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White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of

cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white

matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in

subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who

had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset.

Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented

from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study

the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal

appearing GFAP + astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde

dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP + cells in both

the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects.

However, the percentage of clasmatodendrocytes was increased by 42-fold in subjects with post-stroke demented compared to

post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P50.023) in the frontal

white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-

Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double

immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP + astrocytes with disrupted

end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood–

brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult

baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of

the frontal white matter in perfused brains from the animals surviving 1–28 days after occlusion revealed that the highest intensity

of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4

and GFAP + astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astro-

cyte injury and disruption of gliovascular interactions at the blood–brain barrier in the frontal white matter and cognitive im-

pairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white

matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia.
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Introduction
Dementia develops in 25–30% of elderly people who sur-

vive after stroke (Savva and Stephan, 2010; Allan et al.,

2011). Various brain structure changes associated with

neurodegenerative dementias such as total cerebral

volume, medial temporal lobe atrophy and cortical thin-

ning, also relate to cognitive dysfunction in cerebrovascular

disease. However, the pathological substrates associated

with cognitive impairment or dementia in cerebrovascular

disease remain poorly defined. White matter hyperintensi-

ties as seen on brain T2-weighted MRI have been linked to

varying degrees of cognitive impairment (Debette and

Markus, 2010). The prevalence and the volume of white

matter hyperintensities increase exponentially with age (de

Leeuw et al., 2001), and are associated with variable sever-

ity of executive dysfunction (DeCarli et al., 1995; Vataja

et al., 2003; Bolandzadeh et al., 2012). We previously re-

ported that in older stroke patients, cognitive processing

speed and performance as measures of attention are signifi-

cantly associated with white matter hyperintensity volume,

particularly in the frontal lobe regions, whereas memory

impairment was associated with the volume of temporal

lobe white matter hyperintensities (Burton et al., 2004). It

has been widely proposed that many of the cognitive def-

icits in cerebrovascular dementia are attributed to disrup-

tion of the frontal-subcortical circuits (Kalaria and Ihara,

2013).

We have previously shown that myelin density in the

white matter was most reduced in vascular dementia com-

pared to Alzheimer’s disease and other less prevalent de-

mentias (Ihara et al., 2010). These observations are

consistent with the severity of white matter disease and

decreased ratios of myelin basic protein and proteolipid

protein in subjects with small vessel disease and vascular

dementia compared with Alzheimer’s disease and ageing

controls (Barker et al., 2013). In vascular dementia, the

vasoconstrictor endothelin 1 tended to be elevated, possibly

reflecting abnormal regulation of white matter perfusion

(Barker et al., 2014). However, the precise pathophysio-

logical relationships between white matter changes and

cognitive dysfunction are not well understood.

In addition to myelin, axonal and microvascular integrity

as well as glial cell reactivity have been of interest as pos-

sible substrates of the white matter that correlate with the

severity of white matter hyperintensities and cognitive im-

pairment. Astrocytes, as one of the fundamental glial cells

in brain tissue (Abbott et al., 2006), are important for

creating a homeostatic environment and providing energy

for oligodendrocytes and axons (Funfschilling et al., 2012).

During ischaemia, when acidosis and energy failure occurs,

astrocytes can undergo clasmatodendrosis, and cells

become amoeboid in shape (Penfield, 1928; Friede and

van Houten, 1961). Clasmatodendrosis is further character-

ized by cytoplasmic swelling and vacuolation of the astro-

cyte soma, with beading and fragmentation of their

dendritic processes, leading to irreversible injury via an

autophagic process (Qin et al., 2010). The alterations in

cell morphology are directly related to changes in cell func-

tion (Hulse et al., 2001; Hinson et al., 2007).

Clasmatodendrosis was previously described in various

conditions including acute hypoxic-ischaemic injury (Gelot

et al., 2009), epilepsy (Kim et al., 2011), and neuromyelitis

optica (Tradtrantip et al., 2012; Misu et al., 2013). It was

also demonstrated in the white matter of patients with

Binswanger’s leukoencephalopathy and mixed dementia

(Alzheimer’s disease combined with cerebrovascular dis-

ease) (Tomimoto et al., 1996, 1997) and described in a

patient exhibiting severe white matter hyperintensities

with autopsy-confirmed mixed dementia (Sahlas et al.,

2002) but not necessarily associated with demyelination

or neurodegeneration (Popescu et al., 2010). However,

clasmatodendrosis has not been evaluated in the develop-

ment of dementia in cerebrovascular disease.

With the hypothesis that gliovascular interactions are dis-

rupted in individuals who exhibit a high burden of white
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matter hyperintensity volume, we explored the incidence of

clasmatodendrosis in relation to the cerebral microvascula-

ture in the white matter of elderly stroke survivors, who

had developed dementia compared to those who remained

cognitively stable and older controls. To further test the

hypothesis and verify if the phenomenon was associated

with disruption of gliovascular interactions or breach of

the blood–brain barrier in the white matter (Wardlaw

et al., 2009), we evaluated perfused post-mortem brain

tissue from non-human primates subjected to cerebral

hypoperfusion.

Materials and methods

Subjects and dementia diagnoses

Stroke patients taking part in the white matter hyperintensities
imaging investigation were from a previously described cohort,
which was followed longitudinally (Allan et al., 2011). Patients
were comprehensively assessed at 3 months post-stroke using a
standardized battery comprising medical history, Mini-Mental
State Examination (MMSE) score, assessment of neurological
deficits, blood screen and review of CT brain scan undertaken
at the time of stroke, and were excluded if they: (i) had sig-
nificant physical illness and disabilities that precluded neuro-
psychological evaluation (e.g. visual impairment, aphasia,
hemiparesis affecting the hand used for writing); (ii) had a
diagnosis of dementia according to DSM-IIIR (Diagnostic
and Statistical Manual of Mental Disorders) criteria; or (iii)
declined to take part. Subjects underwent an annual clinical
and cognitive assessment. DSM-IIIR criteria were used because
they include a general definition for dementia, unlike DSM-IV,
which presumes aetiology, as we were interested in post-stroke
dementia regardless of cause. The total number of MRI scans
was limited by cost to �100, so not all subjects were ap-
proached. Eligible subjects were consecutively invited to have
an MRI scan until 106 had agreed. The analysis here is a
subset looking at frontal white matter hyperintensities as a
function of time to dementia or death (Table 1). The analysis
was performed in scans from 41 decliners, who developed de-
mentia and 65 stable post-stroke survivors. Following full ex-
planation and discussion of the study, patients gave their
consent to the evaluations, with additional assent from the
next of kin. Ethical approval and permission to progress this
study using donated human brain was granted by the
Newcastle and North Tyneside 1 Research Ethics Committee.

MRI acquisition and white matter
hyperintensity volumes

One hundred and six subjects were imaged using a 1.5 T GE
Signa scanner (General Electric). Volume of white matter
hyperintensities was obtained from the baseline MRI images
(Fig. 1) using previously validated automated software
(Firbank et al., 2012). Briefly, spm99 (http://www.fil.ion.ucl.
ac.uk/spm) was used to segment the brain from the FLAIR
images. Volumes of white matter hyperintensities were then
determined by applying an intensity threshold of 1.45-times
the modal intensity for each slice to segment the white

matter hyperintensities. The accuracy of this was checked visu-
ally for each subject and the total white matter hyperintensities
volume in the whole brain was calculated. Values in Table 1
are white matter hyperintensities (in ml) for ease of interpret-
ation; however, for the statistical analysis, we calculated the
ratio of white matter hyperintensity volume to total brain
volume, and to produce normally distributed data we per-
formed log transformation. Subjects were followed up for a
mean of 4.0 (SD 2.5) years to last dementia assessment, and
5.9 (SD 2.3) years for deaths. All subjects (apart from two)
were followed-up until either death or 9 years after initiation
of the study. Of those whose final status was ‘without demen-
tia’, 32 (74%) out of the 43 who died and 23 (64%) of the 36
still alive had dementia assessment within 1 year of their last
recorded vital status.

Neuropathological examination

Brains were retrieved from a total of 40 post-stroke survivors
who came to autopsy. Fourteen subjects, who were scanned in
life were included in this cohort (Table 2). In addition, we
analysed brains from elderly controls, who were age-matched
to subjects with post-stroke dementia (PSD) and post-stroke
non-demented subjects (PSND), and also a further group of
younger controls to demonstrate the effects of ageing alone.
Table 2 also provides the final MMSE and the revised
Cambridge Cognition Examination (CAMCOG) battery
scores of the relevant subjects. Stroke survivors who did not
meet DSM-IIIR or IV criteria for dementia and had MMSE
scores 425 and CAMCOG scores 485 were designated as
‘post-stroke survivors with no dementia’. In the majority of
cases, bronchopneumonia was recorded as the cause of death.

Neuropathological assessment was carried out as described
previously using standardized protocols (Kalaria et al., 2004;
Ihara et al., 2010; Allan et al., 2011; Gemmell et al., 2012).
Macroscopic infarcts, detected by visual inspection while dis-
secting the brain, were subsequently confirmed by light micros-
copy. Haematoxylin and eosin staining was used for
assessment of structural integrity and infarcts, Nissl and
Luxol fast blue staining for cellular patterns and myelin loss,
Bielschowsky’s silver impregnation and immunohistochemical
analysis of amyloid-b deposition using antibodies to amyloid-b
(4G8, 1:1000, Signet) for the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) rating of neuritic
plaques, Gallays for Braak staging of neurofibrillary tangles.
Deposition of hyperphosphorylated tau with the AT8 antibody
(1:1000, Monoclonal Innogenetics) was further scored using
the semi-quantitative approach as described previously (Lace
et al., 2009). Vascular pathology scores were derived from the
presence of vascular lesions in brain areas, including the fron-
tal lobe at the level of the olfactory bulbs, temporal lobe at the
level of the anterior hippocampus, and basal ganglia at the
level of mamillary body. Lesions including arteriolosclerosis,
fibrinoid necrosis, perivascular spacing and haemosiderin leak-
age and tissue changes including lacunes, microinfarcts, micro-
haemorrhages and myelin loss in the deep and juxtacortical
white matter, and cortical micro (50.5 cm) and large
(40.5 cm) infarcts were recorded with increasing severity re-
sulting in greater scores (Deramecourt et al., 2012).

Tissues from control subjects had occasional ageing-related
pathology and were classified having ‘no pathological diagno-
sis’ (Table 2). Tissue showing any evidence of infarction was
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Figure 1 Frontal white matter hyperintensities and associated pathology in stroke survivors. (A) Survival curves show progression

time to dementia by the presence of frontal white matter hyperintensities volume in non-demented (PSND, top) and demented (PSD, bottom)

subjects. The mean number of days from stroke to dementia in the non-demented and DSM IV demented groups was 1483 � 922 and 1059 � 676

(P = 0.001). (B) MRI (a and e) in life and coronal sections (b–d and f–h) demonstrate the extent of differential white matter changes in subjects

with PSND (b–d) and PSD (f–h) from the cohort described in A. [B(a and e)] Typical white matter hyperintensity volume differences on MRI with
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excluded. Patients with any type of dementing illness were also
excluded. In PSD cases, a clinical diagnosis of vascular demen-
tia was made when there were multiple or cystic infarcts, lacu-
nae, microinfarcts and small vessel disease, and Braak stage
4IV (Kalaria et al., 2004). Mixed dementia was classified
when there was significant vascular pathology coupled with
appropriate levels of neurofibrillary pathology (Braak staging)
and neuritic plaques (CERAD rated) (Kalaria et al., 2004).

Three vessel occlusion model and
neuropathological analysis in
non-human primates

Post-mortem brain tissues were obtained from adult baboons
(Papio anubis) weighing 16–20 kg (7–12 years old), housed at
the Institute of Primate Research, National Museums of
Kenya. These non-human primates used widely for stroke re-
search also develop Alzheimer’s disease pathology (Ndung’u
et al., 2012), were part of a study to understand the sequelae

of brain changes during cerebral hypoperfusion. This study
was performed in collaboration with Kyoto University (Y.H.,
K.W., Y.O. and M.I.). The animals were subjected to perman-
ent occlusion of both the internal carotid arteries and the left
vertebral artery for survival periods of 1, 3, 7, 14, 21 and 28
days (n = 4–7 each group). Following such three-vessel occlu-
sion, temporary mild hemiparesis was evident in all the ani-
mals. Animals were euthanized on the designated day and the
brains (200–300 g) were retrieved after perfusion fixation.
Subsequent to further immersion fixation period of 4–6
weeks, 1-cm thick coronal slices of the brain were processed
for extensive histopathological analysis and quantitative evalu-
ation in the same manner as the human post-mortem cases
(Ihara et al., 2010; Deramecourt et al., 2012). We used routine
tinctorial stains and immunohistochemistry on 10-mm thick
sections of the whole coronal face to assess pathology in the
white matter. This included evaluation for changes in myelin
(Luxol fast blue), endothelial integrity (haematoxylin and
eosin, glucose transporter type 1 (GLUT1, encoded by
SLC2A1), basement membrane (collagen IV, COL4), the

Figure 1 Continued

FLAIR in PSND (a) and PSD (e) subjects. Examples are from females aged 86 and 90 years. [B(b, c, f and g)] Coronal sections from the magnetic

resonance scanned cases stained with Luxol fast blue and haematoxylin and eosin. Diffuse myelin changes are more evident in the PSD coronal

sections. [B(d and h)] Adjacent sections from the same cases stained for fibrinogen immunoreactivity. [B(h)] shows diffuse immunoreactivity and

also demonstrates in astrocytes blood–brain barrier leakage of proteins. The location of coronal sections in B(b, c, f and g) are shown by the

white line in the axial MR scans in B(a and e). Images in B(d and h) are from the frontal white matter areas represented by boxes in the

haematoxylin and eosin-stained sections B(c and g). Scale bar = 10 mm. WMH = white matter hyperintensities.

Table 1 Neuroimaging study subject characteristics and survival to dementia predictors stratified by age in a

multivariate cox model

Age at baseline 79.8 (4.1) n = 106

Gender F:M 57:49

Deceased during follow-up 60 (57%)

Developed dementia during follow-up 27 (25%)

MMSE 26.2 (2.7)

CAMCOG-R 84.4 (8.5)

MTA 2.7 (1.8)

White matter hyperintensity, ml 2.1 (1.8)

Total brain volume 1009 (82.4)

Oxford Stroke Classification (LACS/PACS/TACS/POCS/unknown) 35/42/5/17/7

HR (95% CI) P-value

Significant neuroimaging predictor

MTA 1.40 (1.07 to 1.85) 0.016

Log (frontal white matter hyperintensities / total brain volume) 1.88 (1.05 to 3.36) 0.034

AIREN bilateral thalamic lesions 9.18 (2.36 to 35.63) 0.001

Significant neuroimaging predictor + cognitive score

MTA 1.32 (1.00 to 1.74) 0.054

Log (frontal white matter hyperintensities / total brain volume) 1.68 (0.92 to 3.05) 0.09

AIREN bilateral thalamic lesions 4.58 (1.19 to 17.70) 0.027

CAMCOG-R 0.93 (0.89 to 0.98) 0.004

Oxford community stroke project (OCSP) classification: there were no significant differences between stroke territory distributions between PSND and PSD cases (P4 0.05).

CAMCOG = Cambridge Assessment for mental and cognition; LACS = lacunar stroke; na = not available; PACS = partial anterior circulation stroke; POCS = posterior circulation

stroke; TACS = total anterior circulation stroke; AIREN = relevant imaging change meets imaging criteria as specified in the National Institute of Neurological Disorders and Stroke

Association/Internationale pour la Recherche et al’ Enseignement en Neurosciences (NINDS/AIREN) criteria; CAMCOG-R = Cambridge Cognitive Assessment-revised;

GDS = Geriatric Depression 15 point scale; MTA = medial temporal lobe atrophy rating; MMSE = Mini-Mental State Examination; TIA = transient ischaemic attack.
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blood–brain barrier (fibrinogen), the key water channel protein
(AQP4) and astrocytes (GFAP). The Institute of Primate
Research (IPR) internal review board of the National
Museums granted ethical approval and permission for this
entire study.

Immunohistochemistry and
immunofluorescent labelling

Ten- or 6-mm thick paraffin wax embedded coronal sections
from PSND, PSD and non-stroke controls were immunos-
tained with various primary monoclonal or polyclonal antibo-
dies: rabbit anti-GFAP antibody (1:1000, Z0334, Dako),
mouse anti-GFAP (1:50, clone 6F2, M0761, Dako), aldehyde
dehydrogenase 1 family, member L1 (ALDH1L1; 1:100 in
0.1% TrionTM X-100–PBS for immunofluorescence, clone
7G8, mouse antibody, 14-9595, eBioscience), aquaporin
4 (AQP4; 1:50, rabbit antibody, 16473-1-AP, Proteintech),
Delta Like-1 (DLL1; 1:1000, goat antibody, Ab# 76655
Abcam), LC3 (autophagic vacuoles; 1:100, rabbit antibody,
AP1801a Abgent), Poly (ADP-ribose) polymers (PARP1 of
2nd Zinc finger of DNA binding domain, 1:30, polyclonal
rabbit, Prof. Alex Burkle, University of Konstanz, Germany)

and fibrinogen (1:2000, rabbit antibody, A0080, Dako). Tissue
sections first underwent antigen retrieval by heating in the
microwave with citrate buffer for 12 min before being
quenched with Tris-buffered saline and 3% hydrogen perox-
ide. Sections were then blocked with serum derived from the
species in which the secondary antibody was generated, before
being immunostained with the primary antibody overnight
at 4�C.

Standard colour immunohistochemistry was performed using
the Vectastain ABC System. Quantification was performed fol-
lowing the general pattern we established previously for either
parenchymal or cellular protein immunoreactivity (Ihara et al.,
2010; Foster et al., 2014). Briefly for GFAP + cells, at least 20
images were acquired randomly from areas of the deep white
matter in coronal sections (Fig. 2), using a Leitz DIALUX 20
brightfield microscope coupled to a lumenera infinity digital
camera at �6.3 magnification. Using ImageJ, the total
GFAP + cells and cells showing features of clasmatodendrosis
(swollen cell body and beaded processes) were counted from
both frontal and temporal deep white matter in each case, with
the percentage of clasmatodendrotic astroglia calculated and
expressed as a ratio. To verify that only astrocytic cells were
targeted, we determined that GFAP cell counts per 0.5 mm2

correlated positively with GFAP staining per unit area

Table 2 Pathological study subject demographics and clinical features

Group Young controls Old controls PSND PSD

n 10 15 23 17

Age (years)* 61.1 � 2.3 84.2 � 2.6 84.0 � 0.8 87.6 � 1.4

Gender (F:M) 5:2 13:2 8:15 10:7

PMD (h) 46 � 9 39 � 6 37 � 4 39 � 6

Clinical and psychometric features

MMSE (0–30)* Na na 27.3 � 0.3 16.5 � 1.2

Total CAMCOG (0–106)* na na 88.8 (83–98) 62.5 (24–80)

Time from baseline to death (months) – – 63.5 (22) 64.4 (14)

Memory subscore (/27)* – – 21.4 (2.8) 15 (4.3)

Executive function subscore (/28)* – – 16.6 (1.2) 11.1 (1.9)

Clinical Dementia Rating (CDR)* – – 0.1 � 0.4 1.28 (0.25)

Hemisphere with visible change or not on CT; None, right, left, both – – 14, 3, 2, 4 8, 4, 1, 4

OCSP stroke classification LACS, PACS, POCS, TACS – – 13, 4, 2, 4 8, 4, 1, 4

Pathological markers

Braak Staging rangea 0–I I–III I–IV I–IV

Tau (AT-8) Score 0–6 (range)b – 1.3 (1–3) 1 (1) 1.3 (1–3)

CERAD Score rangec – 1–2 1–2 1––3

Vascular pathology score (range)d – 8.1 (8–10) 13.5 (13–14) 13.3 (9–17)

White matter score (SEM)e – 1.5 (0.3) 2.5 (0.4) 2.4 (0.4)

Myelin index (SEM)e – 25 (2) 30 (4) 34 (3)

Sclerotic index (SEM)e – 0.40 (0.03) 0.44 (0.02) 0.40 (0.01)

Perivascular spacing (SEM)e – 83 (8.6) 82 (4.6) 82 (5.2)

Numbers represent mean values (�2 SEM) and where given with the range of values in parentheses. The causes of death included bronchopneumonia, cardiac arrest and carcinoma

with no particular distribution in any group. The time period (weeks) of tissue fixation was in range 8–40 weeks for all the cases. There was no pathological diagnosis in young or old

controls.
aBraak staging in 490% of the cases was below III. None of the cases had neurofibrillary pathology above stage V (Kalaria et al., 2004).
bHyperphosphorylated Tau scores were derived by immunostaining sections with AT-8 antibody using a visual rating score from 0 to 6 in order of severity. AT8 immunoreactivity was

not significantly different between PSND and PSD.
cCERAD scores were determined as 1 = sparse, 2 = moderate and 3 = severe.
dVascular pathology scores were derived as described previously (Deramecourt et al., 2012).
eData for the frontal lobe only.

*Significance: P5 0.05 between young and older controls and between the PSND and PSD groups.

CERAD = Consortium to Establish a Registry for Alzheimer’s disease score; n = number; na = not available; OCSP = Oxford Community Stroke Project; PMD = post-mortem delay;

LACS = lacunar stroke; PACS = partial anterior circulation stroke; POCS = posterior circulation stroke; TACS = total anterior circulation stroke.
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Figure 2 Distribution of GFAP + clasmatodendrocytes in the deep white matter regions of post-stroke survivors. (A–C) Panels

show normal appearance of GFAP + astrocytes in the immediate superficial layers of the white matter (A), retracted astrocytes at mid-level (B)

and clasmatodendrocytes in the deep white matter, with a particularly high concentration at the level of the anterior horn of the lateral ventricles

(C). Insets in A and C show a higher magnification of the different forms of GFAP + astrocytes predominant in A and C, respectively. In C inset,

cell vacuolation is evident. Boxes 1–3 in D delineate location of images (A–C), demonstrating the distribution of GFAP + cells from the immediate

subcortical layer to the deep white matter. Illustrative coronal sections (E–H) shows the distribution of clasmatodendrocyte densities (brown

dots) in the white matter regions at different coronal levels incorporating the frontal, temporal and parietal lobes. Box in F represents

approximate location of image D. Scale bars = 100 mm (A–C); 20mm (insets). WM = white matter.
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(� = 0.754, P5 0.001). We also showed there was a positive
correlation between the frontal and temporal total GFAP
immunoreactivities (� = 0.500, P = 0.003) (plots not shown).

For immunofluorescent labelling, the primary antibodies
were removed and sections washed with PBS prior to incuba-
tion at room temperature for 1 h with goat anti-mouse second-
ary antibody, Dylight 650 conjugated (1:200, 84545, Thermo
Scientific) and goat anti-rabbit secondary antibody, Texas Red
conjugated (1:200, T2767, Life Technologies). Sections were
counterstained and mounted with DAPI incorporated mount-
ing medium (Dako). A Leica TCS SP2 UV AOBS MP (upright
confocal microscope) and a Life Technologies EVOS FL (LED)
fluorescent microscope were used for image capture.

White matter rating scale and myelin
density

Severity of white matter damage and myelin density was as-
sessed by examining Luxol fast blue and haematoxylin and
eosin stained sections using the Zeiss Axioplan 2 research
grade microscope at �5 and �10 magnification. The myelin
index was determined by assessing Luxol fast blue stained sec-
tions (Ihara et al., 2010). To achieve this the entire white
matter region in 10-mm Luxol fast blue-stained sections of
the whole coronal face at the level of Brodmann area (BA) 9
in the frontal lobe and BA 36 in the temporal lobe per
Newcastle Brain Reference Map (Perry and Oakley, 1993)
was outlined automatically using the wand tool on Image
Pro software (Mediacybernetics, USA) as described previously
(Ihara et al., 2010). Digital images of the white matter area
were then converted to grey scales, corresponding to the stain-
ing intensity, from point 0–127 (0, white; 255, black). The
intensity profile was then divided into four quartiles (the first
quartile 0–29, the second 30–62, the third 63–94, and the
fourth 95–127) and the per cent area for each quartile was
calculated. The median grey level of each quartile (14.5, 46.0,
78.5, and 111.0), an estimate for the staining intensity, was
then multiplied by % area/100 in each quartile, which gave the
total myelin index. Highest myelin index value indicates no
myelin loss, whilst lowest myelin index indicates total myelin
loss and the levels inbetween indicate varying degrees of
myelin density. We also verified the degrees of myelin density
(normal, mild, moderate and severe) by imaging adjacent
haematoxylin and eosin stained sections in a subset of cases
(n = 35). These data together with accumulation of degraded
myelin basic protein showed remarkable consistency in the
assessment of myelin loss between Luxol fast blue and haema-
toxylin and eosin (Sjobeck et al., 2005; Ihara et al., 2010;
Smallwood et al., 2012).

The intensity of fibrinogen immunoreactivity across the
whole white matter in coronal sections taken from identical
levels (equivalent to BA 9 at level of precentral gyrus) from
each animal, was determined by ImageJ integrated optical
density analysis (Kalaria et al., 2012). The fibrinogen immu-
noreactivity represented an arbitrary scale determined from the
digital images (as above). Images from sham were set at a
value of 10 on the scale and all groups were normalized to
the sham group.

To assess the degrees of arteriolosclerosis, the sclerotic index
(SI) and perivascular spaces were quantified in the white
matter of the brains, inclusive of controls. The Vascal

programme (Yamamoto et al., 2009) was used to measure
the external diameter (Dext) of the vessel and the diameter
(Dint) of the lumen. These values were then used to calculate
the sclerotic index and perivascular space for each vessel using
the equation: SI = 1� (Dint/Dext).

Cellular morphometry and
microvascular markers

For glial cell morphometry, 30-mm thick paraffin sections were
stained with cresyl fast violet (Khundakar et al., 2009) and the
cell density was determined using the optical dissector method
under a Zeiss Axioplan Photomicroscope. Cells in the cortical
layers or white matter regions of interest were distinguished by
their shape and subtle features (Khundakar et al., 2009). Glial
cells were identified by their spherical shape, absence of Nissl
staining in the cytoplasm and the heterogenous arrangement of
chromatin in the nucleus. Neurons were identified by the pres-
ence of a Nissl-stained cytoplasm, pale nucleus and single iden-
tifiable nucleolus in cells. The reference area was mapped out
using a 2.5 � objective and Visiopharm Integrator System
(VIS) software. In pilot studies, we determined that �40
frames in up to three sections from each case comprising
4100 cells per case had to be assessed to reduce the sampling
error or the coefficient of error value (defined as the standard
error of the mean of repeated estimates divided by the mean)
to a satisfactory level, P5 0.05 (Burke et al., 2014; Foster
et al., 2014).

For the microvascular markers, 20-mm thick serial sections
were immunostained with antibodies to GLUT1 (1:200,
ThermoScientific UK), a marker for endothelial cells in micro-
vessels. GLUT1 immunostained microvessel profiles were then
quantified in whole coronal sections as described previously
(Burke et al., 2014). As above, frontal lobe sections were ana-
lysed at the level of the olfactory bulbs incorporating BA 9 and
the temporal lobe sections at the level of the anterior hippo-
campus and BA 36 per Newcastle Brain Map (Perry and
Oakley, 1993).

Except for the neuropathological examination (by T.M.P
and R.K) described above, all of the morphological analyses
were always performed under operator blinded conditions.
Samples were appropriately identified with coded sequential
numbers. We also repeated all staining at least twice and
used at least three sections for staining throughout (Foster
et al., 2014). In addition, at least two of each positive and
negative controls were included to monitor the quality of
staining.

Statistical analysis

Statistical analysis was carried out using SPSS Version 21
with the level of significance set at P5 0.05. Normal distri-
bution of values was first tested using the Shapiro-Wilk test.
In previous analyses, data found to be not normally distrib-
uted were analysed using non-parametric methods. Group
means such as PSND, PSD and controls were compared
using ANOVA with post hoc Tukey tests for normal data
or Kruskall-Wallis, Newman-Keuls and the Mann-Whitney
U-tests for non-normally distributed values e.g. differences
between pathological variables and total GFAP + cells or
the ratios of clasmatodendrocytes in different groups.
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Spearman’s rank � correlation was used to assess correl-
ations between clinical and neuropsychometric variables or
specific protein immunoreactivity measures and microvascu-
lar changes.

To examine the associations between exposure to putative
risk factors for dementia, Cox proportional regression analyses
were used to obtain univariate proportional hazard ratios for
each risk factor, using time (days) from index stroke to demen-
tia as the dependent variable. If a patient died, data were right
censored. The date of onset of dementia was assumed to be at
the midpoint between the two assessments where dementia
status changed. Hazard ratios were given according to pres-
ence or absence of the risk factor, or per point on quantitative
scales, as appropriate. Following identification in univariate
models, frontal white matter hyperintensity volume and other
significant predictors of dementia were entered into a multi-
variate Cox regression model.

Results

Frontal lobe white matter hyperin-
tensity as a predictor of survival to
dementia

The frontal lobe white matter hyperintensity volume was

determined in 106 subjects scanned during life. Figure 1A

shows the survival curves to dementia in non-demented

subjects, who remained stable and those who declined to

dementia after stroke. Univariate Cox survival analysis for

time to dementia indicated volume of white matter hyper-

intensities was a significant neuroimaging predictor of

shorter time to dementia onset (Table 1). The multivariate

model controlling for age also showed frontal white matter

hyperintensity volume as an independent predictor of sur-

vival to dementia [P = 0.034, Hazard ratio 95% 1.88 (1.05

to 3.36)], indicating increased white matter hyperintensities

volume in those who developed dementia. However, when

we included the cognitive scores there was only a trend for

the frontal white matter hyperintensity volume to predict

survival to dementia (Table 1). Of these post-stroke sur-

vivors who had MRI in life, 14 stable (PSND) and de-

cliners, who developed post-stroke dementia (PSD) came

to autopsy. Pathological examination showed typical vas-

cular and ischaemic stroke related tissue changes. The total

vascular pathology scores between all the PSND and PSD

were not significantly different (Table 2).

Frontal lobe white matter astrocytes
in post-stroke survivors

To explain the differential findings of the frontal white

matter hyperintensity volumes, we attempted identification

of markers to delineate the two groups. We hypothesized

that reactive cells of the gliomicrovascular unit or myelin

are more affected in the frontal white matter of PSD com-

pared to PSND subjects. We first noted that there was

increased diffuse fibrinogen immunoreactivity in the frontal

white matter in PSD compared to PSND subjects [Fig. 1B(d

and h)]. The fibrinogen immunoreactivity in PSD subjects

was frequently associated with normal-appearing and

rounded astrocytic cells [Fig. 1B(h)]. Using light and fluor-

escent microscopy, we assessed GFAP + astrocytes in cor-

onal sections throughout the brain with emphasis on the

frontal and temporal white matter. We observed GFAP +

astrocytes of various shapes and sizes (Fig. 2) in both

frontal and temporal white matter. As expected ‘normal’

GFAP + astrocytes (Fig. 2A) had numerous long, fine pro-

cesses. However, in the deeper layers of the white matter

we noted GFAP + clasmatodendrotic cells with swollen and

vacuolated appearance and many bearing isolated beaded

processes (Fig. 2C). Examination of complete coronal sec-

tions incorporating the whole of the white matter revealed

gradients of normal to clasmatodendrotic astrocytes

(Fig. 2D). The deeper layers exhibited many more clasma-

todendrocytes than the superficial layers with a high con-

centration near the ventricles. Mapping of coronal sections

(Fig. 2E–H) from the four lobes of PSD and PSND subjects

indicated that the highest concentration of clasmatodendro-

cytes was apparent in the frontal lobe within the deep

white matter at the level of the middle frontal gyrus and

anterior horn of the lateral ventricles and incorporating the

centrum semiovale region. Observations from all the 40

post-stroke brains (Table 2) indicated that the density of

clasmatodendrocytes found in the subcortical regions

were in following decreasing order: frontal white

matter4 prefrontal white matter5 temporal white mat-

ter5 parietal white matter4 lenticular nuclei regions.

Clasmatodendrocytes in the external or internal capsules

were seldom present.

Quantification of the total GFAP + cells in the white

matter and the percentage of clasmatodendrocytic cells

with swollen cell bodies and beaded processes revealed dis-

similarities between the PSND and PSD groups and com-

pared to young and older controls (Fig. 3). There were no

significant differences between PSND and PSD groups with

respect to the total GFAP + cells in both frontal and tem-

poral deep white matter (P = 0.850 and P = 0.745, respect-

ively). However, the presence of stroke increased the

number of astrocytes as shown by the increased total

number of GFAP + cells in the PSND and PSD groups in

the temporal white matter compared to the similar age

controls (Fig. 3A; P = 0.007 and P = 0.018, respectively).

We also found an ageing effect in that the older controls

had fewer astrocytes in both the frontal (P = 0.04) and tem-

poral white matter (P = 0.007) compared to younger con-

trols (Fig. 3A). These changes were restricted to the frontal

white matter rather than the grey matter. The 3D morpho-

metric analyses showed that glial cell density in the neocor-

tex (layers III and V) was not changed between PSND and

PSD subjects (P4 0.05). There was also paucity of clasma-

todendrosis in the neocortex.

Most remarkably, we observed that the percentage of

clasmatodendrocytes in the frontal white matter was
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significantly greater (by 100%) in the PSD than in the PSND

group (Fig. 3B; median = 0.24 for PSD, median = 0.02 for

PSND, P = 0.030), but a similar increase was not evident in

the temporal white matter (median = 0.03 for PSD and 0.04

for PSND, P = 0.725). In comparison with older age-

matched controls (median = 0.015 and 0.002 for frontal

and temporal white matter, respectively), there was more

clasmatodendrosis in the frontal white matter of PSD

(P = 0.082), which was not apparent in the PSND

group (Fig. 3B). We also found a striking difference be-

tween older and younger controls (P = 0.023), with

almost no presence of clasmatodendrocytes in either the

frontal or temporal white matter in young controls.

Multiple regression analysis for dependent variable (par-

ameter from cognitive test), with independent variables

(age, frontal or temporal white matter GFAP + cell num-

bers, ratio of clasmatodendrosis) performed for PSND

and PSD patients, showed weak inverse correlations

with various cognitive function tests including MMSE

(� = 0.355, P = 0.024), CAMCOG (� = 0.348, P = 0.028)

and total memory (� = 0.338, P = 0.033) scores as a func-

tion of age.

To exclude possible post-mortem effects on the occur-

rence of clasmatodendrosis, subjects with mild (510%)

and severe (510%) clasmatodendrosis were divided into

two separate groups. There were no statistical differences

in post-mortem delay (h) between cases with mild and

severe clasmatodendrosis (Supplementary Table 1). There

were more cases with severe clasmatodendrosis in the

PSD group than in the PSND and control groups. In add-

ition, the presence of clasmatodendrosis was not related to

tissue fixation time or with the age or gender of the

subjects.

Double immunofluorescent staining showed co-localization

of GFAP and AQP4 in astrocytes (Fig. 4). In the areas with

normal GFAP staining, AQP4 displayed an evenly distribu-

ted pattern with punctate reactivity within the astrocytic

end-feet. In areas of clasmatodendrosis, AQP4 was aggre-

gated in dense peripheral cellular deposits at the edge of

rounded or swollen GFAP + cells (Fig. 4A). We also noted

transitional forms of GFAP + cells or astrocytes where they

exhibited reduced processes and cell body swelling (Fig. 4A).

The disintegration of the GFAP + cells was further evident in

astrocytes immunolabelled with ALDH1L1 antibodies.

ALDH1L1 as a cytoplasmic marker showed the differential

disintegration of the clasmatodendrocytes. The cytoplasmic

structure was disrupted in more cells with soma vacuolation

in contrast to the remnant GFAP immunoreactivity in cyto-

skeletal proteins (Fig. 4B). In subsequent experiments, we

showed that clasmatodendrocytes were also immunoreactive

for another marker, DLL1, which labelled most astrocytes.

Consistent with the autophagic mode of cell death, we found

that clasmatodendrocytes expressed PARP1 and LC3

immunoreactivities (Supplementary Fig. 1).

We further showed that the white matter microvessel or

capillaries were denuded of AQP4 immunoreactive astro-

cytic end-feet. This was readily seen in sections double

immunolabelled with AQP4 and COL4, particularly in

the PSD cases (Fig. 5). We noted that numerous capillaries

exhibited absence of astrocytic end-feet that was most con-

spicuous in areas of fibrinogen immunoreactivity in subjects

with PSD.

In additional experiments, we also found that white matter

damage severity score correlated positively with the vascular

Figure 3 Quantification of GFAP + cell numbers in the

frontal and temporal white matter in controls, PSND and

PSD subjects. (A) Box plots show total GFAP + astrocytes in the

frontal and temporal white matter. (B) Box plots show ratios of the

number of clasmatodendrocytes to total cells in the two white

matter regions. The y-axis values are �100. Number of samples for

each group are given in Table 2. The analysis was performed in

duplicate and gave similar results. *Significance: frontal white matter

total GFAP, young Control versus Control P = 0.04; temporal white

matter total GFAP, young Control versus Control P = 0.007,

Control versus PSND P = 0.007, Control versus PSND P = 0.018;

frontal white matter ratios GFAP, young Control versus Control

P = 0.023, Control versus PSD P = 0.033, PSND versus PSD

P = 0.03. (Mann-Whitney U-test) between the groups.

Ycontrol = young controls. Control represents age-matched

subjects to all groups except young controls. WM = white matter.
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score (� = 0.674, P5 0.001) but inversely with the myelin

index (� = �0.750, P50.001). Higher myelin index meant

better preserved myelin, as the index in this context is a meas-

ure of normal myelin (Ihara et al., 2010). The myelin index

was relatively higher in the control compared to PSND and

PSD groups in the frontal white matter, and the variation

showed a trend towards significance (P = 0.069, Kruskal–

Wallis Test). The difference in myelin index between controls

Figure 4 Transformation of GFAP + cells in the deep white matter in relation to microvessels. (A) Triple immunofluorescent

staining of GFAP (Cy5, Dylight 650 shown in green), AQP4 (Texas Red, shown in red) and DAPI for astrocytes and their processes. A(a1–4) is

from a PSND case; A(b1–4) is from a PSD case. A(c) AQP4 staining is mainly in the end-feet of astrocytes, frequently outlining a vessel (V). A(d)

shows an astrocyte with intermediate level of pathology: AQP4 immunostaining is also seen along the process and in the cellular membrane (white

arrow). A(d) Area outlined in a4. A(e) Higher magnification of area outlined in b4, demonstrates AQP4 is aggregated in dense peripheral cellular

deposits, at the periphery of the GFAP stained swollen astrocyte. A(f) Another example of astrocytes with GFAP stained swollen bodies and

fragmented processes, and demonstrates that AQP4 is located at the edge of cell bodies of retracted astrocytes (white arrows). A(d–f) The

progressive degenerative change or transition of the astrocytes. DAPI was used for nuclear counterstaining, which is eventually lost from the

astrocytes. (B) GFAP and ALDH1L1 immunoreactivities in clasmatodendrocytes in the deep white matter in a PSD subject. B(a–d)

Clasmatodendrocytes representing degenerating GFAP + cells (arrows in b) lacking cytoplasmic ALDH1L1 reactivity. Scale bars in A (both in b4

and f) = 20mm and in B = 25mm.
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and the pathological groups (PSND, PSD) was surprisingly

lower than expected in both frontal and temporal white

matter, possibly due to a significant amount of white matter

disease in the control group.

Blood–brain barrier integrity and
presence of clasmatodendrocytes in
frontal white matter in a non-human
primate model

To demonstrate that the phenomenon of clasmatodendrosis

occurring in white matter was associated with blood–brain

barrier changes and not a consequence of antemortem or

post-mortem modification within the brain tissue, sections

from baboons subjected to cerebral hypoperfusion by three-

vessel occlusion were immunolabelled with antibodies to

fibrinogen, GFAP and AQP4 (Fig. 6). In these series of

experiments, we first quantified fibrinogen immunoreactiv-

ity in the frontal white matter incorporating the equivalent

region of interest as in the PSD subjects. Analysis at

different periods of survival after three-vessel occlusion

showed that the greatest amount of fibrinogen immunor-

eactivity was evident in 14-day animals. Fibrinogen immu-

noreactivity was significantly increased at 14 days

compared to animals that survived 1 day after the occlusion

as well as the sham operated animals (Fig. 6A). These ob-

servations were consistent with the development of severe

white matter changes at 14 days after three-vessel occlu-

sion, predominantly in the deep white matter

(Supplementary Fig. 2). Using double immunofluorescent

methods as with human post-mortem tissue (Fig. 6B), we

analysed a series of adjacent coronal sections from the

baboon brains. In the 14 day animals, remarkably we

found similar distribution of GFAP + clasmatodendrocytes

with the characteristic AQP4 immunoreactivity at the edge

of the retracted cell bodies (Fig. 6B). This phenomenon was

not evident in the sham or 1 day animals and as in human

cases, there were no apparent white matter infarcts or is-

chaemic lesions in the vicinity of the clasmatodendrocytes.

Furthermore, the white matter changes were associated

with myelin loss, collapsed and degenerated microvessels

Figure 5 Redistribution of AQP4 from COL4 labelled microvessels and capillaries in the deep white matter in PSD. (A–C)

Panels show a AQP4 and COL4 labelled capillary in deep white matter of a PSND case demonstrating localization of AQP4 immunoreactivity in

the vessel wall (C). (D–F and insets) show lack of co-localization of AQP4 and COL4 in regions where clasmatodendrocytes were found. The

disrupted distribution of AQP4 is evident in F (arrow). Scale bar = 25mm.

Clasmatodendrosis in post-stroke dementia BRAIN 2016: 139; 242–258 | 253

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv328/-/DC1


labelled with endothelial (GLUT1) and basement mem-

brane (COL4) markers at 14 days after three-vessel

occlusion (Supplementary Fig. 3). The subsequent reduction

in fibrinogen immunoreactivity and the lack of

clasmatodendrocytes (Fig. 6) together with increases in

immunoreactivities of the GLUT1 and COL4 in capillaries

within the frontal white matter beyond 14 days were con-

sistent with recovery of the patency or the reconstruction of

Figure 6 Integrity of the blood–brain barrier and presence of clasmatodendrocytes in the frontal white matter in a non-human

primate model of cerebral hypoperfusion. [A(a)] Quantification of fibrinogen reactivity in the frontal white matter of adult baboons

subjected to three-vessel occlusion (3VO). Brain images [A(b and c)] within the graph show the approximate coronal level of sampling for

immunofluorescent staining. Each time point denotes the mean level of fibrinogen from n = 4–7 animals and these results were obtained from

both hemispheres. There were no differences between the right and left hemispheres. ANOVA showed that there was a high variation in

fibrinogen immunoreactivity across all time points (P5 0.01). *Significance P5 0.05 compared to 1 day and sham groups. [B(a–c)] Astrocytes

from the frontal white matter of a sham animal, demonstrating normal distribution of GFAP [B(a)] and AQP4 [B(b)], with no sign of abnorm-

alities. B(c) is the merged image of B(a and b). Arrows denote AQP4 around periphery of blood vessel (V). [B(d–f)] Astrocytes in white matter

of an animal after 14 days of three-vessel occlusion, demonstrating clasmatodendrosis of the astrocytes immunolabelled with GFAP [B(d)] and an

abnormal distribution of AQP4 [B(e)]. B(f) A merged image of B(d and e). The inset shows high magnification of a clasmatodendrocyte identified

in B(f) (arrow) with typical peripheral distribution of AQP4 on the cell body. Scale bar = 50 mm; inset (f) = 20mm.
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the microvasculature to establish tissue perfusion

(Supplementary Fig. 3).

Discussion
Our study provides strong evidence for another patho-

logical substrate which contributes to the development of

dementia in post-stroke survivors, most of whom had vas-

cular dementia. We found highly increased degeneration of

astrocytes in PSD subjects who had greater more confluent

white matter hyperintensities volumes. Clasmatodendrosis

was particularly prominent in the deep white matter of

the frontal lobe. Whereas markers of both myelin and

axon damage including the myelin index and immunoreac-

tivities of degenerated myelin basic protein, amyloid pre-

cursor protein and SMI32 in the white matter (Akinyemi,

2014; Foster et al., 2014) tended to be increased in the PSD

compared to the PSND subjects, quantification of clasma-

todendrosis clearly separated the post-stroke stable from

those who developed dementia. The experimental design

of the study also allowed us to demonstrate that the

observed clasmatodendrosis was not necessarily associated

with peri-infarct regions (as we avoided these) but largely

within the deep white matter undergoing rarefaction both

in human and non-human primate brains. Our findings

suggest that clasmatodendrosis is a pathological gauge for

disruption of gliovascular interactions (Abbott et al., 2006)

likely instigated by underlying blood–brain barrier abnorm-

alities in the deep white matter of the frontal lobe. We

propose that this is an important factor, which explains

the association between white matter hyperintensities and

cognitive dysfunction in stroke survivors, cerebral small

vessel disease and vascular dementia. The findings are con-

sistent with previous observational studies indicating the

presence of clasmatodendrosis in dementing disorders

with white matter pathology (Tomimoto et al., 1996;

Sahlas et al., 2002).

Clasmatodendrosis may occur during different condi-

tions. Both neuromyelitis optica and central pontine myeli-

nolysis are primary astrocytopathies with secondary

demyelination. Clasmatodendrosis in the absence of demye-

lination or axonal degeneration is one of the six different

lesion types described in neuromyelitis optica (Misu et al.,

2013). Another type occurs with a variable degree of astro-

cyte clasmatodendrosis, plaque-like primary demyelination

and preservation of axons. These different types of lesions

may indicate how the pathology progresses or be a patho-

logical change accompanying other diseases, such as in is-

chaemic stroke. In acute haemorrhagic leukoencephalitis

(Robinson et al., 2014), there was early and widespread

astrocytic injury with swollen cell bodies and beaded pro-

cesses in the absence of demyelination, suggesting that de-

myelination is secondary to astrocyte injury, similar to that

in neuromyelitis optica and central pontine myelinolysis

(Misu et al., 2013; Popescu et al., 2013; Lucchinetti

et al., 2014).

We also found that although the total astrocyte popula-

tion in the frontal white matter was decreased, the numbers

of clasmatodendrocytes were increased in older age. This is

consistent with the fact that age per se is an important

contributor to the progression of white matter pathology

during brain ageing and relates to the increased white

matter hyperintensity volume (Inzitari et al., 2009).

The frontal white matter was more affected than the tem-

poral white matter in PSD patients, which possibly relates

to the frontal lobe being more vulnerable in cerebrovascu-

lar disease. Previous imaging and pathological studies have

suggested that the medullary arteries and white matter in

the frontal lobe are particularly susceptible to a haemo-

dynamic derangement, leading to much more severe white

matter damage than in the temporal lobe, during ageing

and vascular disease (Furuta et al., 1991; Ihara et al.,

2010). Tomimoto et al. (1996) demonstrated that there is

significantly more fibrinogen and immunoglobulins in

brains containing clasmatodendrosis than in brains with-

out, which suggested dysfunction of the blood–brain bar-

rier. In addition, the reduction of cerebral blood flow and

cerebral perfusion was suggested to contribute to cognitive

impairment in chronic stroke patients (Mori et al., 1994).

We previously reported the association between the global

cerebral blood flow in the grey matter/white matter ratio

and PSD (Firbank et al., 2011) and it is plausible that

blood flow is a direct cause of clasmatodendrosis (Kraig

and Chesler, 1990; Qin et al., 2010).

Variations in clasmatodendrosis may also be influenced

by various factors. The degree of clasmatodendrosis

increased from the immediate subcortical layers toward

the deep white matter region, which may be due to a

staged response, possibly in relation to disease duration

or severity, or possibly a mixture of both. The differing

areas of clasmatodendrosis in patients suggests the vari-

ation in the extent of the stroke or a different response

to remote stroke lesions (Allan et al., 2011). Factors, such

as previous symptomatic stroke, previous asymptomatic

stroke seen on imaging, recurrent stroke, several stroke le-

sions, volume of the infarct and location of stroke, were

also associated with PSD (Pendlebury and Rothwell, 2009).

However, the experimental evidence showed that clasmato-

dendrosis occurs rather acutely after induction of cerebral

hypoperfusion in non-human primates suggesting that re-

current changes in perfusion pressure may constantly dis-

rupt gliovascular interactions, which progressively worsen

with ageing. Clasmatodendrosis of astrocytes can occur due

to a drop in tissue pH irrespective of the presence of gly-

colysis (Friede and van Houten, 1961). Therefore, it is ne-

cessary to distinguish normal tissue glycolysis from any

antemortem or post-mortem effects. We found no differ-

ences in the post-mortem delay times between samples

with mild and severe clasmatodendrosis, suggesting the dif-

ference in the severity of clasmatodendrosis between PSND

and PSD was an actual representation of astrocyte path-

ology. Furthermore, experimental evidence from perfused

fixed baboon brains showed that similar clasmatodendrosis
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was associated with blood–brain barrier protein leakage

and abnormalities in the microvascular endothelium result-

ing from cerebral hypoperfusion. Furthermore, our findings

here are entirely consistent with the association of gliovas-

cular alterations and cognitive deficits we reported earlier

(Holland et al., 2015) in a mouse model of sustained cere-

bral hypoperfusion with features of small vessel disease

(white matter disruption) induced by bilateral common ca-

rotid stenosis (BCAS) (Okamoto et al., 2012). In our BCAS

model, we showed that gliovascular changes revealed a

marked increase in microvessel diameter, vascular wall dis-

ruption, fibrinoid necrosis, haemorrhage, and blood–brain

barrier alterations with widespread reactive gliosis, includ-

ing displacement of the astrocytic water channel, AQP4

(Holland et al., 2015). The gliovascular changes reported

in this model were more pronounced in the subcortical

thalamic regions but similar alterations occured in the

corpus callosum. Such spatial dissociation between the vas-

cular basement membrane and the astrocyte endfeet also

occurs in ischaemic brain in spontaneously hypertensive

rats with middle cerebral artery occlusion (MCAO)

(Yamashita et al., 2009). The basement membrane/extracel-

lular matrix linking the endothelial cells appear essential

for maintaining the integrity of the neuro- or gliovascular

unit, which is disrupted by tissue plasminogen activator

treatment.

The altered AQP4 distribution in the shrinking processes

and the swelling of astrocytic cell bodies relates to changes

in water mobility or the disturbance of water homeostasis

(Taniguchi et al., 2000). It may also affect the local micro-

circulation, since AQP4 is located predominantly at the end

foot and ependyma of astrocytes, which wrap around brain

microvessels (Badaut et al., 2002). AQP4 provides struc-

tural integrity to the cerebral vasculature (El-Khoury

et al., 2006) and also promotes water exchange between

blood and CSF in pathophysiological conditions. The oc-

currence of clasmatodendrosis in Alzheimer’s disease com-

bined with cerebrovascular disease but not in Alzheimer’s

disease without vascular pathology (Tomimoto et al.,

1996), indicates an involvement of vascular events in the

onset of clasmatodendrosis. It is expected that astrocyte

pathology is differentially involved in Alzheimer’s disease,

vascular dementia and mixed (Alzheimer’s disease and vas-

cular dementia) subjects and the severity of clasmatoden-

drosis may depend on the extent of cerebrovascular

pathology in these diseases.

Are astrocytes an early target before neuronal or axonal

damage in ischaemic injury? Astrocyte cultures from the

hippocampus (Hulse et al., 2001), after exposure to acidic

Ringer’s solution and mitochondrial inhibition, showed

that the greatest degree of clasmatodendrosis occurred in

the pyramidal cell body layers and closely paralleled that

seen in vivo (Friede and van Houten, 1961). Given

these observations, we cannot rule out that low level

clasmatodendrosis occurs in the pyramidal cell layers

of the cortex above the white matter in our cases and

together with white matter astrocyte pathology could

directly or indirectly causes neuronal damage, resulting in

cognitive dysfunction (Gemmell et al., 2012; Foster et al.,

2014).

We have provided clinical, pathological and experimental

evidence to support the interpretation of our findings on

how cognitive function in ageing subjects with greater vol-

umes of white matter hyperintensities may decline.

However, there are some limitations of the study. We

could not provide pathological data from all the post-

stroke survivors who had MRI in life but were only able

to analyse a sizeable sample as a proxy. We were also

limited in assessing blood–brain barrier or perfusion

changes in the white matter in vivo (Wardlaw et al.,

2009) to complement the pathological findings and show

directly that frontal lobe white matter perfusion is more

vulnerable in post-stroke survivors or those subjects with

cerebral small vessel disease who decline cognitively to de-

velop dementia.

In summary, our findings suggest a novel association be-

tween the irreversible astrocyte injury (clasmatodendrosis)

and PSD. This large aetiological study of clasmatodendrosis

after stroke enables us to understand more about the

pathophysiological substrates associated with brain

ageing, PSD and vascular dementia. The information

gained may also be invaluable in producing interventions

to reduce the rate of clasmatodendrosis, which in turn

could help to reduce the burden of dementia.
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