and mechanical stretching on phosphorylation of ERK1/2 in VSMCs. 80% confluent VSMCs were serum-starved
for 48 hours and treated with AGEs and/or mechanical stretching as indicated for 10 minutes. They were then harvested for Western blot analysis.
BSA was used as a negative control. Panels A and B show that AGEs induced ERK activation in VSMCs in a dose- and time-dependent manner. Panel C
shows that mechanical stretching induced ERK activation in VSMCs in an elongation-dependent manner. Panel D shows that combined stimulation
synergistically activated ERKs in VSMCs. Beta-actin served as an internal control. Graphs E, F, G, and H show the statistical results of phosphorylated-
ERK (pERK) levels (ERK activity) corresponding to Panels A, B, C, and D from three independent experiments. Both (Panel I) incubation with AGEs or
(Panel K) stimulation by mechanical stretching were found to elevate the expression of RAGE in a time-dependent manner. *P,0.05 versus negative
control (NC), #P,0.05 versus AGE or stretch stress (SS).
doi:10.1371/journal.pone.0035016.g004
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Figure 5. Effects of siRNA-RAGE and RAGE overexpression on the activation of ERK1/2 in VSMCs induced by stretch stress and AGE
incubation. Panel A: Cultured VSMCs transfected by siRNA-RAGE (SiR) for 24 hours and then serum-starved for additional 48 hours were harvested.
A siRNA-control (SiC) was used as a negative control. Graph E shows statistical results of RAGE expression from three independent experiments.
*P,0.05 versus SiC. The siRNA-pretreated VSMCs were treated with AGE (Panel B) or cyclic stretch stress (SS) (Panel C) or both (Panel D) for
10 minutes. They were then harvested for detection of ERK phosphorylation levels. Graphs F, G, and H show the statistical results of phosphorylated-
ERK (pERK) levels from three independent experiments. (I) Cells stably overexpressing RAGE were subjected to the same treatment and
corresponding pERK was detected (Panel K). Graph L shows the statistical results of pERK levels of Panel K from three independent experiments..
*P,0.05 versus individual negative control (NC) without stimulation by AGE and/or SS; #P,0.05 versus SiC or vector within a given group. LIP
represents Lipofectamine 2000. V represents cells transfected with empty vectors. R-F represents cells stably overexpressing full-length RAGE.
doi:10.1371/journal.pone.0035016.g005
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a statistically significant degree in all three groups. However,

siRNA-RAGE inhibited the proliferation rate of VSMCs in the

AGE-alone group more than in groups treated by mechanical

stretching or mechanical stretching with AGEs (Figure 6). One

explanation is the simultaneous, nonspecific activation of multiple

signal pathways in VSMCs initiated by mechanical stretching with

or without AGEs [22,23,27,28,40]. Another possibility is a

decrease in the efficiency of siRNA-RAGE due to too long a

treatment time after mechanical stretching with and without

AGEs. If either a RAGE inhibitor or RAGE-deficient mouse

model were commercially available, inhibition of venous graft

Figure 6. Effect of RAGE on VSMC proliferation (Ki-67 expression) induced by treatment of cyclic strain stress and/or AGEs. Cultured
VSMCs were transfected by siRNA-RAGE (SiR) (Figures 6A-c, f, i, and l), siRNA control (SiC) (Figures 6A-b, e, h, and k) or Lipofectamine 2000 (LIP)
(Figures 6A-a, d, g, and j) for 24 hours. They were then serum-starved for an additional 48 hours and treated with AGEs (Figures 6A-d, e, and f), cyclic
stretch stress (SS) (Figures 6A-g, h, and i), or both (Figures 6A-j, k, and l) for 1 hour and cultured for another 24 hours. Figures 6A-a, b, and c show the
negative control (NC). The cells were stained with primary Ki-67 antibody and TRITC-conjugated (red) secondary antibody and counterstained with
DAPI (blue). The red symbols indicate Ki-67 antigens, while the blue symbols indicate the nuclei of the VSMCs. Bar = 50 mm. Figure 6B shows a
statistical graph of ratio of Ki-67-positive cells from three independent experiments. *P,0.05 versus individual NC without stimulation of AGE and/or
SS; #P,0.05 versus individual treatment in AGE or SS groups; a, b, and c P,0.05 versus SiC within a given group.
doi:10.1371/journal.pone.0035016.g006
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atherosclerosis related to RAGE signal transduction could be

observed in vivo.

One limitation of this study is that the data collected from

mouse materials cannot be precisely extrapolated to human

clinical applications. However, these results should still be very

useful for further clinical investigations. Another limitation of this

study is that we were unable to characterize the cellular

composition of the active proliferating cells, though we evaluated

the proliferation index of the diabetic vein grafts relative to non-

diabetic vein grafts. Based on HE-staining results, we found more

cell types, including VSMCs, in the diabetic vein grafts. Using

double-label immunocytochemistry, Hilker et al. found that the

actively proliferating vessel cells in human bypass grafts mainly

included VSMCs (a-actin), endothelial cells (CD 31), macrophages

(CD 68), and T-lymphocytes (CD 45) as well as some unidentified

cells [38]. We previously reported that the progenitor cells in the

adventitia contribute to atherosclerosis of vein grafts in ApoE-

deficient mice [37]. Shi et al. reported that adventitial myofibro-

blasts contribute to neointimal formation in injured porcine

coronary arteries [44]. Which kinds of cell types contribute to the

pool of actively proliferating cells in the vein grafts exposed to

hypertension and hyperglycemia has yet to be fully determined.

Finally, the ERK/Ki-67 signal pathway is a very stable and

sensitive parameter of cell growth. It has been widely used in

AGE-related studies. We introduced it into our study in order to

emphasize the fact that RAGE mediates signals of mechanical

stretching with and without AGEs. RAGE activation may initiate

other important signal pathways related to vascular remodeling,

such as the inflammation, migration, and apoptosis pathways,

which need to be further investigated.

In the present study we demonstrated that significantly

accelerated neointimal formation in the vein grafts of STZ-

induced diabetic mice mainly resulted from increased numbers of

actively proliferating cells. This increase was initiated by both

hypertension-mechanical stretching and diabetes-induced AGE

deposition. This revealed the novel bridge role of RAGE in

mediating intracellular signals induced not only by hypertension-

mechanical stretching but also by AGEs. This led to synergistically

increased ERK activation and proliferation of VSMCs and

eventually accelerated venous bypass graft atherosclerosis

(Figure 7). In this way, blocking RAGE may simultaneously

decrease the deleterious effects of hypertension and diabetes.

These findings and further studies (e.g. inflammation, migration,

differentiation and apoptosis) may significantly advance current

understanding of the potential effects of simultaneous hyperten-

sion-mechanical stretching and diabetes-induced AGE deposition

on vascular pathophysiology. They may provide new drug targets

and new therapeutic strategies against vein graft failure and

primary vascular complications in hypertensive diabetes. This

study closes the gap between basic research and clinical

therapeutics (translational medicine).

Supporting Information

Data S1 An expanded methods section.

(DOC)

Figure S1 Predominant VSMCs in the vein grafts.
Paraffin-embedded sections of the vein grafts from (A, C) non-

diabetic and(B, D) diabetic mice killed (A, B) 4 and (C, D) 8 weeks

after surgery were stained with primary smooth muscle a-actin

antibody and TRITC-conjugated (red) secondary antibody and

counterstained with 49, 6-diamidino-2-phenylindole (DAPI) (blue).

Predominant VSMCs (red) were observed in the vein grafts.

Asterisks indicate the lumens of the vein grafts. Bar = 50 mm.

(TIF)

Figure S2 Increased expression of RAGE in the vein
grafts from D mice. Paraffin-embedded sections of the vein

grafts from (A, C) non-diabetic and(B, D) diabetic mice killed (A,

B) 4 and (C, D) 8 weeks after surgery were stained with primary

RAGE antibody and TRITC-conjugated (red) secondary antibody

and counterstained with 49, 6-diamidino-2-phenylindole (DAPI)

(blue). Significantly increased RAGE expressions (red) were

observed in the vein grafts from diabetic mice. Asterisks indicate

the lumens of the vein grafts. Bar = 50 mm.

(TIF)

Figure S3 Increased phosphorylation of ERKs in the
vein grafts from D mice. Paraffin-embedded sections of the

vein grafts from (A) non-diabetic and(B) diabetic mice killed 4

weeks after surgery were stained with primary phosphorylated-

ERK antibody and TRITC-conjugated (red) secondary antibody

and counterstained with 49, 6-diamidino-2-phenylindole (DAPI)

(blue). Significantly increased phosphorylation of ERKs (red) were

observed in the vein grafts from diabetic mice. Asterisks indicate

the lumens of the vein grafts. Bar = 50 mm.

(TIF)

Figure 7. Role of the RAGE signal pathway in the synergistic
effects of cyclic stretch stress and AGEs on ERK activation and
proliferation in VSMCs. Increased blood pressure can trigger rapid
increases in mechanical stretching on the walls of vein grafts. Stretch
stress causes deformation of the vascular cells (VSMCs) and non-
specifically activates RAGE and its downstream signal molecules, such
as ERK, leading to over-proliferation (Ki-67 expression) of the vascular
cells. Hyperglycemia can produce numerous AGEs. These modified
proteins are deposited on the vascular wall, where they directly and
specifically interact with RAGE and activate intracellular signaling
molecules, altering vascular structure and function. Blocking RAGE and
its downstream molecules may inhibit the synergistically accelerated
vascular remodeling induced by hypertension-stretch stress with and
without AGEs. Further investigations may provide new targets for drug
development and new strategies for the treatment and prevention of
vascular diseases, such as atherosclerosis, in diabetic patients.
doi:10.1371/journal.pone.0035016.g007
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