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Background: The European Centre for Disease 
Prevention and Control (ECDC) systematically collates 
information from sources to rapidly detect early public 
health threats. The lack of a freely available, customis-
able and automated early warning tool using data from 
Twitter prompted the ECDC to develop epitweetr, which 
collects, geolocates and aggregates tweets generating 
signals and email alerts. Aim: This study aims to com-
pare the performance of epitweetr to manually moni-
toring tweets for the purpose of early detecting public 
health threats. Methods: We calculated the general 
and specific positive predictive value (PPV) of signals 
generated by epitweetr between 19 October and 30 
November 2020. Sensitivity, specificity, timeliness and 

accuracy and performance of tweet geolocation and 
signal detection algorithms obtained from epitweetr 
and the manual monitoring of 1,200 tweets were com-
pared. Results: The epitweetr geolocation algorithm 
had an accuracy of 30.1% at national, and 25.9% at 
subnational levels. The signal detection algorithm had 
3.0% general PPV and 74.6% specific PPV. Compared 
to manual monitoring, epitweetr had greater sensitiv-
ity (47.9% and 78.6%, respectively), and reduced PPV 
(97.9% and 74.6%, respectively). Median validation 
time difference between 16 common events detected 
by epitweetr and manual monitoring was -48.6 hours 
(IQR: −102.8 to −23.7). Conclusion: Epitweetr has 
shown sufficient performance as an early warning 

Public health impact of this article

What did you want to address in this study?

Twitter data can be used to detect outbreaks and public health threats. Epitweetr is a new open-source, tool for automated 
early detection of public health threats that uses Twitter data. We wished to compare the performance of epitweetr against the 
manual monitoring of Twitter for early detection of public health threats.

What have we learnt from this study?

Epitweetr has been shown to have an advantage over manually monitoring Twitter data in terms of being able to detect public 
health threats early. This type of tool has been shown to be useful to public health experts, and it is highly recommended that 
epitweetr be used to collect epidemic data in combination with existing tools.

What are the implications of your findings for public health?

Making epitweetr available publicly, and including several customisable settings allows users to adapt this tool to their 
specific needs and also further develop this tool. Since epitweetr has a strong automated component providing data in a timely 
manner, it can become a useful tool in the daily detection of infectious diseases, or other health threats, in public health 
settings.
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tool for public health threats using Twitter data. Since 
epitweetr is a free, open-source tool with configur-
able settings and a strong automated component, it 
is expected to increase in usability and usefulness to 
public health experts.

Introduction
The aim of the European Centre for Disease Prevention 
and Control (ECDC), a European Union (EU) agency, 
is to strengthen Europe’s defences against infectious 
diseases. Article 3 of the ECDC Founding Regulation, 
Decision Number 1082/2013/EU of the European 
Parliament and of the Council of 22 October 2013 on 
serious cross-border threats to health and the ECDC 
Strategy 2021–2027 have established the detection of 
public health threats as a core activity of ECDC.

The ECDC uses epidemic intelligence activities to col-
late information from a variety of sources, which is 
then validated and analysed. The aim is to rapidly 
detect and assess public health events, focusing on 
infectious diseases, to ensure the EU’s health secu-
rity [1]. Currently, the ECDC monitors social media as 
part of its epidemic intelligence activities, in particular 
Twitter and Facebook due to their widespread use in 
some regions in the world and accessible text format 
[2]. In the past few years, around one third of signals 
detected by the ECDC through epidemic intelligence 
activities originated from social media [3]. These plat-
forms are often updated by local, national, and inter-
national health authorities posting new information, 
which allows the ECDC to capture signals from small 
areas where media coverage is insufficient.

There have been previous attempts to use social media 
data for automated early detection of signals of public 
health threats [4-6], and a review of the use of Twitter for 
public health surveillance was published in December 
2018 [7]. However, this review mainly targeted the mon-
itoring of already detected outbreaks through Twitter, 
without fully covering monitoring of social media for 
early detection of public health threats. In addition, the 
authors stated that the geolocation of tweets through 
geotagging remained a major challenge. Several other 
studies have described the use of Twitter for outbreak 
investigation [8-10] or for understanding public percep-
tion of an epidemic [11,12], but these did not provide 
insights into the possible use of social media for auto-
mated event detection and real-time monitoring.

In the context of the coronavirus disease (COVID-19) 
pandemic, social media have become a key tool for shar-
ing and disseminating data and information. In 2021, a 
scoping review examined studies related to COVID-19 
and social media during the first year of the pandemic 
[13]. Surveillance and monitoring was one of the six 
themes extracted from these studies and according to 
the authors, no real-time surveillance monitoring had 
been developed for COVID-19 using social media data. 
Likewise, Lopreite and colleagues [14], retrospectively 

analysed Twitter data to uncover early warning signals 
of COVID-19 outbreaks in Europe in the winter season 
2019/20. This showed the relevance and stressed the 
urgency of having these early warning systems in place 
to better identify public health threats that may prolif-
erate almost undetected otherwise.

Noting the usefulness of having free, customisable 
and automated early warning tools using social media, 
the ECDC developed a prototype of an R-based tool in 
August 2019 for the early detection of public health 
threats using Twitter data. Twitter was selected from 
the different social media platforms due to both its 
widespread use in some regions of the world such as 
the European Union/European Economic Area (EU/
EEA), and its free and easily accessible data appli-
cation programming interface (API). The prototype 
focussed on a Public Health Event of International 
Concern (PHEIC) that received major attention in social 
media: the 2019 Ebola virus disease outbreak in the 
Democratic Republic of the Congo. The prototype was 
further extended in October 2019 and January 2020 
by the inclusion of two other PHEICs: poliomyeli-
tis and COVID-19. After the favourable results of this 
prototype, the ECDC developed a free, open-source 
tool named epitweetr to automatically monitor Twitter 
data for early warning of public health threats. Using a 
pre-determined but adaptable selection of keywords, 
this tool picks up new events of known public health 
threats, and using a broader set of keywords, it can 
also pick up new emerging health threats. The first ver-
sion of this tool was published on the Comprehensive R 
Archive Network (CRAN) in October 2020 [15].

The main objective of our study is to evaluate epitweetr 
version 1 published in October 2020, a new automated, 
open-source, R-based tool for early detection of public 
health threats using Twitter data. The specific objec-
tives are to assess the performance of the geolocation 
and signal detection algorithms used by epitweetr and 
to assess the performance of epitweetr in comparison 
with the manual monitoring of Twitter for early detec-
tion of public health threats.

Methods

Epitweetr
Epitweetr [15] collects Twitter data and metadata using 
the Twitter Standard Search API 1.1. It collects these 
data by sending queries according to a predetermined 
list of topics with related keywords. Throughout the 
time of this study period, 11 September to 30 November 
2020, a list of 70 unique topics was used, focusing on 
notifiable or infectious diseases [16] (Supplement S1).

In parallel with the Twitter data collection, epitweetr 
processes these data to geolocate tweets, aggregate 
them, detect signals and send these signals through 
email alerts (Figure 1) [17]. 
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The geolocation process aims to collect tweet and user 
location, with the tweet location being the primary 
location used for the signal detection.

The tweet location is based on the location found in 
the tweet, retweet or quote text. In cases where there 
is no information in the retweet or quote, the retweeted 
or quoted text is used. Epitweetr extracts the tweet 
location in two steps. In the first step, epitweetr looks 
for words that could be location candidates. It trans-
forms the tweet text into vectors (words) using fasttext 
[18], a well-known natural language processing tech-
nique [16]. Up to 157 languages can be chosen from 
fasttext; however, for this evaluation the four alphanu-
meric languages used in the EU/EEA with the highest 
number of tweets worldwide were selected (English, 
French, Portuguese and Spanish) due to the EU/EEA 
focus and to reduce the processing time [19]. Epitweetr 
uses a supervised machine learning algorithm which is 
automatically trained with labelled datasets. This algo-
rithm detects parts of the text referring to geographic 
locations using locations from the GeoNames database 
[20]. The non-location words are obtained by extract-
ing common words in fasttext models not included in 
the GeoNames database. In the second step, the text 
of these location candidates is matched against the 
GeoNames database using the Apache Lucene search 
engine [21], which implements a variant of vector space 
model (VSM) based on document-query similarity. In 
each of these steps, a score is allocated. The words 
with the higher score in the first step are selected as a 
candidate for the second step, and the highest match-
ing score on the second step is chosen as tweet geolo-
cation if it is higher than the threshold defined by the 
user. The higher the threshold score is, the lower the 
false positive rate is expected to be. Having a lower 
false positive rate, users should expect higher accu-
racy and specificity; however, a lower sensitivity is 
expected.

For the user location, the location metadata available 
from the API is extracted using the same process. The 
best user location will be selected, with user’s loca-
tion at the time of the tweet a priority, followed by the 

self-declared user location or location as set in the 
public profile or the biography of the user.

The aggregation process creates the data shown in 
the three figures in the epitweetr dashboard (Figure 2) 
based on Shiny web application framework [22]: time 
series of tweets, map of tweet and/or user location, 
and the 20 most frequent words in the tweets.

Epitweetr detects signals (Supplement S2) [17], using 
the time series of previous tweets for the same topic 
and country. Epitweetr does not take into account 
retweets or quoted tweets for signal detection. The 
length of the time series used for calculating signals 
can be configured by the user, having a default value 
of 7 days which was also used in this evaluation. Each 
of the univariate time series is processed by a modi-
fied version of the Early Aberration Reporting System 
(EARS) algorithm [23], most commonly used for the 
detection of abnormalities over time, and as imple-
mented in the R package ‘surveillance’ [24]. The algo-
rithm calculates a threshold for the expected tweet 
count for each topic and location (national level or 
higher) as a given quantile of the predictive distribu-
tion. If the threshold is exceeded, a signal is created for 
that time series. Inspired by Farrington and colleagues 
[25], the estimation of the threshold of an aberration/
signal also downweighs previous values if these are 
considered outliers.

These signals are sent out in email alerts with the fol-
lowing variables for each signal: date, hour, topic, 
region, top words, number of tweets, percentage of 
tweets from trusted Twitter users and configuration 
used to produce these signals (e.g., alert confidence or 
strength of previous signals’ downweight).

Evaluating the geolocation algorithm
We randomly selected 1,200 of the tweets extracted by 
epitweetr and manually evaluated their primary geolo-
cation to ascertain how accurate epitweetr was. Three 
hundred tweets per day were collected on 11, 16, 19 and 
22 September 2020, generating a total of 1,200 tweets. 
These tweets were assigned to one of two experts in 
epidemic intelligence (LE and AW), who each evaluated 
150 tweets per day. Each expert identified the best fit-
ting geolocation at national and subnational level, if 
such information was available.

The accuracy of the geolocation algorithm in extracting 
the correct location and the performance of the geolo-
cation algorithm in deciding which tweets contained 
extractable location information (hereafter referred as 
tweets with an extractable location) at national and 
subnational level were assessed by comparing the 
manual and epitweetr geolocations. For each tweet, 
we defined a positive hit when a location could be 
extracted from the tweet and a negative hit when no 
location could be extracted from the tweet. For posi-
tive hits, tweets were considered true positives or false 
positives depending on whether epitweetr assigned 

Figure 1
The epitweetr pipeline from installation to email alerts
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The geolocation process aims to collect tweet and user location, 
with the tweet location being the primary location used for the 
signal detection.
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a location for these tweets or not. For negative hits, 
tweets were considered true negatives or false nega-
tives depending on whether epitweetr did not or did 
assign a location for these tweets.

The following calculations were made regarding geolo-
cation algorithm performance: accuracy, sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive value (NPV) and prevalence (number of 
tweets from which location could be extracted) [26]. 
The accuracy for each tweet was calculated as 1 if 
the geolocation extracted by epitweetr matched the 
geolocation extracted manually and as 0 if these two 
geolocations did not match. The overall accuracy in per 
cent was calculated as the proportion of matches from 
the total number of tweets. We calculated accuracy at 
national and subnational level.

The average of the results from both experts manu-
ally assessing tweets for geolocation was calculated. 
Additionally, these calculations were made accord-
ing to the geolocation score dividing tweets in two 
groups: tweets with tweet geolocation score below 10, 
and tweets with tweet geolocation score above 10 (the 
default minimum score for accepting geolocations pre-
dicted by epitweetr).

Furthermore, we assessed the most frequent errors 
made by the algorithm in extracting the correct loca-
tion and grouped them in two categories: tweets men-
tioning the president of the United States (US) (tweets 
mentioning the US president were not geolocated in 
the US as expected, since the current geolocation algo-
rithm does not take into account persons as keywords 
for location) and/or a ‘well established location’ that 
was not found by epitweetr (e.g. country names, coun-
try populations, US state names and capital cities). The 
same previously mentioned calculations were made to 
evaluate what would have been the performance of 
epitweetr geolocation algorithm if these locations had 
been extracted correctly by epitweetr.

Evaluating the signal detection algorithm
We assessed alerts (number of tweets that exceed 
the threshold) generated by epitweetr during working 
days between 19 October and 30 November 2020 to 
determine which were validated events. We defined a 

Figure 2
Epitweetr dashboard
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signal as an alert in which top words and other infor-
mation included in the email suggested it fulfilled 
ECDC epidemic intelligence selection criteria based 
on International Health Regulations and Decision no. 
1082/2013/EU. An event was an epitweetr signal that 
was validated (i.e. deemed accurate and reliable infor-
mation, and confirmed by or originated from an official 
source).

Following the epidemic intelligence steps [27], we eval-
uated only the signals. We investigated the events or 
group of tweets that could have triggered those sig-
nals and validated the information. On occasion, after 
retrieving the events, the signals were discarded due 
to additional information provided in the tweets or the 
triggering events which did not fulfil ECDC epidemic 
intelligence selection criteria.

We defined the general PPV (PPVg) and specific PPV 
(PPVs) as:

where events were epitweetr alerts that fulfilled ECDC 
epidemic intelligence selection criteria (i.e. signals) 
and were validated,  false signals  were evaluated 
alerts that seemed to fulfil ECDC epidemic intelligence 
selection but were discarded after evaluating the 
triggering event(s) as these did not fulfil the ECDC 
epidemic intelligence selection criteria and/or were 
not validated, and  not evaluated alerts  were alerts 
detected by epitweetr algorithm that did not fulfil 
ECDC epidemic intelligence selection criteria based on 
the most frequent words, topic, location and number of 
tweets for which reason these were not evaluated.

To summarise, epitweetr emails contained alerts (i.e. 
an unexpected increase in the number of tweets for a 
specific topic, place and time). Some of these alerts 

were not evaluated and some were evaluated manu-
ally by epidemic intelligence experts. From the evalu-
ated alerts, those fulfilling ECDC epidemic intelligence 
selection criteria were considered true signals or 
events, and those discarded after the manual evalua-
tion (not validated and/or not fulfilling ECDC epidemic 
intelligence selection criteria after further assessment) 
were considered false signals.

The PPVg  considered all alerts detected by epitweetr 
whereas PPVs considered only signals further assessed 
by the experts.

Evaluating epitweetr
We developed a study protocol to evaluate the sensi-
tivity, specificity and timeliness of epitweetr in com-
parison to the manual monitoring of Twitter for early 
detection of public health threats (Supplement S3).

It is difficult to evaluate the classification accuracy of 
the generated events using the two methods, because 
no independent gold standard exists and there is no 
available information on all events that should be 
detected by both methods. We used instead an inter-
rater agreement (IRA) measure between the two meth-
ods as a relative definition of sensitivity.

Since the estimation of the specificity was not feasible 
in this context, we calculated the PPV as the propor-
tion of signals from each method corresponding to a 
validated event.

From the total number of events detected by both 
methods, we manually deduplicated these according to 
the topic provided by epitweetr and subtopic manually 
extracted by the two experts to eliminate events cap-
tured on different days and/or locations (e.g. hantavi-
rus case geolocated by epitweetr in Argentina, South 
America and America that corresponded to the same 
event), providing the number of unique events.

Table 1
Tweet location indicators determined from the results of the epitweetr geolocation algorithm, 11–22 September 2020 
(n = 1,200)

Level
All results Excluding tweets with scores lower than 

10
National Subnational National Subnational

Total number of tweets (n = 1,200) (n = 1,200) (n = 804) (n = 804)

Extracting correct location
Correct hits 361 311 292 283

Accuracy 30.1% 25.9% 36.3% 35.2%

Detecting tweets with extractable location

Sensitivity 72.6% 72.2% 56.6% 56.2%
Specificity 51.6% 50.6% 69.2% 68.3%

PPV 74.9% 74.2% 75.7% 74.9%
NPV 48.6% 48.1% 48.6% 48.1%

Prevalence 66.6% 66.3% 62.8% 62.7%

NPV: negative predictive value; PPV: positive predictive value.
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We defined the timeliness as the difference between 
the validation time of unique events found by epit-
weetr and manual monitoring of Twitter. We performed 
a descriptive analysis, including measures of central 
tendency and variability. Likewise, we performed a 
significance test using the Wilcoxon signed rank test 
where the null hypothesis assumed there was no true 
difference and the alternative hypothesis assumed 
epitweetr had earlier validation times than the manual 
method. Level of significance was set to p < 0.05.

Results

Geolocation algorithm
At national level, the epitweetr geolocation algorithm 
had an overall accuracy of 30.1%, while at subnational 
level this was 25.9% (Table 1). From the 1,200 tweets, 
774 tweets were considered by epitweetr to have an 
extractable location. Of these, the geolocation score 
ranged from 1.8 to 29.8 with a median of 9.9 and inter-
quartile range (IQR: 11.5 – 8.2).

After correcting the geolocation errors linked to the 
mention of the US president (n  =  281 tweets), we 
observed 38.5% accuracy, 76.0% sensitivity, 51.6% 
specificity and 75.8% PPV at national level. Likewise, 
after correcting the geolocation errors linked to ‘well 
established locations’ (n  =  371), which also included 
country names, country populations, and capitals, we 
observed 52.4% accuracy, 88.8% sensitivity, 51.5% 
specificity and 78.5% PPV.

Signal detection algorithm
During the study period from 19 October to 30 November 
2020, 11,313 alerts were detected by epitweetr from 
which 448 were signals. From these evaluated signals, 
334 were events and 114 were false signals.

From these 448 evaluated signals, 63 were related to 
COVID-19, including 48 events and 15 false signals. In 
addition, 49 of the 448 signals had only one tweet, 
including 24 events and 25 false signals.

Overall, the PPVg  was 3.0% and the PPVs  was 74.6%. 
The PPVs  for COVID-19 related events and for other 
events were 76.2% and 74.3%, respectively.

Evaluating epitweetr
Data were collected from 19 October to 30 November 
2020, to reach the minimum sample size. Overall, 570 
signals were evaluated, including 122 signals detected 
by the manual method, 297 signals detected by epit-
weetr and 151 signals detected by both methods. From 
these, 157 were related to COVID-19, including 120 
signals detected by the manual method, 24 signals 
detected by epitweetr and 39 signals detected by both 
methods.

Overall, 454 events fulfilling the ECDC epidemic intel-
ligence selection criteria were detected, including 120 
events detected by the manual method, 185 events 
detected by epitweetr and 149 events detected by both 
methods. From these, 157 were related to COVID-19, 
including 94 events detected by the manual method, 24 
events detected by epitweetr and 39 events detected 
by both methods.

The number of signals and events, IRA and PPV of both 
methods are presented in Table 2.

A total of 16 unique events were found by both meth-
ods, including 10 events related to COVID-19. The 
median of the validation time differences was -48.6 
hours (IQR: −102.8 to −23.7), showing a faster valida-
tion of common events by epitweetr.  Figure 3  shows 
the distribution of the validation time differences in 
hours. 

The Wilcoxon signed rank test showed that the valida-
tion time difference is significantly smaller than zero 
(p<0.05), meaning that validated events were detected 
by epitweetr earlier than those detected using manual 
monitoring.

Discussion
In this article we present the evaluation of epitweetr, a 
new automatised, open-source, R-based tool for early 
detection of public health threats using Twitter data. 
This tool was developed after finding a lack of such a 
tool and performing a feasibility study through a non-
automatised prototype.

Previous studies have shown the importance of having 
an appropriate geolocation when using social media 
data to better understand where the event or threat 
is happening. We focused our geolocation evaluation 
on the tweet geolocation since it is more relevant to 
provide accurate information related to the event 
rather than to the user. The tweet geolocation evalua-
tion showed an approximate 30% accuracy at national 
level, which was ca. 4% higher than at subnational 
level. The majority of the wrongly geolocated tweets 
were related to a few recurrent errors from the algo-
rithm such as US president and population citizens 
not being recognised (e.g. Trump, American, Chilean), 
common words getting high priority (e.g. ‘real’ for the 
location Ciudad Real, Spain) or well established loca-
tions not being recognised (e.g. Venezuela). Adding a 

Table 2
Number of signals and events from epitweetr and manual 
monitoring of tweets, 19 October–30 November 2020 
(n = 57

Variables Manual monitoring epitweetr
Number of signals 273 448
Number of events 269 334
IRA (95% CI) 47.9% (43.8–52.0) 78.6% (75.2–82.0)
PPV (95% CI) 97.9% (95.8–99.9) 74.6% (70.5–78.6

IRA: inter-rater agreement; PPV: positive predictive value.
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supervised learning layer to the existing algorithm, the 
user could easily improve this by training the algorithm 
and thus increasing substantially epitweetr’s accuracy 
and specificity. This was seen in the increased accu-
racy at national level from 30.1% to 52.4% when a 
group of ‘well established locations’ could be correctly 
identified. This naturally also increased the sensitivity 
(up to 88.8%). However, the PPV only increased slightly 
(from 74.9% to 75.8% and 78.5% respectively) as some 
of these tweets had already been assigned a location 
even if it was the wrong location.

Epitweetr users can modify the threshold used by 
the geolocation algorithm to prioritise sensitivity or 
accuracy and specificity. Our evaluation proved that 
using a score above 10 as threshold increased the 
accuracy from 30.1 to 36.3% and the specificity from 
51.6% to 69.2%, but it also decreased the sensitivity 
as expected.

We decided to use the Early Aberration Reporting 
System (EARS) as a baseline for the signal detection 
algorithm since it is a well-established methodol-
ogy [28]. The initial evaluation of the modified EARS 
algorithm stressed the importance of the initial selec-
tion criteria and relevance of the further assessment 
of epitweetr alerts and signals shown by the huge 
difference between PPVg  (referring to all alerts) and 
PPVs  (referring only to the alerts manually assessed). 
Likewise, having an adaptable system to adjust other 
parameters such as false positive rate and sensitivity 
improves the results. Epitweetr is adaptable due to it 
having configurable settings that can be adjusted by 
topic.

This modified EARS algorithm used by epitweetr for 
signal detection had a much higher sensitivity in 
comparison with the manual monitoring method and 
allowed small signals containing only one tweet to be 
detected. In general, epitweetr detected more events 
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than the manual monitoring method, and did this in 
a timelier manner. When comparing the performance 
of epitweetr and manual monitoring for the COVID-19 
signals and events, however, the latter detected more 
events. This can be explained by the fact that COVID-19 
became a much-tweeted topic and the query used was 
too generic to detect these specific events. Creating 
more specific queries for COVID-19 would have allowed 
epitweetr to detect more events. This is relevant 
when a new event or threat is being monitored since a 
generic query can be used in the early stages and more 
specific queries should be developed once the event 
becomes more popular.

Epitweetr showed a lower positive predictive value in 
comparison with manual monitoring, as was expected 
for this signal detection algorithm in which sensitivity 
was prioritised over specificity. Epitweetr was devel-
oped to detect small signals so having a very sensi-
tive tool was a priority. There are configurable settings 
that allow epitweetr users to modify the false positive 
rate of the tool. Furthermore, the positive predictive 
value of epitweetr could be increased by combining 
supervised and unsupervised learning to continuously 
train the model and adapt to possible concept drifts in 
Twitter streams [29] without jeopardising the sensitiv-
ity and IRA achieved by the underlying signal detection 
algorithm.

We believe that having configurable settings increases 
the flexibility of the tool and its ability to adapt to dif-
ferent uses. The dashboard of epitweetr is intended for 
testing these settings before epitweetr users decide 
which values to use in their context. This decision 
will depend on the resources available, which relates 
to the specificity of the tool (e.g. experts available to 
assess all signals detected by epitweetr, including pos-
sible false signals) and the granularity required, which 
relates to the sensitivity of the tool (e.g. which would 
be the consequences of missing a small signal).

Epitweetr has been implemented by the ECDC as an 
additional source of information for detecting in a 
timely and automated manner public health threats. 
In addition, the Italian National Institute of Health and 
the World Health Organization Eastern Mediterranean 
Office are using or testing epitweetr, and other institu-
tions are investigating how to integrate epitweetr in the 
existing tools and processes [30]. Since October 2020, 
the ECDC has integrated epitweetr into its epidemic 
intelligence activities and standard operation proce-
dures by making it one of the several sources used for 
screening, the first step of the epidemic intelligence 
process. Epitweetr is now used for the routine screen-
ing of public health threats within the ECDC mandate, 
specific screening of events, such as the COVID-19 
pandemic, with generic queries and subqueries on 
specific topics (e.g. outbreaks or vaccines). It is also 
used for monitoring mass gathering events, setting up 
keywords for syndromes, symptoms and diseases from 

Figure 3
Differences in the validation time of common events 
between epitweetr and manual monitoring of tweets, 19 
October–30 November 2020
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one week before the start to one week after the end of 
the event.

In other epidemic intelligence tools, screening of social 
media sources is not broadly integrated or includes 
Twitter messages from a predefined list of users, col-
lecting only a limited amount of information. Epitweetr 
provides a holistic approach of collecting data from 
Twitter by collecting and processing all tweets, retweets 
and quoted tweets publicly available according to the 
keywords indicated by the user. By default, epitweetr 
only considers tweets for the signal detection, but it 
can be easily configured to consider also retweets and 
quoted tweets. Epitweetr should thus be considered 
to be one of the many resources supporting the early 
phases of epidemic intelligence activities.

The main limitation of epitweetr relates to the variation 
in Twitter data dynamics (e.g. new keywords needed 
if concepts/words used by Twitter users change) and 
different scopes within early detection of threats that 
epitweetr users may have. This has been overcome by 
adding most of the parameters as configurable settings 
that can be changed not only for the tool itself but also 
depending on the topic. Likewise, the dashboard facili-
tates this decision by showing the immediate results of 
choosing different parameters. Nonetheless, epitweetr 
must be used in combination with other epidemic intel-
ligence tools since its sole use would have limited ben-
efit for epidemic intelligence activities compared with 
using it in combination with other sources and tools. 
Epitweetr was not developed as a stand-alone tool for 
epidemic intelligence but as one of its many resources.

The results of this evaluation have shown some areas 
for improvement: automated signal analysis and cat-
egorisation, based on annotated signals by the user; 
improvement of the performance of tweet text location, 
based on annotated tweet text locations by the user; 
real-time performance matrix of the geolocation algo-
rithm and management of signals with only one tweet, 
among others. In 2021, a new version of epitweetr was 
developed addressing these areas. In addition, this 
new version of epitweetr has a more efficient and eas-
ily searchable data architecture.

Conclusion
Epitweetr has been shown to perform sufficiently well 
for early detection of public health threats using Twitter 
data. This type of tool has proven to be useful to public 
health experts and it is highly recommended it be used 
in epidemic intelligence activities in combination with 
other existing tools for an improved synergy. Moreover, 
making epitweetr available via a public repository with 
several customisable settings allows other users to 
adapt the tool to their specific needs and, even, fur-
ther develop this tool. Additionally, since epitweetr has 
a strong automated component providing outputs in a 
timely manner, we believe it can become a useful tool 
in the daily public health practice of infectious disease 
event and threat detection.

Code and data sharing
All codes used by epitweetr are available as an R package 
from CRAN. Source maintenance and interaction occurs 
through the GitHub repository [16]. The historical Twitter 
data used in the present analysis cannot be shared due to 
data protection restrictions. However, a dataset with the an-
onymised signals and events detected by epitweetr and the 
manual method for these data is publicly available [30].

Ethical statement
Epitweetr collects Twitter data using the Twitter Standard 
Search API which provides only publicly available tweets 
matching a specific query from the previous seven days. 
These data are similar but not identical to the results pro-
vided by the Search User Interface feature in Twitter.
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