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Abstract
The Filtered Back-Projection (FBP) algorithm and its modified versions are the most impor-

tant techniques for CT (Computerized tomography) reconstruction, however, it may produce

aliasing degradation in the reconstructed images due to projection discretization. The gen-

eral iterative reconstruction (IR) algorithms suffer from their heavy calculation burden and

other drawbacks. In this paper, an iterative FBP approach is proposed to reduce the aliasing

degradation. In the approach, the image reconstructed by FBP algorithm is treated as the

intermediate image and projected along the original projection directions to produce the

reprojection data. The difference between the original and reprojection data is filtered by a

special digital filter, and then is reconstructed by FBP to produce a correction term. The cor-

rection term is added to the intermediate image to update it. This procedure can be per-

formed iteratively to improve the reconstruction performance gradually until certain stopping

criterion is satisfied. Some simulations and tests on real data show the proposed approach

is better than FBP algorithm or some IR algorithms in term of some general image criteria.

The calculation burden is several times that of FBP, which is much less than that of general

IR algorithms and acceptable in the most situations. Therefore, the proposed algorithm has

the potential applications in practical CT systems.

Introduction
Today the medical images provide very important health information in clinical diagnosis, in
which X-ray CT image is one of most important modalities. The quality of CT images heavily
depends upon the reconstruction algorithms, especially in the case that only less and less pro-
jection data is available in order to reduce the radiation dose. The current algorithms can be
roughly divided into two categories: 1) analytical reconstruction algorithms, 2) iterative recon-
struction (IR) algorithms. Some of IR algorithms, such as the algorithms based on dictionary
learning or compressed sensing(CS) theory, have become the research focuses and have been
used in a few special fields, which can solve some reconstruction problems where projection
data is far from the requirement of Shannon theorem [1–6]. However, these algorithms suffer
from heavy calculation burden, poor convergence speed and other drawbacks. For example,
the iteration number may be several hundreds of thousands [5], and the average computational
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time of one iteration may be several seconds [7]. Generally, IR algorithms are based on some
hypothetical conditions which are not always satisfied in practice. For example, the algorithm
using total variation minimization may cause the details to be weakened or removed. On other
hand, the analytical schemes, i.e. FBP algorithm and its modified versions such as FDK (Feld-
kamp-Davis-Kress) algorithm, are much simpler and faster [8–14]. They have been used in
almost all the fields of straight ray tomography, such as X-ray CT and PET (Positron Emission
Tomography) [15–17].

For the continuous systems, Radon and inverse Radon transforms using FBP algorithm are
in a close form in the mathematics principle [10, 11, 13]. However, it necessarily produces
non-negligible aliasing degradation when the projection data and FBP algorithm have to be
discretized. Many approaches had been proposed to deal with this problem. As the description
in [18], a multilevel back-projection method had been presented to improve the computational
speed while a point-spread-function (PSF) convolution techniques had been proposed to
reduce blurring in reconstruction. As a result, the image quality was similar with or superior to
that using the classic FBP technique. In [19], the spline interpolation and ramp filtering had
been combined to improve the classic FBP algorithm, by which the image quality could also be
improved somewhat. In [20], a new filter has been designed to substitute the classic ramp filter
to improve reconstruction performance.

In this paper, an iterative CT reconstruction approach based on FBP algorithm is proposed,
which is designed to hold both advantages while reduce both disadvantages of analytical and
IR algorithms. In the algorithm, the classic FBP is utilized to obtain the initial reconstructed
image, which is treated as the intermediate image. It is then projected along the original projec-
tion directions to produce the reprojection vectors. The difference between the real and repro-
jection vector is filtered by a special digital filter to produce the corrected projection term,
which is then performed the inverse Radon transform with same parameters to produce a cor-
rection term in image domain. By adding the correction term to the previous one, the new
intermediate image is obtained. The digital filter is designed to make the new reprojection vec-
tors approach to the real projection vectors as much as possible. This procedure can be per-
formed iteratively until certain stoping criterion is achieved.

Generally, the projection vectors (together with projection angles) are all the information
that we have obtained about the image to be reconstructed. If the reprojection data obtained
using the proposed approach better resembles the real projection data than the one obtained
using the classic FBP, it is reasonable to regard the proposed approach is better than the latter
one.

The digital filter is very important for the proposed approach. In order to make the idea
behind the design scheme for the filter clear, the reason that produces aliasing degradation by
the discretizing process is analyzed at first. Then, a correction scheme is proposed.

Methods
At first of this section, FBP algorithm is introduced in brief, and then the aliasing degradation
caused by the discretizing process in FBP algorithm is analyzed. At last, an iterative scheme is
proposed to reduce the aliasing degradation.

1. FBP algorithm
There are two projection modes for the general tomography: parallel beam and fan beam pro-
jection. Since a reconstruction problem for the latter can be easily transformed as a problem
for the former, only the former is studied in this paper.

Iterative FBP
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The derivation of FBP algorithm for parallel beam tomography is rather simple and
straightforward [10, 11]. The projection procedure can be instantiated in Fig 1. The Fourier
slice theorem shows that the two-dimensional (2-D) Fourier transform (FT) at frequency sam-
ple (ω cos θ, ω sin θ), F(ω cos θ, ω sin θ), can be obtained by the one-dimensional (1-D) FT of
projection vector at angle θ (at same time, the expression of beam lines in Cartesian coordi-
nates is transformed as the expression in polar coordinates). Therefore, the 1-D inverse FT
(IFT) can substitute 2-D IFT, by which the original image can be reconstructed, namely, the
inverse Radon transform is achieved. The Jacobian matrix of Cartesian-polar transformation
becomes as the ramp filter.

In the calculation, the projection data and reconstructed images have to be discretized. For a
discrete projection vector, pθi(t), t 2 [−L/2, � � �, L/2] (denoted by pi(t) in the next), the discrete
FT (DFT) and inverse DFT (IDFT) are employed to approximate FT and IFT, respectively. The
FBP algorithm becomes [8]

SiðkÞ ¼
XL=2

t¼�L=2

piðtÞ exp �i2p
kt
N

� �
; k 2 ½�N=2þ 1; � � � ;N=2�;

qiðtÞ ¼ 1

N

XN=2

k¼�N=2þ1

SiðkÞ
���� kN
���� exp i2p

tk
N

� �
;

f̂ ðn;mÞ ¼ p
K

XK
i¼1

qiðtÞ ¼
p
K

XK
i¼1

qiðbn cos yi þm sin yieÞ;

ð1Þ

where f̂ ðn;mÞ denotes the reconstructed image; L is a positive even integer denotes the size of
projection vectors; N is an even integer that is equal to or larger than the maximum size of the
projection vectors at all directions; j k

N
j is the “ramp” filter in the frequency domain; bxe

Fig 1. Parallel Projection: an object f(x, y) and its projection pθ(t) from angle θ.

doi:10.1371/journal.pone.0138498.g001
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denotes the nearest integer of x; θi, i 2 [1, � � �, K], denote the discretized scanning angle, and K
is the number of the scanning angles. Generally, FFT (fast Fourier transform) is utilized to
speed up reconstruction.

2. The aliasing degradation analysis
In this subsection, the implementation of FBP is analyzed in detail to show the cause of aliasing
degradation. As shown in Eq (1), the implementation of FBP algorithm can be split into two
steps: filtering and interpolating. The filtering can also be expressed in spatial domain as fol-
lowing after IDFT and some simplifications.

qiðtÞ ¼ 1

N

XN=2

k¼�N=2þ1

XL=2
l¼�L=2

piðlÞ exp �i2p
kl
N

� �" #���� kN
���� exp i2p

tk
N

� �

¼ 1

N

XL=2
l¼�L=2

piðlÞ
XN=2

k¼�N=2þ1

exp �i2p
kl � kt
N

� ����� kN
����

" #

¼ 1

4
piðtÞ þ

X
t 6¼l

piðtÞbNðt � lÞ

ð2Þ

where

bNðt � lÞ ¼ 1

N

XN=2

k¼0

k
N

exp
�i2pkðt � lÞ

N

� �
�

X�1

k¼�N=2þ1

k
N

exp
�i2pkðt � lÞ

N

� � !

It is obvious that βN(t − l) become a constant when N is fixed. For example, when N = 64,
β54(±1)� −0.1014, β64(±2)� 0, β64(±3)� −0.0113; when N = 512, β512(±1)� −0.1013,
β512(±2)� 0, β512(±3)� −0.0112. In fact [9],

lim
N!1

bNðtÞ ¼ 2

Z 1=2

0

x cos ð2tpxÞdx ¼

1=4 t ¼ 0;

0 t ¼ �2;�4;�6; � � � ;

� 1

t2p2
t ¼ �1;�3;�5; � � � :

8>>>><
>>>>:

Let β(t) denote limN ! 1 βN(t). When N is large enough such as N� 128, βN(t) will be
substituted by β(t) from now on, where the error caused by substitution will be very small and
can be ignored. Since β(t) is symmetrical, the Eq (2) can also be expressed as the circular convo-
lution of the original projection vectors and a kernel hn

qiðtÞ � piðtÞ � hnðtÞ ð3Þ
where� denotes the circular convolution operator, hn = [β(2n+1), � � �, β(3),0, β(1),
1
4
; bð1Þ; 0; bð3Þ; 0; � � � ; bð2nþ 1Þ�.
In the second step of FBP algorithm, for the filtered projection qi(t), the intensity of a pixel

whose position (n,m) satisfy t − 1< n cos θi +m sin θi < t+1 will be added with the weighted
qi(t), which is rather similar with the discrete projection procedure. In that procedure, each
pixel’s contribution is proportionally split into two nearest projection lines according to the
distances between the projection lines and the pixel. The linear weighting coefficient is the
common choice in this step, i.e., the intensity of point (n,m) will be increased by the linear
interpolation of qi(t), t = −L/2, � � � L/2, which is shown in Fig 2. Finally, the reconstructed
image is obtained by accumulating the contributions of all projection angles.

Iterative FBP
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Now, suppose the reconstructed image is performed Radon transform along the identical
angles again. The reprojection vector along θi with a distance t from the rotation center, p̂iðtÞ,
can be expressed as

p̂iðtÞ ¼
X

ðn;mÞ2S
sðtÞf̂ ðn;mÞ

where S denotes the set of pixels that lies between x cos θi + y sin θi = t − 1 and x cos θi + y sin
θi = t + 1; s(t) indicates the weight of a pixel contributes to the projection line p̂iðtÞ. Since each
pixel’s contribution is proportionally split into the two projection lines that sandwich the pixel
according to the distances between the projection lines and the pixel, s(t) is a linear function of

t. By substituting f̂ ðn;mÞ with Eq (1), the reprojection vector can be expressed as following
after some simplifications

p̂iðtÞ ¼
X

ðn;mÞ2S

XK
j¼1

aiðtÞqiðtÞ ð4Þ

where αi(t) denotes the new coefficient, which is also the linear function of t. Consider Eq (3),
the Eq (4) can further be expressed as following for briefness.

p̂iðtÞ �
X

ðn;mÞ2S

XK
j¼1

aiðtÞpiðtÞ � hnðtÞ ¼ YiðtÞ � hnðtÞ ð5Þ

whereYiðtÞ ¼
P

ðn;mÞ2S
PK

j¼1 aiðtÞpiðtÞ.

Fig 2. Reconstruction from the filtered projection: the linear interpolation procedure.

doi:10.1371/journal.pone.0138498.g002
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Remark: The Eq (5) is a summary conclusion about the original projection and reprojection
vectors. It can also be comprehended in the following way. Since qi(t)� pi(t)� hn(t), the inter-
polation in the reconstruction and the follow-up reprojection are all linear process when the
linear interpolation mode is chosen in the reconstruction process, the reprojection vector can
be expressed as the circular convolution of the ramp filter hn and a term that is the linear com-
bination of original projection vectors.

3. The correction scheme
The original projection vectors (and the corresponding projection angles) are the best knowl-
edge we have got about the unknown object. The Eq (5) shows there is a distinct difference
between an original projection vector and the corresponding reprojection one, which indicates
the imperfection degree of reconstruction. We seek to take the advantage of the original projec-
tion data again in an iteration way to minimize the difference, in other words, improve the
reconstructed image quality step by step. The proposed iterative scheme is shown as the flow-
chart in Fig 3.

The idea behind the processing flow is to make the reprojection vectors gradually approach

the original projection vectors. First, obtain the initial reconstructed image f̂ by FBP algorithm.

f̂ is then performed Radon transform using the identical setting to obtain the reprojection vec-
tors p̂i. Second, calculate the difference between pi and p̂i, Dpi ¼ pi � p̂i, which is filtered to
produce a filtered projection residual Δf pi = Δpi � F. At last, an image correction term is

obtained by Δf pi, which is add to f̂ to update f̂ . The whole flow can be performed iteratively.
The design of the filter F becomes a very key issue. The filter should be designed to meet the

following requirement

YðtÞ � hnðtÞ þ ð½pðtÞ �YðtÞ � hnðtÞ� � FðtÞÞ � hnðtÞ � pðtÞ ð6Þ
where p(t) denotes an original projection vector; Θ(t)� hn(t) denotes the corresponding repro-
jection vector; p(t) − Θ(t)� hn(t) denotes the projection residual, (p(t) − Θ(t)� hn(t))� F(t)
denotes the filtered version; ((p(t) − Θ(t)� hn(t))� F(t))� hn denotes the correction term,
which is added toΘ(t)� hn(t) to make the updated reprojection vector approach the original
projection vector p(t). It requires

hnðtÞ � FðtÞ ¼ dðtÞ ð7Þ
where δ denotes the discrete Dirac delta function.

In the design, suppose F(t) is symmetrical and its length is identical with that of hn. For
example, h5 = [β(−5),0, β(−3),0, β(−1),1/4, β(1),0, β(3),0, β(5)], F = [x1, x2, x3, x4, x5, x6, x5, x4,
x3, x2, x1,]. δ(t) is

dðtÞ ¼
(
1; t ¼ 0

0; t 6¼ 0:

or δ = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
Now the design becomes rather simple. F will be the solution of the question

min
F

k hn � F � d k2
2 ð8Þ

For example, when N = 128, i.e., h5 = [−0.0041,0, −0.0113,0, −0.1013,0.25, −0.1013, 0,
−0.0113, 0, −0.0041], then the normalized filter F = [0.0321, 0.0716, 0.1231, 0.1841,
0.3078,0.5625, 0.3078, 0.1841, 0.1231, 0.0716, 0.0321].

Iterative FBP
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Results
In this section, some numerical simulations and tests on real data are shown to demonstrate
the performance of the proposed reconstruction algorithm together with the designed filter. All
animal experiments and procedures carried out on the animals are approved by the animal
welfare committee of Capital Medical University and the approval ID is SCXK-(Army)
2013-X-99.

Example 1. This example is employed to show the filter designed can make the reprojection
vectors approach the original projection vectors very well. The original image I selected is the

Fig 3. The flowchart of the iterative FBP algorithm.

doi:10.1371/journal.pone.0138498.g003
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head phantom generated by Matlab function phantom with 128 × 128 pixels. It is performed
Radon transform using radon with the angle vector θ = [0°,1°, � � �, 179°] to produce p0. The
reconstructed image Î is obtained by iradon (where the classic FBP is utilized) using the linear

interpolation mode. Î is performed Radon transform again to get the reprojection vectors p1.

Then, calculate Δpf = (p0−p1)� F, the correction image R̂ and the corrected image Î þ R̂. Itera-
tively, a same Radon transform is performed to using the corrected image to produce new pro-
jection vectors, and so on. This procedure is iterated twice following the flowchart in Fig 3 (it is
only a part of the proposed algorithm as the decision process is absent). Since they are matrixes
(2d), only one vector of each p0, p1 and p3 (the reprojection after twice iteration) is shown in
Fig 4, whose angle is θ = 47°.

The results show that the difference between the corrected reprojection vector p347 and p
0
47 is

much smaller than that of the reprojection vector p147 and p
0
47. In order to assess the efficiency

of the designed filter, MSE (mean square error) is employed as the criterion. Let

s1 ¼
1

LK

XK
i¼1

k p1i � p0i k22; s2 ¼
1

LK

XK
i¼1

k p3i � p0i k22 ð9Þ

where p0i , p
1
i and p

3
i denote the original, reprojection and corrected projection vectors for the

projection angle θi; L is the size of a vector, and K denotes the number of projection angles. The
results for two examples are shown in Table 1.

The results illustrate the proposed scheme together with the designed filter make the cor-
rected reprojection vectors approach the true projection vectors very well.

Example 2. The original image I is also the phantom image of 128 × 128 pixels. The angle
vector is selected θ = [0°,0.3°, � � �, 179.7°], along which I is projected to produce the original
projection P. It is reconstructed by the classic FBP and the proposed iterative FBP. The original
image and its reconstructed versions by different schemes are shown in Fig 5.

As [20], three criteria,MSE (Mean Square Error), UQI (Universal Quality Index) andMI
(mutual information), are employed to assess the efficiency of the proposed approach, which
are defined as following [21, 22].

MSEðIr; IoÞ ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM�1

k¼0

ðIrk � IokÞ2
s

;

where Irk and I
0
k denote the pixels of the reconstructed image Ir and reference image I°, respec-

tively;M is the total number of pixels. UQI is defined as following

UQIðIr; IoÞ ¼ 2CovðIr; IoÞ
s2
r þ s2

0

2�I r�I o

ð�I rÞ2 þ ð�I oÞ2 ;

where �I and σ2 denote the image mean and variance, respectively; Cov(Ir, I°) denote the covari-
ance of the reconstructed image Ir and reference image I°. The mean, variance and covariance
are defined as the following

�I r ¼ 1

M

XM�1

k¼0
Irk; �I o ¼ 1

M

XM�1

k¼0
Iok

s2
r ¼ 1

M

XM�1

k¼0
ðIrk � �I rÞ2; s2

o ¼
1

M

XM�1

k¼0
ðIok � �I oÞ2

CovðIr; IoÞ ¼ 1

M � 1

XM�1

k¼0
ðIrk � �I rÞðIok � �I oÞ:

When the reconstructed image and reference image are interpreted as “stochastic processes”,

Iterative FBP
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Fig 4. The original projection vector p0
47, the reprojection vector, p147, and the corrected projection vector, p3

47, for the head phantom of size 128 × 128
and θ = 47°. (a) The whole vector, (b) the portion of the black in (a).

doi:10.1371/journal.pone.0138498.g004

Table 1. MSE of the different projection and the original projection.

Image size N 128 1024

Angles interval 1° 0.3°

s1 0.2917 11.8474

s2 0.0322 0.0348

doi:10.1371/journal.pone.0138498.t001

Iterative FBP
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MI is used for measuring their mutual dependence.

MIðIr; IoÞ ¼
XN 0�1

k¼0

XN 0�1

n¼0

pðIrk; IokÞ log
pðIrk; IokÞ
pðIrkÞpðIokÞ
� �

;

where pðIrkÞ and pðIokÞ denote the marginal densities of Ir and I°, respectively, which are calcu-
lated using the corresponding histograms; the joint density pðIrk; IokÞ is estimated from the joint
histogram of Ir and I°; N0 denotes the number of bins in the histogram.

UQImeasures the pixel-to-pixel similarity between the reconstructed Ir and reference image
I°, whileMImeasures the histogram correlation between them. The closer to 1 the UQI value
is, the more similar the two images are. Similarly, the higher theMI value is, the more similar
the two images are. Since it is a simulation example, the original image is known and selected
as the reference image.

The results in the form of the three criteria are showed in Table 2, in which the phantom
images with different sizes and projection settings are employed. The results illustrate the pro-
posed scheme have better reconstruction performance than the classic FBP algorithm.

Example 3. In order to compare the iterative FBP with the current iterative schemes in the
terms of speed and accuracy, some reconstruction problems are implemented by SIRT (Simul-
taneous Iterative Reconstruction Technique), SART (Simultaneous Algebraic Reconstruction
Technique) and MAP-EM (Maximum A Posteriori estimation Expectation Maximization)
algorithms [23–25]. Unlike the iterative schemes such as the scheme based on minimization of

Fig 5. The original image and its reconstructed versions by different schemes. (a) The original image
(128 × 128), (b) the reconstructed image using the classic FBP, (c) the reconstructed image using the
iterative FBP.

doi:10.1371/journal.pone.0138498.g005

Table 2. The performance evaluation in Example 2.

Image size Angle interval Algorithm MSE UQI MI

128 × 128 1° classic FBP 3.6864E-2 0.9543 0.9107

Iterative FBP 1.1965E-2 0.9871 0.9205

128 × 128 0.3° classic FBP 3.4766E-2 0.9545 0.9120

Iterative FBP 1.271E-2 0.9883 0.9214

512 × 512 0.5° classic FBP 0.4215E-2 0.9891 0.9502

Iterative FBP 0.2170E-2 0.9940 0.9539

1024 × 1024 1° classic FBP 7.747E-3 0.9789 0.9419

Iterative FBP 3.278E-3 0.9848 0.9460

1024 × 1024 0.2° classic FBP 1.644E-3 0.9945 0.9621

Iterative FBP 0.5356E-3 0.9969 0.9629

doi:10.1371/journal.pone.0138498.t002

Iterative FBP
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total variation (TV) regularization or dictionary-learning, these algorithms do not make any
artificial assumption on the image to be reconstructed. For the schemes based on TV minimi-
zation, there is an assumption that the TV of the underlying image is minimum. For the
schemes based on dictionary-learning, the assumption is that the underlying image can be
expressed by a linear combination of atoms, the high-dimensional vectors, in a dictionary, the
vector set. SIRT, SART and MAP-EM schemes are identical with the proposed scheme in the
regard, which depend only on the projection data rather than relying on a prior information or
assumption. Thus, they are chosen to compare with the proposed scheme.

The head phantom with 512 × 512 pixels is selected as the original image, which is per-
formed Radon transform with the angles θ = [0°,0.5°, � � �, 179.5°] to produce original projection
p0. The image is reconstructed using the three schemes, and the three criteria, MSE, MI and
UQI are employed to evaluated the reconstruction performance. For all the schemes, the image
reconstructed using the classic FBP is chosen as the initial image of iteration. The results is
showed in Table 3 and Fig 6.

The results show that the iterative FBP algorithm has the similar reconstruction perfor-
mance with SART, SIRT and MAP-EM schemes, and a much smaller operating time. We think
the superiority of iterative FBP in the term of speed mainly roots in the fact that it does not
employ the linear expression of projection procedure. The expression refers to a very huge
matrix (see the Eq (1) or Eq (2) in [25] or in page 277 [8]) and will slow down the calculation,
however, it is necessary for SIRT, SART and MAP-EM schemes. When the image size and the
number of projection angle is large (as that in this example), the matrix becomes very huge and
has to be split into many blocks. Every block has been saved and loaded at least one time,
which spends many time.

In order to analyze the robustness of iterative FBP, suppose the original projection is pol-
luted by the white Gaussian noise, i.e.,

p ¼ p0 þ sZ

where p0 denotes the original projection vectors, which is the Radon transform of the head
phantom image of 256 × 256 pixels with the projection angles θ = [0°,1°, � � �, 179°]; Z is the
white Gaussian noise with same size as p0, whose mean is zero and variance is one; σ is the
magnitude of noise, which is selected as 0.1max(p0). The image is reconstructed using the three
schemes, SART, SIRT and MAP-EM, and Iterative FBP scheme. In all the schemes, the image
that is reconstructed using the classic FBP is chosen as the initial image of iteration. The some
results are showed in Fig 7.

The results show that the iterative FBP algorithm has the poor but acceptable reconstruction
performance, while SART, SIRT and MAP-EM have very bad performance even after a rather
long running time. SIRT and MAP-EM have worse tendency than SART with the iterative
recurrence proceeds. We think the weaknesses mainly roots in the fact that they depend upon

Table 3. The compare of reconstruction performance between SIRT, SART, MAP-EM and Iterative FBP
(the image size is 512 × 512 and the angle interval is 0.5°).

Algorithm MSE UQI MI performing time(s)

Iterative FBP 0.2170E-2 0.9942 0.9539 47

MAP-EM 0.2003E-2 0.9989 0.9595 5217

SIRT 0.1998E-2 0.9713 0.9417 58912

SART 0.2103E-2 0.9840 0.9539 67556

doi:10.1371/journal.pone.0138498.t003
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the linear expression of projection procedure, which make the reconstruction performance is
very sensitive to the noise in the projection data.

Example 4. In this example, the proposed algorithm is used in the practical application. The
sample is a mouse liver, and the experiment is performed in the X-ray Imaging and Biomedical
Application Beamline station (BL13W1) at the SSRF(Shanghai Synchrotron Radiation Facility,
China). All animal experiments and procedures carried out on the animals are approved by the

Fig 6. (a) The compare of MSE using MAP-EM and Iterative FBP. (b) is the portion of the first 60s of (a).

doi:10.1371/journal.pone.0138498.g006
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animal welfare committee of Capital Medical University and the approval ID is SCXK-(Army)
2013-X-99. The setup can ensure x-ray beam to be near parallel. The energy is about 21 keV. A
CCD camera (the size of pixel is 13μm × 13μm) is used as the detector, comprising 2,588 × 458
pixels. During scanning, the sample is rotated on a turntable around its cylindrical axis by 180°
at step of 0.4411°. The rotation speed is about 0.25°/s and the exposure time was 11 millisec-
ond. Before and after scan, the background images (the sample is absent) and dark field images
(the x-ray beam is closed) are recorded for preprocessing. The background images are used for

Fig 7. (a) The compare of MSE using SART and Iterative FBP. (b) is the portion of the first 60s of (a).

doi:10.1371/journal.pone.0138498.g007
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normalization, the dark field images are used to reduce the noise of various kinds(mainly cam-
era noise). Finally, the logarithm transform is employed to enhance the image contrast,

pi ¼ lg ðpbi � pdi Þ � lg ðpoi � pdi Þ

where pbi , p
d
i and p

o
i denote i-th column of background image, dark field image and projection

image. The images are reconstructed by the classic FBP and the proposed iterative FBP, which
are shown in Fig 8.

Since there is not a reference image, it is difficult to assess the image quality by some quanti-
tative indexes. The difference between the real projection vectors and the reprojection vectors,
i.e., s1 and s2 defined in Eq (9), are employed as the criterion. In this example, s1 = 299.4172, s2
= 93.4903.

Discussion
As is shown in Fig 2 and Eq (5), the projection and reconstruction model are relatively simple
in this paper. There are some factors are not considered, such as the quantization error (for
example in radon function in Matlab, every pixel is divided into four sub-pixel and projects
each sub-pixel separately) and projection noise. For such a model, the optimization of Eq (7)
or Eq (8) will be rather complicated and difficult.

As previously shown in the flow chart (Fig 3), the computation burden induced by the itera-
tive procedure mainly comes from the calculation of the additional reconstruction and filtering

Fig 8. The images of mouse liver reconstructed using different schemes. (a) The image using the
classic FBP, (b) using the iterative FBP, (c) and (d) are the portions of (a) and (b), respectively.

doi:10.1371/journal.pone.0138498.g008
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procedures. Obviously, the reconstruction part is the dominant portion. Generally, the number
of iterative loops is unnecessary to be larger than four, which means the extra calculation bur-
den is only twice or triple that of the classic FBP. To the best of our knowledge, the calculation
burden is much less than that of the most IR algorithms, and is acceptable in general.

In the practical applications, since there are many factors that may degrade the quality of
reconstructed image, such as the eccentricity of cylindrical axis and measurement noise, the
image quality cannot be improved greatly. The eccentricity of cylindrical axis is the most seri-
ous factor for the iterative FBP algorithm because the distortion caused by the offset of projec-
tion data will be accumulated as the iterative procedure proceeds. The larger the eccentricity of
cylindrical axis is, the less times the iterative procedure should be performed. According to our
experience, for the experiment setups such as in SSRF, once iterative procedure is an appropri-
ate choice.

Conclusion
FBP algorithm is perfect for the continuous image model and scanning, however, the aliasing
degradation cannot be avoided when the image and scanning model are discretized. Generally,
there is a significant difference between the original projection data and the reprojection data
using the classic FBP algorithm. Since the original projection data are the best information we
have, a proper way is to take advantage of the original projection again to make the reprojec-
tion data approach the original projection data while improve reconstruction performance.

According to the analysis, a reprojection vector can be approximately expressed as the circu-
lar convolution of a certain kernel and a linear combination of the original projection vectors.
The difference between the original projection and reprojection vector is served as the motiva-
tion to improve the reconstruction performance. It is filtered by a digital filter to compensate
the difference caused by FBP, where the filter is designed to remove the filtering effect of the
ramp filter. As a result, the sum of the reprojection vector and the filtered difference will
approach the original projection vector. In the meantime, the filtered difference is performed
inverse Radon transform and the result is added to the reconstruction image of last step to
update it. This process can be repeated for several times until certain stopping criterion is satis-
fied. The results of some numerical simulations and practical applications demonstrate the
proposed scheme have better superiority over the classic FBP algorithm in the term of MSE,
UQI and MI. The results also show the proposed scheme have much better superiority over
some iterative algorithms that depend only on the projection data, such as SIRT, SART and
MAP-EM, in the term of reconstruction convergence speed and robustness.
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