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Abstract

We compare the ability of shRNA and CRISPR/Cas9 screens to identify essential genes in the 

human chronic myelogenous leukemia cell line K562. We find that the precision of the two 

libraries in detecting essential genes is similar and that combining data from both screens 

improves performance. Notably, results from the two screens show little correlation, which can be 

partially explained by identification of distinct essential biological processes with each technology.

Efficient gene knockdown and knockout using RNAi1–3 and CRISPR/Cas9 systems4–8 allow 

for systematic evaluation of gene function, but it is unclear how the choice of technology can 

affect results. For example, heterogeneity of reagents has historically been associated with 

poor performance in RNAi-based screens9,10 and may also influence CRISPR/Cas9 deletion 

screens4,10 (Supplementary Fig. 1–3). Whereas the variability of shRNAs in RNAi screens 

stems from differences in knockdown efficiency10, variability of sgRNAs in CRISPR/Cas9 

screens likely stems from the array of genotypes (true knockouts, heterozygotes, and wild-

type cells) created4,10. Notably this depends on the efficiency of guide cutting as well as the 

relative fitness between these subpopulations. Other possible differences include interference 

by non-specific effects such as miRNA deregulation during RNAi11,12 or intrinsic 

differences between knockouts and knockdowns. These concerns, as well as others, 

necessitate a careful comparison between these techniques.

To directly compare the phenotypes obtained using CRISPR/Cas9 and shRNA-based 

screening technologies, we performed parallel screens in duplicate for genes affecting 

growth rates in K562 using both a 25 hairpin/gene shRNA library13 and a 4 sgRNA/gene 
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CRISPR/Cas9 library14. Briefly, sgRNA and shRNA libraries were lentivirally infected into 

cells, replicate populations were split at time zero, and the composition of these populations 

was investigated after two weeks of unperturbed growth by comparison to the starting 

plasmid library (Fig. 1a). The screens were conducted in parallel for minimal technical 

variation, allowing a quantitative assessment of performance. A previously established gold 

standard of 217 genes expected to have growth phenotypes in all cell types (essential) and 

947 genes (Supplementary Data 1) expected to have growth phenotypes in no cell type 

(nonessential)15 was used to estimate true positive and false positive rates.

Using the median enrichment averaged over two replicates, we found that both shRNA and 

CRISPR/Cas9 screens have very high performance in detection of essential genes (AUC of 

the ROC curve > 0.90) (Fig. 1b, Supplementary Data 2–4). At a ~1% false positive rate, both 

screens recover >60% of gold standard essential genes. However, at a 10% false positive rate 

there are ~4,500 genes identified in the Cas9 screen versus ~3,100 in the shRNA screen, 

with ~1,200 genes identified in both (Fig. 1c). This indicates that although both our shRNA 

and Cas9 screens have similar levels of precision on the gold standard, both the Cas9 and 

shRNA screens identify numerous additional genes not in either the gold standard nor 

identified in the other screen.

To leverage data from both screening technologies, we developed a statistical frame work, 

Cas9 high-Throughput maximum Likelihood Estimator (casTLE). For each gene, casTLE 

combines measurements from multiple targeting reagents to estimate a maximum effect size 

as well as a p-value associated with that effect (Supplementary Figure 4 and see also 

Supplementary Methods). We validated casTLE by analyzing previous RNAi1, CRISPR 

deletion16, and CRISPRi/a17 screens and found consistent results (Supplementary Figure 5, 

Supplementary Data 5–7). casTLE performs favorably in identification of essential genes 

compared to previous methods1,18–21 including the median effect used here (Supplementary 

Figure 6 and see also Supplementary Discussion). Although casTLE performs well on single 

replicates from many screen types, it can also combine results from diverse data types by 

separately considering (a) experimental noise and (b) variability caused by heterogeneous 

reagents.

Using casTLE to combine data from a single replicate of the shRNA and Cas9 screens led to 

a noticeable improvement in performance, with an AUC of 0.98, >85% of gold standard 

essential genes identified at ~1% FPR, (Fig. 1b, Supplementary Fig. 7a, 8a,c, Supplementary 

Data 8) and the identification of ~4,500 genes with negative growth phenotypes with 

evidence from the combination of both screens (Fig. 1c, Supplementary Figure 8b). To test if 

these results depend on the number of targeting elements used, we compared the Cas9 

results to a down-sampled 4 hairpin shRNA screen and found similar results (Supplementary 

Fig. 9a,b). The fact that the combination of both technologies can more successfully separate 

essential and nonessential genes suggests that the screens may be revealing different aspects 

of biology.

Consistent with the presence of non-redundant information, results from the Cas9 and 

shRNA screens show low correlation (Fig. 2a). Nonetheless, both screens effectively 

separate essential and nonessential genes (Fig. 1b, Fig. 2b) and are highly reproducible 
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(Supplementary Fig. 10a,b, 7b). When we compared the enrichment of GO terms for 

essential complexes, we find the screens identify different biological processes. (Fig. 2c, 

Supplementary Data 9). For example, genes involved in the electron transport chain are 

enriched for essential genes in the Cas9 results, whereas all subunits of the chaperonin-

containing T- complex are identified as essential by the shRNA screen (Fig. 2d). By using 

casTLE to combine information from each screen, we can recover each of these biological 

terms (Fig. 2c), further demonstrating the utility of a parallel screening approach. Again, 

these results did not change when we used a down-sampled 4 hairpin library (Supplementary 

Fig. 9c,d).

Several technical factors could account for the observed lack of correlation and differential 

GO term enrichment: (1) the presence or absence of effective reagents towards a particular 

gene, (2) differences in off-target effects as evidenced by the distribution of phenotypes 

among non-targeting controls (Supplementary Fig. 1a), or (3) differences in the timing of 

deletion/knockdown (Supplementary Fig. 10c,d). Another possibility highlighted in a recent 

analysis of human essential genes22 is that RNAi is less able to perturb genes expressed at 

low levels. However, we find no clear signature of this in our data (Supplementary Fig. 11a), 

perhaps due to more effective hairpin design13 capable of targeting these genes. This 

increased efficacy in our shRNA library may explain the qualitatively higher performance 

observed here in the detection of essential genes than was seen in previous studies, which 

found that RNAi screens perform poorly in the identification of essential genes22,23.

Although these technical differences may account for the low overall correlation observed, it 

is difficult to explain differential GO term enrichment with technical reasons alone. This 

observation suggests that Cas9 and shRNA screens are able to detect distinct aspects of 

biology, although it remains unclear why particular gene sets have strong signatures using 

one technology but not the other. One possibility, in cases such as RNA polymerase and the 

Mediator complex, is the dependency of shRNA knockdown on ongoing transcription, 

whereas sgRNAs no longer need to be efficiently expressed after a gene is knocked out4,10. 

Another possibility is that for certain genes a small loss in gene product via knockdown has 

a completely different phenotype than a large loss via a knockout. This could reflect non-

monotonic gene-dose dependence on fitness (Supplementary Fig. 4)9,24 or the necessity of a 

complete knockout10. Alternatively, deletion of adjacent genes by Cas9 may occur in the 

context of tandem duplications, as found in a previous study23. A final possibility is that 

distinct hits in Cas9 and shRNA screens may represent genes that interact with the 

nonspecific effects of RNAi and Cas9. For example, certain genes would be expected to 

exhibit an effect on growth in the presence of persistent DNA damage4,10,25–27 or 

interference with miRNA processing11,12 due to Cas9 nuclease activity or shRNA 

expression, respectively. The potential existence of both false positives and false negatives in 

each screen presents an analytical problem which combination analysis using casTLE could 

address.

In fact, we find that genes found uniquely in either the shRNA or Cas9 screen – but not 

found in the combination analysis – do not have key signatures of essential genes. Essential 

genes are more likely to be highly expressed15,22,23, which is clearly seen in both screens 

(Supplementary Fig. 11a). However, when we limit our analysis to genes found in the 
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shRNA or Cas9 screen but not in the combination analysis, this pattern is no longer clear 

compared to the genes found in both the shRNA and Cas9 screens (Supplementary Fig. 

11b). Similarly, hits from the shRNA and Cas9 screens show the expected enrichment for 

homologs of essential yeast genes15,22,23 (Supplementary Fig. 11c) in contrast to hit genes 

unique to one method that are depleted in essential yeast homologs (Supplementary Fig. 

11d). Although there are other explanations for these observations, this suggests that the 

combination analysis with casTLE can limit these technology or screen-specific false 

positives. Given that the use of both technologies also seems to reduce technology-specific 

false negatives as evidenced by the more complete capture of GO terms (Fig. 2c), the use of 

both (1) multiple reagents per gene to control for sequence-specific off-target effects and (2) 

multiple technologies for perturbation to control for non-specific effects should provide a 

more robust determination of a gene’s phenotype. However, determining the precise sources 

of differences between shRNA and CRISPR/Cas9 screens will require further inquiry.

Heterogeneity is a known feature of shRNA libraries, but we have also found this 

phenomenon in CRISPR/Cas9-based screens (Supplementary Fig. 1–2). One likely source of 

this variability is the occurrence of in-frame indels, creating wildtype and heterozygous 

subpopulations, which has been observed previously to interfere with screening results16,28. 

More efficacious guide designs might help, but in some cases sgRNAs targeting conserved 

functional elements within genes as opposed to simply the 5′ coding region may be 

preferred28. Nonetheless, heterogeneity in library elements can be a useful feature for genes 

with a complex gene-dosage/phenotype relationship. In particular, the spectrum of 

expression levels generated with an shRNA library should allow the identification of non-

growth phenotypes for genes where complete deletion causes severe growth effects or 

lethality. Indeed, in our previous work we found that an shRNA screen for drug toxicity 

identified a presumably obligate biosynthetic gene, DHODH, as the drug’s target, which a 

parallel Cas9 screen failed to identify14. This suggests that differences between CRISPR/

Cas9 and shRNA technologies may be useful to fully capture relevant biology in non-growth 

based screens.

Here we present an experimental side-by-side comparison of CRISPR/Cas9 and RNAi 

screens for essential genes. Using median enrichment analysis and our casTLE analysis tool 

(Supplementary Fig. 2–4), we demonstrate that both a recently developed shRNA library13 

and a Cas9 sgRNA library have high precision (Fig. 1b, Supplementary Fig. 8a,c), but that 

the Cas9 library identifies many more essential genes (Fig. 1c, Supplementary Fig. 8b). The 

two screening technologies identify different biological categories of genes (Fig. 2a, c). 

These differences can be exploited to obtain a more complete picture of genes regulating 

growth by combining information using casTLE (Fig. 1b, 2c, Supplementary Fig. 8a,c) and 

may be important when considering which technology to use to probe a given process.

 Methods

 Cell Culture

Cell culture performed as previously described14. Briefly, K562 cells (ATCC) were cultured 

in RPMI 1640 (Gibco) media and supplemented with 10% FBS (Hyclone), penicillin 

(10,000 I.U./mL), streptomycin (10,000 ug/mL), and L-glutamine (2 mM). Cells were grown 
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in log phase during all biological assays by returning the population to 500,000 cells/mL 

each day. K562 cells were maintained in a controlled humidified incubator at 37° C, with 

5% CO2.

 Genome-wide shRNA screen

A previously designed 25 shRNA/gene RNAi library was used13. Library infections and 

shRNA prep/sequencing were performed as previously described1. Briefly, to generate 

sufficient lentivirus to infect the genome-wide shRNA library13 into K562 cells, we plated 

293T cells on 15 cm tissue culture plates. 293T cells were transfected with third generation 

packaging plasmids and shRNA encoding vectors. After 48 hrs and 72 hrs of incubation, 

lentivirus was harvested. We filtered the pooled lentivirus through a 0.45 μm PVDF filter 

(Millipore) to remove any cellular debris. Approximately 560 million K562 cells were 

infected with our next-generation genome-wide lentiviral shRNA library to maintain roughly 

1,000-fold coverage of the shRNA library after selection. Infected cells grew for 3 days 

before selecting the cells with puromycin (0.7 μg/mL, Sigma). After three days of selection, 

infection efficiency was monitored using flow cytometry (BD Accuri C6). Once the cells 

reached 90–100% mCherry positive cells, they were spun out of selection and allowed to 

recover in normal RPMI 1640 media. At T0, 500 million cells were pelleted by 

centrifugation (300g for 5 min). Cells were then split into two populations and maintained at 

logarithmic growth (500,000 cells/mL) each day for 14 days. After 14 days of growth, cells 

were spun down (300g for 5 min). Genomic DNA was extracted for all 3 time points 

separately following Qiagen’s Blood Maxi Kit protocol. shRNA encoding constructs were 

measured by deep sequencing.

 Genome-wide CRISPR-Cas9 screen

A previously designed 4 sgRNA/gene CRISPR-Cas9 library was used targeting 5′ ends of 

conserved exons with sgRNAs varying in length between 19 and 25 base-pairs14. The library 

was generated first by infecting K562 cells with a SFFV-Cas9-BFP vector to create a stably 

expressed Cas9 cell line. We then infected the lentiviral genome-wide sgRNA library into 

approximately 120 million cells following the same protocol as the genome-wide shRNA 

library to maintain at least 1,000-fold representation in cells. Infected cells were selected 

with puromycin (0.7 μg/mL, Sigma) for 3 days. Percentage of mCherry positive cells was 

measured by flow cytometry (BD Accuri C6). Selected cells were spun out of selection and 

into normal RPMI 1640 media. At T0, 120 million cells were spun down (300g for 5 min). 

Cells were then split into two populations and grown for 14 days, maintaining logarithmic 

growth (500,000 cells/mL) each day. After 14 days of growth, cells were pelleted by 

centrifugation, and genomic DNA was extracted for all three time samples separately 

following Qiagen’s Blood Maxi Kit instructions. sgRNA encoding constructs were analyzed 

by deep sequencing.

 Analysis of previous screens

Data from previous shRNA screen for modifiers of ricin toxicity1 were obtained as pre- 

computed hairpin-level enrichments averaged from two replicates, pooled data was analyzed 

with casTLE, and compared to signed, log-transformed published results (Supplementary 

Data 5). Count data for two replicates from a previous CRISPR/Cas9 cutting screen for LPS-
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induced TNF expression16 were obtained from the authors, analyzed with casTLE, and 

compared to signed, log-transformed published DESeq results (Supplementary Data 6). Data 

from previous CRISPRi and CRISPRa screens17 were obtained as pre-computed guide-level 

enrichment averaged from two replicates, analyzed with casTLE, and compared to published 

results (Supplementary Data 7). Where available, positive and negative results from 

published low-throughput validations are also presented.

 Analysis of screen results

Deep sequencing on an Illumina Nextseq was used to monitor composition of libraries. 

Trimmed sequences were aligned to the library using Bowtie with zero mismatches 

tolerated. All alignment from multi-mapped reads were used. Enrichment of individual 

hairpins was calculated as a median-normalized log-ratio of fraction of counts, as previously 

described1. Raw count files are available (Supplementary Data 2), and raw FASTQ files have 

been deposited at the Sequence Read Archive (Accession SRP072806) and BioProject 

(Accession PRJNA317269; http://www.ncbi.nlm.nih.gov/bioproject/PRJNA317269).

Briefly, we built cas9 High Throughput maximum Likelihood Estimator (casTLE) that uses 

an Empirical Bayesian29,30 framework to account for multiple sources of variability, 

including reagent efficacy and off-target effects9,11,31,32 (for more complete description, see 

Supplementary Methods). For each gene, we have the phenotypes of multiple targeting 

reagents. From this, and the phenotypes of negative controls, we obtain an effect size 

estimate for each gene and an associated log-likelihood ratio. In the figures we present this 

as the casTLE score, which is twice the log-likelihood ratio, signed to match the effect size. 

All screens are analyzed with the same parameters, and no optimization was performed 

using the gold standard or related sets. casTLE is implemented using custom Python scripts. 

These, along with a complete screen analysis pipeline, are available at https://bitbucket.org/

dmorgens/castle.

For comparison, RIGER was implemented with default settings on precomputed element 

enrichments with GENE-E (http://www.broadinstitute.org/cancer/software/GENE-E/). RSA 

was implemented with Python scripts available from http://carrier.gnf.org/publications/

RSA/. MAGeCK was implemented with default settings with software available from 

https://sourceforge.net/projects/mageck/. HiTSelect was implemented with default settings 

with software available from https://sourceforge.net/projects/hitselect/. Median and highest 

effect heuristics as well as the MW test were implemented with custom Python scripts. GO 

terms were generated using GOrilla33 available at http://cbl-gorilla.cs.technion.ac.il/ by 

ranking genes from highest confidence negative growth phenotypes to lowest confidence 

genes to highest confidence positive growth phenotypes.

For direct comparison to the 4 sgRNA per gene CRISPR/Cas9 library, the 25 hairpin per 

gene library RNAi library was down-sampled to 4 shRNAs per gene. Hairpins were ranked 

according to their original computational design13 and the top four unique shRNAs were 

used as well as all negative control shRNAs. Note that this is independent of the data set 

used here and represents the 4 shRNA library that would have been designed. Essential gene 

predictions were then repeated using this reduced shRNA library as above (Supplementary 

Fig. 9).
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 Analysis of gene expression data and yeast essentials

Gene sets were defined by 10% FPR cutoff for Cas9, shRNA, and combination screens. 

Cas9 and shRNA unique gene sets were defined as genes under the 10% FPR cutoff in the 

Cas9 or shRNA screen but neither the other nor the combination screen. An overlap set was 

defined as genes under the 10% FPR cutoff for both Cas9 and shRNA screens.

Public RNA-seq data (Accession ENCFF934YBO) for the K562 cell line was obtained from 

ENCODE34 experiment ENCSR000AEM. Genes were filtered for FPKM greater than one 

and successful mapping to genes present in our libraries, leaving expression data for ~7,000 

genes. Genes were then ranked from highest to lowest expressed and binned in increments of 

500. The number of genes in each bin were counted for each gene set and normalized by the 

total number of genes in each gene set present in the RNA-seq data. This fraction of 

essential genes for each gene set was then graphed versus the mean log(FPKM) value for 

each bin (Supplementary Figure 11a,b; Supplementary Data 10).

Yeast essential genes annotated as viable or inviable as well as their human homologs were 

obtained from the Saccharomyces Genome Database35. The number of homologs in each 

gene set were counted for both inviable and viable annotations, and the fraction inviable is 

presented (Supplementary Figure 11c,d; Supplementary Data 11). P-values are calculated 

using Fisher’s exact test. The total fraction of all homologs mapped from inviable yeast 

genes is also presented.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Parallel shRNA and CRISPR/Cas9 deletion screens to identify essential genes in K562
(a) Schematic of screen. shRNA and Cas9 libraries were lentivirally infected into K562 and 

selected via puromycin treatment. After this time zero, replicate cell populations were 

maintained in log phase growth for two weeks. Library representation at each time point was 

monitored by deep-sequencing of the inserted locus. (b) ROC curves indicate screen 

performance in identifying essential genes by comparing the library composition between 

the plasmid library and cells after two weeks growth. True positive rates and false positive 

rates were calculated using a previously established gold standard set of essential and 

nonessential genes15. ROC curves for Cas9 (red) and shRNA (blue) screens based on the 

median score averaged over two replicates. Alternatively, data from single replicates of both 

Cas9 and shRNA screens were combined using casTLE (purple). (c) The number of 

essential genes at 10% false positive rate and their overlap based on the average median data 

from Cas9 and shRNA screens, as well as combination of a single replicate from both 
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screens using casTLE. False positive rate was estimated using gold standard nonessential 

genes.
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Figure 2. Differences between Cas9 and shRNA results
(a) Comparison of casTLE scores between single replicates of Cas9 and shRNA data. A 

large positive casTLE score indicates a high confidence increase in growth rate, while a 

highly negative casTLE score indicates a high confidence decrease in growth rate, i.e. 

essential. Density is in log scale. (b) casTLE scores are shown for gold standard essential 

and nonessential genes15. (c) Adjusted p-values for select GO terms for shRNA and Cas9 

screens as well as for data from both screens combined with casTLE. (d) casTLE scores 

shown for genes involved in the respiratory chain complex (GO:0098803) and the 
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chaperonin-containing T-complex (GO:0005832), which exhibit differential enrichment in 

Cas9 and shRNA screens.
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