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Abstract: Carbon nanomaterials (CNMs) have received tremendous interest in the area of nanotech-
nology due to their unique properties and flexible dimensional structure. CNMs have excellent
electrical, thermal, and optical properties that make them promising materials for drug delivery,
bioimaging, biosensing, and tissue engineering applications. Currently, there are many types of
CNMs, such as quantum dots, nanotubes, nanosheets, and nanoribbons; and there are many others
in development that promise exciting applications in the future. The surface functionalization of
CNMs modifies their chemical and physical properties, which enhances their drug loading/release
capacity, their ability to target drug delivery to specific sites, and their dispersibility and suitability in
biological systems. Thus, CNMs have been effectively used in different biomedical systems. This
review explores the unique physical, chemical, and biological properties that allow CNMs to improve
on the state of the art materials currently used in different biomedical applications. The discussion
also embraces the emerging biomedical applications of CNMs, including targeted drug delivery,
medical implants, tissue engineering, wound healing, biosensing, bioimaging, vaccination, and
photodynamic therapy.

Keywords: drug delivery; biomedical scaffold; tissue engineering; wound healing; biosensing;
bioimaging; vaccination; photodynamic therapy; bioavailability; cytotoxicity

1. Introduction

CNMs are an emerging field of nanomaterials that offer a propitious approach in
drug delivery, tissue regeneration, medical implants, and other applications [1]. CNMs are
defined as materials with sizes ranging from 1–100 nm. As a whole, nanotechnology has
become a promising field, which has revolutionized the cure and diagnosis of diseases;
this is due to the development of CNM-based materials with potential applications for
disease cure and diagnosis [2]. CNMs possess unique properties that can be tuned through
production methods to enhance characteristics such as optical activity, multifunctional
surface morphology, surface area, drug loading efficacy, biocompatibility, and immuno-
genicity. This high degree of control over several key characteristics of the material offers
advantages over metal-based biomaterials, such as titanium. A higher degree of freedom
when engineering the material allows for more sophisticated applications, such as highly
controlled drug release and drug delivery [3]. There are several types of CNMs: fullerene
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(or Buckyball), nano-diamond, amorphous nanocarbon, graphene nanosheets, graphene
oxide (GO), single-walled carbon nanotube (SWCNTs), multi-walled carbon nanotube
(MWCNTs), graphene quantum dots (GQDs), and carbon foam [4]. CNM families feature
unique characteristics that can be applied to diverse biological applications [5]. They also
offer potential anti-cancer and anti-inflammatory properties [6].

Recent studies have indicated that there are various reasons and factors responsible
for the toxicity of CNMs. The size and shape, as well as the aspect ratio, of CNMs all affect
their toxicity upon cellular uptake, interfering with cellular processes both in the cytoplasm
and in the nucleus. Reports also suggest [7] that CNMs are subject to adulteration or
contamination by certain substances, such as metal ions, during synthesis; these substances
also contribute to the overall cytotoxicity of the final product materials. CNMs can damage
lipids and DNA when they are taken up by cancer cells as they stimulate reactive oxygen
species (ROS) and cause cell death [8]. Similarly, increasing ROS levels by graphene
materials affects the metabolic activity of the macrophages and damages the mitochondrial
membrane, which results in apoptosis [9].

The surface functionalization of CNMs has been employed to improve their biodegrad-
ability, safety, and aqueous solubility. The functionalization of CNMs improves delivery
efficiency through reduced clearance and prolonged retention in the body [7]. However,
some research has shown that some methods of surface functionalization, such as cationic
or anionic functionalization, may lead to higher toxicity compared to non-functionalized
CNMs. Evidence has shown that the functionalization of CNMs creates a more dynamic
material through the “tagging” of different drugs, peptides, nucleic acid, amino acids,
and proteins on the surface of CNMs, which can enhance their efficiency, and solubility
while reducing their toxicity [10,11]. Various interactions, such as covalent, ionic, Van der
Waal or π–π, can be used to link different functionalizing agents and/or biologically active
molecules to the CNMs [11]. These interactions help to graft the functional groups over
the surface of CNMs and allow for strategic placement and functionalization at specific
regions of the CNMs’ shape [12]. Because these modified CNMs feature various inherent
properties, they are extensively used. Therefore, we conducted a review of CNMs, em-
phasizing the different types of CNM, their importance in drug delivery, and their role in
biomedical applications.

2. Fabrication of CNMs

Carbon is one of the most plentiful elements on the planet. It is found in nature
as graphite, diamond, and coal in its basic form. Due to their unique hybridization
characteristics and their susceptibility to perturbation during synthesis, nanostructured
allotrope forms of carbon have been extensively studied over the last two decades, allowing
the precise modification of material properties. There are various hybridization states of
carbon (Figure 1). The chemical, mechanical, thermal, and electrical characteristics of
various allotropic forms are closely connected to their structure and hybridization state,
allowing the same material to be used for a variety of applications.

CNMs can be divided into 0D-CNMs (i.e., fullerenes, particulate diamonds, and
carbon dots), 1D-CNMs (i.e., CNTs, Carbon Nanofibers (CNFs), and diamond nanorods),
2D-CNMs (i.e., graphene, graphite sheets, and diamond nanoplatelets), and 3D-CNMs. All
decreased dimensionalities, including fullerenes, contain CNMs made completely of sp2-
bonded graphitic carbon [12,13]. Figure 1 shows various types of carbon nanoallotropes.
Table 1 shows various types of carbon nanoallotropes and their commercial application.
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Table 1. Various forms of carbons and their commercial and laboratory applications [14].

Carbon Based
Materials

Presence in Environment and
Popular Synthesis Method Properties Applications Ref.

Carbon Nanotubes
Laboratory-scale synthesis

Arc discharge, Laser ablation,
Chemical Vapor Deposition

High strength, Electronic
properties

Biosensors, nanocomposite
materials as scaffolds for

tissue engineering.
[15,16]

Fullerenes
Manufactured at large scale in

industry and laboratory.
Chemical Vapor Deposition.

High strength, insoluble in
water. Exhibit pi bonding

between atom and are
stable structure.

Pharmaceutical industry.
Found to be beneficial in IT

devices and diagnostic
purposes.

[17]

Carbon Nanofibers

Laboratory production,
chemical vapor deposition, phase
separation electrospinning, and

templatin.

The thermal conductivity
of the molecules is high;
they also exhibit greater

strength

Cancer therapy, biosensing,
tissue engineering, and

wound dressing.
[18–20]

Diamond

Can be obtained naturally or by
artificial means.

Rapid pressurisation, pulsed laser
ablation

Hard, non-volatile
substance.

Used as lubricant in higher
temperature. Used in

jewellery design,
biomedical etc.

[21–23]
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Table 1. Cont.

Carbon Based
Materials

Presence in Environment and
Popular Synthesis Method Properties Applications Ref.

Graphene

Obtained by artificial means
through laboratory production
Arc discharge, chemical vapor

deposition, mechanical exfoliation

Most reactive form of
carbon. Flammable.

Biosensing, bioimaging,
bone implantation, drug

delivery.
[24,25]

Graphite
Laboratory and industrial

production, can be obtained
through natural process.

Lubricity, anisotropic,
electronics conductivity.

Mechanical heart valves,
electrode components,

lubricants.
[26]

2.1. Fullerenes

Buckminsterfullerene (C60) is the third carbon allotrope, discovered in 1985 by Curl,
Kroto, and Smalley. Carbon atoms make up fullerene molecules, which are hollow spheres,
ellipsoids, or tubes. The bucky shapes of spherical fullerenes are also known as buckyballs.
The enormous curvature of these hollow spheres’ conjugated-electron systems enables
rich chemical behavior, permitting the synthesis of a wide range of derivatives, making
the fullerene family a useful building block. In medicinal chemistry, it is assumed that
three-dimensionality, length, hydrophobicity, and electronic configurations make them
an attractive topic. The peculiar configuration of their carbon cage, along with their enor-
mous derivatization spectrum, makes them a possible therapeutic agent. Fullerenes are
insoluble in nature; thus, their biological applications have drawn growing interest. The
fullerene family, especially C60, offer attractive photographic, electrochemical, and physical
properties that can be used in several medical fields [27]. Fullerene derivatives have been
characterized as inhibitors of human immunodeficiency virus (HIV) [28], contrast agents for
magnetic resonance imaging [29], antioxidants [30], and anti-bacterial agents [31]. They are
also useful as targeting vectors to mineralized bone [32] and sensitizers for photodynamic
therapy [33]. The vast variety of carbon atoms utilized to make fullerenes, the diversified
array of moieties that may be hooked up to the surface of fullerene, and the numerous
preparation techniques have resulted in a wide range of fullerene derivatives. Among all
the types of fullerenes, C60 is widely used [34]. Fullerenes’ surfaces are extensively modified
to make them water-dispersible, allowing them to be utilized in medicinal and dermatolog-
ical applications. Of the other fullerene derivatives, C60 may be multi-functionalized, forms
NP, and serves as a drug absorbent, making it an attractive scaffold for drug administration.
Fullerenes can behave as drugs in a variety of functional ways [35]. Fullerenes can produce
direct bioactivity, such as antioxidant activity, when surface-functionalized [27]. Both pure
and modified fullerenes can penetrate into intracellular space or accumulate at the cell
membrane due to their small size (less than 1 nm), posing a threat to cell functions and
integrity [36]. In a broad spectrum of applications, pristine fullerenes showed neither
acute nor subacute toxicity. However, due to the techniques used for solubilization, the
physicochemical characteristics of fullerenes changed, resulting in ROS-related behavior
and fullerene toxicity [37]. Figure 2 shows the common approaches, such as Bingel–Hirsch
reactions for cyclopropanation, polyhydroxylated for the synthesis of the hydroxyl group
with fullerenes, and Prato reactions for the cycloaddition of azomethine ylides to synthe-
size water-soluble fullerenes. These approaches can increase the solubility of fullerenes to
100 mg/mL [35]. Fullerene derivatives are also helpful in the sustained release of drugs.
Fullerene derivatives covalently attached to drugs via a linker were tested for sustained
release in lung cancer and were found to be more effective than the naive drug [35].
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Figure 2. The functionalization of fullerenes and their conjugation with a drug using a linker.

2.2. Nanodiamonds

Nanodiamonds (NDs) are carbon nanoparticles that are typically around 2 to 8 nm in
diameter, with a truncated octahedral architecture. Generally, the surface of nanodiamonds
is coated with a layer of functional groups that stabilizes the particle by reducing dangling
bonds. The conversion of sp3 hybridized carbon with sp2 also results in the increasing
stability of the particles. Chains and graphitic patches are formed by the carbons in sp2.
Oxygen-containing groups end the majority of surface atoms. Some nanodiamonds are
faceted, whereas most have a rounded shape [38]. Synthetic diamonds and nanodiamonds
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are relatively affordable, despite their extremely high cost. Selective uses of nanodiamonds,
on the other hand, may necessitate specific physicochemical characteristics, which may
necessitate additional surface modifications with various functional groups. The continued
study and recognition of the methods of disaggregation, physicochemical characteristics,
surface modification, biocompatibility, fluorescence, and optical dispersion of NDs has
developed broad perspectives for these biomedical applications [39]. Through their various
properties, such as the ability to load high amounts of drugs and the ability to penetrate
cellular membranes, NDs have shown tremendous potential to emerge as a medium for
transporting drugs into biological systems. The innovative properties of this biomaterial
have revolutionized various drug delivery systems and supported gene delivery vehicles
in the identification of the biomolecular targets of drugs [40]. Investigation of the biocom-
patibility, biodistribution, and biological destiny of NDs and their conjugates is required
for a therapeutically relevant strategy [41]. Figure 3 displays different methods used in
the functionalization of NDs. These methods help to improve the physical properties of
the materials and also lead to the acquisition of various other properties, such as targeted
delivery, sustained release, and pH-mediated drug delivery. NDs have been widely used
for bioimaging because of their excellent optical properties and their various sensing and
therapeutic components.
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2.3. Carbon Quantum Dots

Carbon quantum dots (CQDs), which include GQDs and CQDs, are a kind of carbon
nanoparticle with a size of less than 10 nanometers. CQDs have lately been the focus
of research because of their fluorescent, nontoxic, and water-dispersible properties. At
high temperature and pressure, CQDs can be made from graphene, cellulose, or other
materials. Due to their unique properties, CQDs have received much attention. CQDs
are fluorescent carbon nanostructures with two origins of the fluorescent properties, the
emission of fluorescence from conjugated π-domain bandgap phases and fluorescence
from surface defects. Various elements, such as nitrogen, sulphur, and phosphorus have
been used in doping CQDs to improve their properties. They also help in Reactive Oxygen
Species (ROS), through the hydroxyl free radical scavenging properties of doped ions [43],
and photoluminescence, by increasing their fluorescence brightness and shifting their
emission spectra [44–46]. From biological imaging to electrical and photonic devices,
CQDs bring up new possibilities. Carbon QDs are notable for being constructed out of
a plentiful and largely harmless element, which can aid in the ecologically responsible
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development of solar technology [47]. In the near-infrared (NIR) spectral area, CQDs can
emit fluorescence, making them ideal for biomedical applications. CQDs have shown
benefits in various sectors, such as biomedicine, solar energy conversion, photocatalysis,
light-emitting diodes (LEDs), photosensors, etc. CQDs offer therapeutic uses, including
bioimaging, the distribution of drugs, the delivery of DNA, and cancer treatment [48,49].
Figure 4 demonstrates the entry of peptide targeted drug-loaded graphene quantum dots
into the cancer cells. These peptides bind with integrins, which are overexpressed in cancer
cells. The interior of these cells can be analyzed using fluorescence; it helps in investigating
the drug’s release pattern. However, while CQDs do represent an exciting possibility in
the drug delivery area, there are still some drawbacks to the technology. These are that the
CQDs must be modified for targeted drug delivery and therefore are only as effective as the
targeting pathway, the research is quite young, and, although the evidence indicates that
CQDs have a low level of toxicity, they are not completely non-toxic. The emerging field
does mean that it will take some time to fully characterize and develop an understanding
of the long-term effects of CQDs in an in vivo system [50].
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Figure 4. Schematic presentation of cancer cells being treated by multifunctional GDQs [51]. Abbre-
viations: eDc/Nhs, 1-(3-(dimethylamino) propyl)-3-ethyl carbodiimide and N-hydroxysuccinimide;
GQD graphene quantum dot, Dox, doxorubicin; RGD, arginine glycine-aspartic acid. Copyright
Dove Press, open access to scientific and medical research.

2.4. Carbon Nanotubes

In 1993, Iijima and Ichihashi discovered nanometric range carbon, referred to as car-
bon nanotubes (CNTs) [52,53]. CNTs, commonly known as buckytube, are carbon-based
nanoscale hollow tubes. The aspect ratios (length-to-diameter values) of these cylindrical
carbon molecules are generally more than 103. These nanotubes are classified as single-
walled carbon nanotubes or multiple concentric cylinders, depending on whether they
are made up of one tubular nanostructure or several concentric cylinders [54]. Various
methods, such as laser ablation, high-pressure carbon disproportion, chemical vapor de-
position (CVD), etc., have been used for the formation of these nanocarriers [55]. The
CVD method has been the most widely used method due to its high yield capacity. The
carbon nanotube obtained using this method has a high degree of length and its morpho-
logical characteristics are more enhanced [56]. There are three forms of carbon nanotubes:
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single-, double-, and multi- walled carbon nanotubes. Single-walled carbon nanotubes
(SWCNTs) and double-walled carbon nanotubes (DWCNTs) are made up of one or two
(concentric) graphene cylinders, but multi-walled carbon nanotubes (MWCNTs) are made
up of many concentric cylindrical shells of graphene sheets. CNTs have poor water sol-
ubility; thus, to enhance the solubility rate of CNTS, functionalization approaches are
being developed. To functionalize CNTs for increasing their solubility in water, CNTs are
covalently or non-covalently functionalized. Bensghaïer et al. used various dyes, such as
Azure A (AA-N2+), for the surface modification of MWCNTs; the formation of hybrids was
useful in different applications, such as biosensors and optically pH-responsive materi-
als [57]. In another research study, biocomposite particles were prepared using lipase and
MWNTs to enhance their solubility in solvents: lipase from Candida rugosa was covalently
anchored onto acid-treated MWNTs through a self-catalytic mechanism [58]. Furthermore,
a quantitative assessment of the degree of functionalization is more reliable in general. The
benefits of the covalent method, however, are counterbalanced by the adverse disruption
of the CNT’s conjugated backbone, which can significantly impair electrical and optical
characteristics and, in many cases, limit their performance for certain applications that
need such qualities. A quantitative analysis of the degree of functionalization is in general
more reliably assessed. Many experiments on the use of surface-functionalized CNTs in the
biomedical field have been performed during the past decade [54]. As shown in Figure 5,
various medical applications are used in the biological process of carbon nanotubes, such
as drug delivery, biosensing, photodynamic therapies, drug discovery, etc. [59–61].

There is a high degree of interest in the use of carbon nanomaterials in pharmaceuticals.
This is due to their highly tunable characteristics and certain desirable traits that they
contain inherently. CNTs have very good surface areas and, therefore, an extremely good
drug loading capacity, which is naturally a very desirable trait for drug delivery. Along
with their nanometric scale and the ability to functionalize them in a variety of ways,
their drug delivery capabilities are a growing area of interest. Of course, there are some
inherent flaws in current CNTs that hinder their use in pharmaceuticals and will need to be
overcome. This is primarily that they do not show good biodegradability and, by extension,
may be toxic with long-term or prolonged use [62].
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2.5. Carbon Nanofibers

CNFs are members of the covalent CNM family and feature conductivity and stability
similar to CNTs. The stacking of graphene sheets of various forms distinguishes CNFs
from CNTs, resulting in more edge locations on the outside walls of CNFs than those of
CNTs. This may make it easier for an electroactive analyte to transfer electrons [64]. CNFs
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are ideal candidates for next-generation on-chip connection materials, as well as potential
immobilization substrates, due to their unique chemical and physical characteristics [65].
Furthermore, when compared to CNTs, CNFs are less costly; thus, they are easily used in
the textile industry [66]. CNF is favored for electrical and thermal conductivity because it
has a higher degree of crystallographic alignment. It not only has the same low density,
high modulus, high strength, high conductivity, and thermal stability as carbon fiber
manufactured using a chemical vapor deposition growth process, but it also offers benefits
such as a low defect rate, a large aspect ratio, and a huge surface area [67].

CNFs are synthesized via chemical vapor deposition, phase separation electrospin-
ning, and templating [20]. Among these, electrospinning has steadily gained popularity
as a low-cost and simple method of manufacturing nanofibers [68]. CNFs can be modi-
fied for biomedical applications with many different bioactive molecules [69]. Figure 6
demonstrates a nanoelectrode array-based electrochemical technique for detecting protease
activity. With a ferrocene (Fc) moiety connected at the starting end, vertically aligned
carbon nanofibers were covalently bonded with legumain and cathepsin B. Fc measured
the signals and identified different distinct properties from carbon electrodes.
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of peptide at a specific site [70]. Copyright 2013, American Chemical Society.
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The carbon backbone and synthesis methods of CNFs allow the application of varied
functionalization methods. These methods allow the material to be used for a diverse
range of applications. The nanofibers can be modified and functionalized via three primary
methods: firstly, through direct incorporation during the electrospinning fabrication with a
variety of compounds, such as metal ions, other biomaterials, or active biomolecules and
drugs; secondly, the adsorption of relevant molecules to the surface of the CNF’s fibers
post-fabrication; and, finally, a combination of both techniques, in which modifications
during the electrospinning fabrication are then used as covalent anchor points for surface
modifications using relevant chemical pathways.

2.6. Graphene Nanosheets

Graphene is an allotrope of carbon, made up of a single sheet of atoms organized in a
honeycomb lattice in two dimensions. The name is a combination of "graphite" with the
suffix -ene, and it refers to the graphite allotrope of carbon, which is made up of stacked
graphene layers. Graphene is a two-dimensional sheet of sp2-hybridized carbon atoms
organized in a hexagonal lattice [71]. Graphene has gained traction among both the science
and technical communities due to its mechanical, electrical, and thermal properties [72]. Its
remarkable characteristics, on the other hand, can only be demonstrated experimentally
in samples with a high degree of lattice perfection. Structural flaws are inadvertently
introduced into the lattice during growth or by physicochemical treatment, which can
dramatically impair the graphene’s characteristics and, as a result, the performance of
graphene-based devices [73]. Melt intercalation, in situ polymerization, and solution
mixing are the most common techniques for incorporating graphene into polymer matri-
ces [74]. Recently, there has been significant progress in the creation of graphene derivatives,
such as graphene oxide, porous graphene/graphene oxide, reduced graphene oxide, and
GQDs. Another important kind of graphene is the zig-zag pattern found in the structure
of graphene commonly called nanoribbon [75]. Various other new forms of graphene
have also come into the limelight, such as aerogel graphene, gyroid graphene, etc. [76].
Figure 7 demonstrates the creation of 3D-printable graphene by combining graphene with
polylactide-co-glycolide (3DG). Human mesenchymal stem cell (hMSC) adhesion, survival,
multiplicity, and neurogenic differentiation have all been aided by 3D printed carbon mate-
rials, with the notable overexpression of glial and neuronal genes. Another growing area of
research for graphene nanosheets and their derivatives is as a drug release mechanism. Al-
though this application is still in its infancy, there have been initial experiments performed
targeting cancerous cells and the controlled release of tegafur [77]. Other applications
being investigated are the use of graphene nanosheets and their derivatives as additives
in hydrogels to improve their physical characteristics, such as rigidity and conductivity,
and their suitability for biological systems, i.e., cell adhesion and proliferation [16]. The
current difficulty with graphene and its derivatives is the assurance that during fabrication,
single-layered carbon sheets are formed and not sheets of multi-layered graphene. This is
essential as the structure and symmetry of the bonds are the key characteristics of the sheet.
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3. Drug Delivery Systems

Nanomaterials have gained enormous recognition due to their inherent capacity for
drug delivery. Many research groups have studied nanomaterials (polymeric nanomate-
rials, CNMs, inorganic nanomaterials, and nanohybrids) for drug delivery through the
loading and controlled release of medicinal products. The use of CNMs in drug carriers
minimizes side-effects and reduces both the overall dosage and the dosage frequency. The
ability to modulate the size, morphology, and surface functionalization of CNMs make
them a useful delivery vehicle for encapsulating and transporting the drug entity to various
parts of the body [79,80]. CNMs such as C60, GQDs and NDs feature distinct chemical and
physical properties or biological effects compared to larger-scale counterparts (graphite),
which can be beneficial for drug delivery systems. Some important advantages of CNMs
are their small particle size and high surface-area-to-volume ratio, as well as their capacity
to bind with drugs/biomolecules to enhance uptake across the plasma membrane. C60 and
the delivery system based on it are considered very encouraging for antiviral drugs that
play a pivotal function in the HIV treatment. The fullerene-based derivatives also prevent
HIV protease as a result of constructing a complex, and it was shown that dendrofullerene
has the highest anti-protease activity [81]. There are reports that DOX conjugated with
C60 demonstrates controlled release and positive antitumor activities. Other derivatives,
such as fullerenols, have high solubility in polar solvents, which results in greater carrying
capacity for several drugs. Thus, they are potentially useful for delivering and improving
the efficacy of anticancer drugs [82,83]. Figure 8 displays trends in drug delivery systems
using different nanomaterials with their various parameters, such as morphology (spheri-
cal, cuboidal, triangular etc.), size (1 nm to 100 nm), surface area, and surface modification
through the addition of functional groups (–SH, –COOH, –NH2) or the targeting of ligands
(as antibodies, peptide, aptamer, RNA) as drug carriers.
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Fine-tuning CNMs characteristics for optimal drug delivery requires the considera-
tion of the following characteristics. Nanoparticles’ surface-area-to-volume ratio could be
changed to allow more drug molecules to bind [85]. A further key design consideration is
the surface functionalization of CNMs, which is routinely performed through bioconju-
gation or the adsorption of compounds onto the CNM’s surface. Surface-functionalized
CNMs with appropriate ligands can improve drug binding, suppress the immune response,
or enable the targeting/controlled release of desired molecules. By taking advantage of
these features, it is possible to attain increased efficacy and reduced toxicity. More drugs
are supplied to the target site, increasing efficacy and limiting the amount of the drug in
the body, which reduces hazardous side effects [86]. A surface-modified and DOX-loaded
CNT-based novel drug delivery system can deliver an anti-cancer drug to the tumor site
with limited interaction with other systems and organs.

Until now, countless methods have been developed by many researchers to carry
smaller compounds, such as chemotherapeutic anti-cancer drugs, on CNMs, either by
using covalent conjugation or non-covalent adsorption. The design of CNM-based drug
vehicles has also been led by theoretical modelling. Drugs are covalently conjugated with
a nanocarrier and attached to functional groups on the CNM’s surface or coated with
polymers on the CNM via cleavable bonds. Sahoo NG et al. [87] used folic acid (FA)
to modify the surface of CNTs, which resulted in the enhanced suppression of tumor
growth and minimized the side effects caused due to the DOX in the solution. The
developed formulation with a modified surface of CNTs and with a high DOX loading
capacity boosted anti-tumor efficacy in the in vitro study. This study offered better hope
for the development of a promising therapy with lower systemic toxicity that might be
utilized for tumor treatments in the future. Similarly, CNMs in conjugation with other
anticancer drugs, such as docetaxel [88], tamoxifen [89], and oxaliplatin [90] have also
shown encouraging results for the treatment of cancer in vitro, as well as in the in vivo
study. Table 2 emphasizes different types of drug-loaded CNMs studied for the assessment
of efficacy in vitro and in vivo against several diseases. Pei X et al. [91] demonstrated that
anticancer drugs conjugated with PEGylated graphene oxide (GO) can be delivered to
cancer cells in the cell culture. This study suggested that a novel delivery system could
be used for the delivery of different aromatic, low-solubility drugs, which could support
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the development of better and more efficient treatments for cancer. In another in vitro
study, PEGylated nano-GO loaded graphene oxide with DOX was formulated and showed
it can be used as chemotherapy and photothermal therapy (PTT) for the treatment of
cancer. In the safety assessment study, this delivery system did not show any cytotoxicity
to the murine mammary tumor cell line EMT6 [92,93]. Figure 9 demonstrates several
perspectives employing CNT-based drug delivery carrier systems. These approaches
include the binding of the ligand at its particular site (such as the antibody, peptide
etc) in disease, single-stranded biomolecules (such as siRNA, miRNA) or the coating of
biocompatible polymers to provide intimacy in the living system (e.g., Polyethylene Glycol
(PEG)), some drugs are chemically attached to the nanocarrier’s surface or PEG (e.g.,
chemotherapy drugs) and plasmid encapsulated by CNT that could be helpful in detection
and imaging [94].
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Table 2. Some drug delivery systems based on CNMs with efficacy studies, with specific drugs and
target diseases.

Serial Number Drug Carriers Drug Target Disease Ref.

1 Carbon nanotubes Metformin Diabetes [95]

2 Fullerenes Paclitaxel
Tamoxifen

Lung Cancer
Breast cancer [96,97]

3 Multiwall carbon
nanotubes

Diltiazem
hydrochloride Angina Pectoris [98]

4 Carbon nanotubes Doxorubicin Cervical
carcinoma [99]

5 Graphene oxide Paclitaxel Lung Cancer [100]

6 Diamonds Doxorubicin Breast Cancer [101]

4. Biomedical Scaffolds

Biomedical scaffolds are engineered materials that are put inside or on the surface
of the body. These materials are designed specifically for interacting with the cellular
environment, resulting in the formation of new tissues that are beneficial for medical
purposes. Cells seeded in these scaffolds support the formation of three-dimensional
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structural tissues. Many scaffolds or implants deliver medication, monitor body functions,
and provide support to organs and tissues. Medical scaffolds are synthetic and can be used
by the human body to mimic the normal function of the missing or damaged biological
structure [102]. These devices are made up of chemically inert, very strong, fatigue-resistant,
cheap, and corrosion-resistant metals and alloys [103]. Metals and their alloys have been
used predominantly as structural biomaterials for different applications in reconstructive
surgery, mainly orthopedics, and in blood vessels [104].

CNMs in specific 1D and 2D CNMs have been used for improving the strength of
orthopedic implants. CNTs and graphene nanosheets have been added to bone cement com-
posites due to their enhanced fatigue performance, which can lead to improved longevity
of the implant. The SWCNTs and MWCNTs that are used as fillers on the polymethyl
methacrylate (PMMA) mixed resin matrix have been found to offer more advantageous
physical characteristics, which allow growth and support the adhesion of newly formed
tissue throughout the implant [105]. Krul et al., in 2007, demonstrated that nanocomposite
implants made up of poly-D, L-lactide, and MWCNTs dispersed slowly in comparison to
those composed of a single polymer without additives [106]. Yu Bai et al., in 2016, prepared
and characterized a composite implant with reduced GO for medical applications. It was
found that GO-based fluorhydroxyapatite implants restrict the adhesion and multiplication
of Streptococcus mutans. The results show that the composite implant would be invaluable
as dental implant material, and for other bacteria-free implants [107].

A novel biocompatible nanocrystalline diamond (NCD) coating technology was used
in the generation of CNMs. NCD coating provides unique mechanical, electrical, chemical,
tribological, and biocompatibility features, allowing them to be used to fabricate a new
range of biomedical scaffolds and tools with higher performance as compared to the
existing alternative, as well as materials that have recently been used in commercial devices
and implants but whose performances are constrained [108].

The electrical and physical properties of CNMs make them a promising material
for implantation where both mechanical and electrical stimulation is required. Platforms
designed around these properties can benefit both tissue engineering and transition from
in vitro to in vivo applications for implantable applications. Table 3 represents various
types of medical implants based on CNMs. In particular, the focus has been on neuronal
and peripheral nerve cell applications, as natural healing pathways in this area are limited
and the damage is often permanent. Ongoing research aims to provide a means for repair
or even circumvention of this damage. Work conducted by Ghosh et al. shows that
electrospun nanofiber scaffolds containing MWCNTs demonstrated excellent regeneration
properties for peripheral nerve cells in rats [109]. The nerve cells regenerated directionally,
an important characteristic for functional nerve regeneration.

Similarly, CNMs can be used for neuronal applications and deep brain stimulation.
Deep brain stimulation is a form of electrotherapeutics, in which the brain is stimulated via
implanted electrodes to combat conditions such as epilepsy [110]. Conductive applications
are required not only for the stimulation of the neuronal cells but also for monitoring the
electrical signals of the brain and to anticipate electrical misfiring in the brain to induce the
corrective stimulation pulse required. The conductivity and nanoscale of CNMs are ideal
for this and development is well underway to take advantage of them for these purposes.
Groups such as Alvarez et al. have been demonstrating the remarkable application of these
electrodes in a variety of species, with exciting results [111].
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Table 3. Different medical implants based on CNMs and their biomedical applications.

Serial
Number

Carbon
Nanomaterial Medical Scaffolds Applications Ref.

1 Carbon nanotube
(CNTs)

Hydroxyapatite based CNTs
composite.

Helpful in forming a strong bone–implant
interface. [112]

2 SWCNTs Electrospun polyurethane carbon
nanotube scaffolds.

Helpful in differentiation of myoblast
cells. [113]

3 MWCNTs

Polymethyl-methacrylate (PMMA)
microspheres, and

polyacrylonitrile-based MWCNT
scaffolds.

Bone regeneration. [114]

4 Carbon nanofibers Collagen-carbon nanofiber scaffold. Myocardial infarction. [115]

5 Graphene
Electrosynthesis of polypyrrole (PPy)

coating on graphene oxide (GO)
nanocomposite.

Improved surface protection and
biocompatibility performance in in vitro

studies on MG-63 human osteoblast cells.
[116]

5. Tissue Engineering

Tissue engineering is a multidimensional science that utilizes the application of bi-
ological sciences, medicine, and engineering to regenerate or mimic tissue material for
organ transplantation, therapeutic and diagnostic purposes [117,118]. Biomaterials play an
essential role in tissue engineering because they can stimulate certain biological processes,
modify cell differentiation, and influence cell–cell interactions [119,120]. Hybrid or compos-
ite materials are used to adequately mimic the physical and biological characteristics of the
original specialized cells, as a single material may not fulfill all the requirements to fabricate
artificial tissues [121]. CNTs are inert and non-biodegradable, which makes them suitable
for scaffold production for tissue regeneration, as well as favorable surfaces to promote
the transmission of neural signals [122]. Mazzatenta et al. found that SWCNT with the
hippocampal cells might be directly involved in stimulating the activity of the brain circuit,
considering it is a favorable material for tissue engineering. Non-functionalized aligned
MWCNTs were found to promote the growth and multiplication of pancreatic cancer cells,
demonstrating a new way to analyze cancer in vitro [123]. Abarrategi et al. reported the
development of CNT/chitosan meshes that supported cell recolonization and also noticed
their break up in vivo through proper dispersion in the newly raised tissue [124]. CNTs
resemble certain biological structures; therefore, they are used as mimicking agents. The
morphological resemblance of CNTs to fibrillar/extracellular matrix protein and their
capacity to promote cell adhesion makes them suitable for use as synthetic substrates for
artificial bone formation.

Graphene was demonstrated to have a unique ability to adsorb nucleobases via π–π
interaction and also to effectively protect nucleotides from enzymatic degradation [125].
Graphene nanosheets could be used as a suitable vector due to their easy uptake by cells.
Chen et al. developed a poly (ethylenimine)-GO (PEI-GO) as a transfecting agent to deliver
plasmids into HeLa cells and found that the PEI-GO enhanced the transfection efficiency by
due to a proton-sponge effect [126]. In the application of tissue engineering, graphene and
its derivatives could be bound with other biomaterials to improve their mechanical, physi-
cal, and electrical characteristics. The modification of the surface attributes of graphene
with a coating of SiO2 enhances the proliferation and stretching of human mesenchymal
stem cells [127]. Artificial fibrous structures that permit a greater transportation of nu-
trients are broadly employed in biomedical applications. Graphene-based fibers report
higher conductivity as compared to composite fibers [78]. A biocompatible GO scaffold
increased cell proliferation and HFB4 cell attachments to a fibrous composition. It also
helped in enhancing mechanical properties and allowed manipulation at the nanoscale
level in fibrous scaffolds for biomedical applications [128]. Table 4 shows use of CNMs in
tissue engineering application.
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Nanohydroxyapatite/graphene oxide (nHA/GO) composites, which increase cell
survival, were successfully modified by polyethylene glycol, polyvinylpyrrolidone, and
chitosan [129]. A nHA/GO composite modified with synthetic polymers improved the
growth, viability, and proliferation of MG-63 cells for more than 14 days. The modified
nHA/GO composites, which are limited when applied in traditionally-used composites of
natural polymers, showed enhanced bioactivity [130].

Table 4. Different uses of CNMs in tissue engineering applications.

Serial Number Carbon Nanomaterial Formulation Tissue Engineering Applications Ref.

1 Carbon nanotubes
Hydrazide-functionalized carbon

nanotubes–pericardial matrix
derived from hydrogel.

Improved cardiac tissue
engineering. [131]

2 Fullerene whisker
scaffolds

Highly aligned 1D scaffold
regulates cellular differentiation to

muscle cells.

Promotion of myoblast
differentiation to myotube. [132]

3 Nanodiamond
Poly(l-lactic acid) and

octadecylamine-functionalized
nanodiamond.

As components of bone scaffolds
and surgical tools in regenerative

medicine.
[133]

4 Carbon dots CDs based composite nanofibrous
mats.

Guided cell growth and
enhancement of cellular activities. [134]

5 Carbon nanofibers Electroactive CNF/gelatin (Gel)
nanofibrous cardiac patches.

Improved cellular adhesion and
proliferation, as well as increased

gene expressions and angiogenesis.
[135]

6 Graphene nanosheets Biomimetic gelatin and bioactive
glass scaffolds.

Excellent biocompatibility and
engineered stiffness. [136]

6. Wound Healing

Wound healing is a distinct physiological process through which injured tissue is
repaired within a short time. Uncoordinated wound healing is generally associated with
many health problems, such as diabetes, extensive burns, and chronic wounds [137].
In wound healing, there are four coordinated and overlapping phases [138]. These
phases must proceed in the correct sequence for proper healing [139]. Figure 10 indicates
4 evolutionarily conserved phases of wound healing in skin executed in a coordinated
manner: hemostasis, inflammation, proliferation, and tissue remodeling. Multiple cell
types (fibroblast, keratinocyte, endothelial cells etc.) and molecular events are involved in
highly regulated ways by various growth factors, cytokines and chemokines [140].

Researchers have used graphene with ultrafine silver nanoparticles to demonstrate the
antimicrobial and burn wound healing potential of the material. Tuning the formulations of
the materials generated a large number of oxidative radicals that lead to the development
bactericidal properties. Histopathological studies revealed that graphene-based nanomate-
rials can enhance the regeneration of the epidermis, thus demonstrating their promising
application to burn and wound healing [141].

Silver nanoparticle (AgNPs)-guided single-stranded DNA (ssDNA) attached to
graphene oxide (ssDNA-AgNPs-GO) exhibit good bactericidal activity as well as wound
healing properties. This antibacterial activity has been observed through synergistic an-
timicrobial properties used against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus
aureus, and Bacillus subtilis at very low minimum inhibitory concentrations (MIC). Due to
its improved antibacterial and wound healing properties, ssDNA-AgNPs@GO offers broad
applications against bacterial infections caused at the sites of damaged tissues [142].



Materials 2021, 14, 5978 17 of 35Materials 2021, 14, x FOR PEER REVIEW 18 of 39 
 

 

 
Figure 10. Distinct phases of wound healing in skin illustrate cells and molecules in the tightly 
controlled process of recovering a healthy barrier. 

Researchers have used graphene with ultrafine silver nanoparticles to demonstrate 
the antimicrobial and burn wound healing potential of the material. Tuning the 
formulations of the materials generated a large number of oxidative radicals that lead to 
the development bactericidal properties. Histopathological studies revealed that 
graphene-based nanomaterials can enhance the regeneration of the epidermis, thus 
demonstrating their promising application to burn and wound healing [141]. 

Silver nanoparticle (AgNPs)-guided single-stranded DNA (ssDNA) attached to 
graphene oxide (ssDNA-AgNPs-GO) exhibit good bactericidal activity as well as wound 
healing properties. This antibacterial activity has been observed through synergistic 
antimicrobial properties used against Escherichia coli, Pseudomonas aeruginosa, 
Staphylococcus aureus, and Bacillus subtilis at very low minimum inhibitory concentrations 
(MIC). Due to its improved antibacterial and wound healing properties, ssDNA-
AgNPs@GO offers broad applications against bacterial infections caused at the sites of 
damaged tissues [142]. 

Fullerenes and CNTs accelerate wound healing by reversing the inflammatory and 
proliferative phases. Fullerenes, which are stronger antioxidants than CNTs, target and 
inhibit ROS and reactive nitrogen species generated at the site of damaged tissue [104]. 
Researchers have demonstrated that fullerene imitated accelerated wound healing in a 
modified scratch assay and an ex vivo human skin assay. CNMs have been used to 
promote cell migration, induce wound closure in human skin explants, and increase the 
speed of wound healing. Consequently, fullerene derivatives are promising wound 
healing agents that may assist the development of better treatment designs [143]. Table 5 
represent different types of CNMs in wound healing application 
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Fullerenes and CNTs accelerate wound healing by reversing the inflammatory and
proliferative phases. Fullerenes, which are stronger antioxidants than CNTs, target and
inhibit ROS and reactive nitrogen species generated at the site of damaged tissue [104].
Researchers have demonstrated that fullerene imitated accelerated wound healing in a
modified scratch assay and an ex vivo human skin assay. CNMs have been used to promote
cell migration, induce wound closure in human skin explants, and increase the speed of
wound healing. Consequently, fullerene derivatives are promising wound healing agents
that may assist the development of better treatment designs [143]. Table 5 represent
different types of CNMs in wound healing application.

Table 5. Different uses of CNMs in wound healing applications.

Serial Number Carbon Nanomaterial Wound Healing Agent Applications Ref.

1 MWCNTs conjugated with
glucose oxidase

Glucose oxidase shows potent
antimicrobial activity.

Wound cover or tissue
healing matrices. [144]

2 Fullerenes modified with
amino group (C70–(EDA)8)

Amino groups interact with outer
boundary of multidrug-resistant E. coli
and C70 establish a potent hydrophobic
interaction with bacteria, which causes

cytoplast leakage.

Promising for clinical
care of wound infection. [145]

3 Fluorescent CDs loaded
nanocomposites chitosan film

Chitosan, for making film and CDs as
crosslinkers are taken, which are

biocompatible and used in wound
healing management.

Successful formulation
regulates the water

absorption behavior of
chitosan-based film.

[146]
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Table 5. Cont.

Serial Number Carbon Nanomaterial Wound Healing Agent Applications Ref.

4 Oxygenated nanodiamonds
(O-NDs)

O-NDs mimic peroxidase enzymein a
rodent model.

Inhibiting and improving
the course of periodontal

inflammation.
[147]

5
Combination of oral

antidiabetic agents-loaded
nanofibrous scaffolds

Metformin, pioglitazone, and
glibenclamide.

Improved diabetic
wound healing on type-1

diabetic rats.
[148]

6

3D graphene foam (GF)
scaffold loaded with

bone-marrow-derived
mesenchymal stem cells

(MSCs)

GFs loaded with MSCs clearly
facilitated wound closure in animal

model.

Enhanced skin wound
healing. [149]

Escherichia coli = E. coli, EDA = ethylenediamine.

7. Biosensors

Biosensors are sensors whose analyte or recognition elements are of a biological
nature. Thus, they can be used to track changes in biorecognition events in a diseased or
abnormal condition [150]. In general, a biosensor is an element comprising a transducer
producing a thermal, electrical, or optical output signal. In electrochemical biosensors,
carbon materials have been used for decades [151,152]. Figure 11 shows different types of
CNMs, of which two types of methods, electrochemical and optical, are most commonly
used for biosensing platforms. In the electrochemical sensing platform, CNMs improved
analytical performance due to the increase in electrochemically active surface area. In
optical sensing platforms, CNMs are employed as fluorescence emitters and fluorescence
quenchers due to changes in fluorescence intensity. CNMs offer a diverse set of uses in
the clinical, agricultural, and food industries because of their simpler, portable, and less
expensive disposable biosensors [153].

A broad range of ions and compounds, such as glucose, fluoride ion, hydrogen
peroxide, and other organic vapors, have been detected using functionalized fullerenes and
modified electrodes carrying fullerenes [154]. To be used as a sensor, Carbon Nanodiamond
(CND) needs surface functionalization to enhance its solubility and facilitate specific
binding to the analytes of interest. CNDs can form emissive nitrogen-vacancy (N-V)
defects where the fluorescence depends on the N-V center’s electronic spin state showing
unique properties of CNDs [155,156]. In recent years, fluorescent CDs have gained a
foothold as fluorescent probes for the identification of several cations, such as Cu2+, Zn2+,
Al3+, Ag+, K+, Be2+, Hg2+, and Fe3+, as well as, numbers of anions, including iodides,
hypochlorous acid (HClO), nitrite, oxalate, and superoxide. A number of drugs and small
molecules, including tetracyclines, melamine, hydrogen peroxide, 2,4-dinitrophenol, picric
acid, amoxicillin, and pentachlorophenol, have been reported by Carbon dot systems [157].

A large number of possible uses for biosensors have been exploited to develop the
special physical and chemical characteristics of graphene and CNTs. Graphene and CNTs
can be altered with a biological sensing component in these biosensors, such as nucleic
acids, and can also be changed with suitable groups capable of biomolecular detection
(e.g., proteins, such as enzymes and antibodies) or bioprocess tracking. Biosensor designs
are also influenced by whether the investigation is conducted in vivo or in vitro. In many
significant reviews that have reported the development of graphene and CNT biosensors,
these factors have been discussed [158–160]. Many researchers have designed CNT-based
glucose sensors that can detect glucose levels in biological samples based on glucose
oxidase-impregnated polyvinyl alcohol solutions [161–164]. Researchers designed an elec-
trochemical biosensor for glucose oxidase sensing that was helpful in studying the structure
of glucose-oxidase-coated MWCNT [165]. Table 6 represent various application of CNMs in
biosensing application. Nitric oxide and epinephrine can be also detected using CNT-based
electrochemical biosensors [166,167]. Graphene was also used to fabricate an enzyme
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substrate based on an ultra-efficient probe for the sensing applications of the different
biomolecules [168,169]. Researchers have also used fullerenes as materials for sensors and
biosensors in the detection of deoxyribonucleic acid (DNA) [170]. The immobilized DNA
was used in a fullerene-infused screen-printed electrode for the detection of 16S rDNA.
The efficacy of the established procedure was examined by spotting 46S rDNA of E. coli on
the fullerene-impregnated electrode with probes that were ideally aligned [171].
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Carbon nanohorns (CNHs) offer an appealing alternative to CNT-based sensors [172].
Other unique properties of CNHs, such as their electrocatalytic activity against the oxida-
tion of dihydroxybenzenes, can be used as methods of detection; for instance, the iden-
tification of food pollutants, such as bisphenol A, malachite grey, and triclosan [173,174].
CNH-modified standard glassy carbon electrodes have also been employed for the rapid
identification of isomers of dihydroxybenzene catechol, hydroquinone, and resorcinol,
with limits of detection of 0.1 M, 0.2 M, and 0.5 M, respectively [175]. CNH optical-based
sensors typically depend on the ability of the CNH to quench an analyte’s fluorescence
in the absence of intrinsic fluorescence. This technique was reported by Zhu et al. for
the detection of DNA. A mix-and-detect technique for the fluorescent detection of an
HIV-related oligonucleotide sequence has been demonstrated [176,177].
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Table 6. Different uses of CNMs in biosensing applications.

Serial Number Carbon Nanomaterial Biosensors Targeted Analyst Ref.

1 SWCNTs
Conjugated aptamer-anchor
polynucleotide sequence to

near-infrared emissive.

Estimating protein efflux from single
organisms in real-time. [178]

2 MWCNTs deposited
between electrodes CNT resistors. Detection of Arginase 1 (ARG-1). [179]

3
Ag-Pt bimetallic electro-

spunnanoporous
CNFs

Modified carbon electrode for
dopamine detection.

Dopamine selectively detected in
presence of uric acid and ascorbic

acid.
[180]

4
Carboxyl

functionalized GO
(CFGR-COOH)

HRP labelled CFGR-COOH
modified with Glassy carbon

electrode.

DNA was successfully detected
using DPV with ranges between

1 × 10−6 and 1 × 10−14.
[181]

5
Graphene-bismuth
nanocomposite film
modified electrode

Immobilized glucose oxidase on
nanocomposite.

Successful detection of glucose with
good stability and repeatability. [182]

6 Fullerene (C60)

C60 acts as donor probe and urea
(if present) reacts to DMG and
formed DIK acts as receptor on

RRS-ET analytical platform.

Successfully developed to detect
trace amounts of urea in food. [183]

(DPV = Differential pulse voltammetry, DMG = Dimethylglyoxime, DIK = 4,5-Dimethyl-2-imidazolone, RRS-ET = Resonance Rayleigh
scattering energy transfer).

8. Bioimaging Applications

Bioimaging is a noninvasive imaging technique that can be used to visualize living
organisms, organs, cells, or internal cell structures, based on their biological activity. It aids
in the study of the function of a particular organ in different conditions in correlation with
the anatomical 3D structure of specimens. These imaging techniques do not interfere with
organ functions, such as respiration, movement, etc. Through the use of high-resolution
imaging platforms such as Stimulated Emission Depletion (STED) microscopy, they can
also facilitate observations of subcellular structures and all the tissues in multicellular
organisms [184]. Bioimaging involves two steps: acquiring and processing images, and
picturing the structural or functional aspects of live objects or systems. CNMs are suit-
able for in vivo and in vitro biological imaging because of their intrinsic optical features,
which include a broad absorption spectrum in the visible and near-infrared (NIR) regions,
photoluminescence in the NIR range, and significant resonance Raman scattering.

Along with their inherent physical features, particularly their optical attributes, CNMs
could be used as biosensors as well as in bioimaging. GQDs, CNTs, and their derivatives
possess useful optical features for bioimaging, particularly in living cells, such as visible and
NIR photoluminescence, distinctive Raman bands, and photoacoustic and photothermal
responses. CNMs have a high ability for fluorescence and the multimodal bioimaging of
cells and tissues because of their excellent aqueous solubility, biocompatibility, and minimal
cytotoxicity, and even their remarkable tolerance of photobleaching. Intracellular motor
protein tagged with SWCNTs has been used to track the dynamic processes within the
cytoskeleton. The kinesin-1 motor Ki5c of COS-7 cells was covalently linked to SWCNTs
wrapped with DNA. The SWCNT-labelled kinesin motor protein facilitated the real-time
tracking of intercellular dynamic events, such as kinesin transport along microtubules
and fluctuations in the microtubule-network, using fluorescent microscopy. A complex of
SWCNT—a fluorescent, aqueous soluble—and a cytocompatible polymer has been applied
for bioimaging. The supramolecular assembly comprises an alkylated polymer that is
coupled with neutral hydroxylated or charged sulfated dendronized perylene bisimides
(PBIs) and SWCNTs as a stationary base. The backbone of the polymer imparts several new
characteristics to the SWCNTs, such as increasing their solubility, making them fluorescent
by adding PBIs, and improving cytocompatibility by wrapping around the SWCNT scaffold.
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In photophysical characterizations and biological in vitro studies, sulphated complexes
show better cellular uptake, optical properties, and intracellular staining compared to their
hydroxylated analogs [185,186]. Table 7 represented bioimaging application of CNMs.

A suspension of SWCNTs and bovine serum albumin (BSA) was used for in vivo
imaging of Drosophila melanogaster larvae. Protein-coated SWCNT was fed to the larvae.
Fluorescent images of the digestive system clearly showed peristaltic movements. Besides,
the CNDs were covalently functionalized with transferrin protein through carbodiimide
and amine functional groups. The transferrin-functionalized nanodots were internalized
into cancerous HeLa cells by overexpressed transferrin receptors on the cell membranes
and imaged under fluorescent microscopy [187,188].

K. Yang et al. reported labeling of PEGylated GO with NIR fluorophores (e.g., Cy7)
and fluorescein isothiocyanate for in vivo and in vitro imaging [189]. Furthermore, in vivo
biodistribution of PEGylated GO along with the signal of 125I was evaluated by F. Yang
et al. [190]. A novel protein-based GO was developed for use in ultrasonic dual-modality
for imaging, and photothermal therapy in cancer [191]. Additionally, reduced GO nanocom-
posites tagged with quantum dots were shown to have implications for PTT, tumor imaging,
and in situ monitoring of tumor treatment [192].

The photoluminescent (PL) characterization of nGOs showed that upon excitation,
peak PL emission intensity is in the bluish-green region (455 nm). In one study, nGOs
encapsulated in polylactic acid (PLA) were shown to be biocompatible and photolumi-
nescent, allowing them to be employed in bioimaging applications [193]. Mesoporous
silica nanoparticle (MSN) coated with fluorescent fullerene (C60-TEG-COOH) is water-
soluble and biocompatible, and it is successfully used for the fabrication of nanocarriers,
which have demonstrated a capacity for pH-sensitive drug release and can be put to use
for fluorescent cell imaging. In an in vitro study, it was shown that the synthesized ma-
terials exhibited excellent biocompatibility. Furthermore, the DOX-loaded nanocarrier
showed effective anticancer activity. This study demonstrated a straightforward way to
design a dual-purpose nanomaterial, such as for pH-responsive drug delivery, as well as a
bioimaging system that can be used as a therapeutic agent and for monitoring treatment
responses [194].

Table 7. Different uses of CNMs in bioimaging applications.

Serial
Number Carbon Nanomaterial Bioimaging Agent Bioimaging Applications Ref.

1 SWCNTs Labelled recombinant thermo-stable
Luciola cruciata luciferase (LcL).

Advanced powerful tool for in vivo
imaging. [195]

2 SWCNTs SWCNT surfaces grafted with radical
polymer produces brighter emission.

Bioimaging and biosensing in vivo
in near-infrared region. [196]

3

Carboxylated
MWCNTs conjugated
with polyelectrolytes

(CPE)

MWNTs possess characteristic Raman
vibration modes and CPE has optical
properties; both provide fluorescence.

Raman dual-imaging method.

Intracellular tracking and finding
location of MWCNTs in in vitro and

in vivo.
[197]

4 Carbon dots
Carbonization of sucrose with oil acid

shows strong fluorescence and
quantum yield.

Applicable in cell imaging. [198]

5 Graphene oxide GO nanosheets decorated with
aptamer-labelled CdSe@ZnS QDs.

Potentially used in bio-imaging and
cell-targeted drug delivery. [199]

6 Fullerene Fluorescent fullerene-coated
mesoporous silica nanoparticles.

Fluorescent cell imaging and
pH-sensitive drug release achieved. [200]

TEG = Tetraethylene glycol.
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9. Vaccination

One of the most popular strategies for preventing and reducing infectious and non-
infectious diseases is vaccination. CNMs with appropriate surface functionalization can
alter the way therapeutic molecules interact with target cells or tissues. In vaccinology,
nanoparticles-based formulations enhance immunogenicity by improving the stability,
slow-release and cell-targeted delivery of an antigen. CNMs play a critical role in vaccine
delivery, since several types of CNMs have been extensively utilized [201].

CNTs offer advantages to the design of a vaccine delivery system with different
approaches against viral, bacterial and protozoal disease as antigens as well as CpG
adjuvants [202–204]. Early attempts to use CNT scaffolds as vaccine delivery vehicles
include the covalent attachment of viral envelope peptides of foot-and-mouth disease
to CNTs [205]. In this study, it was demonstrated that epitope structures retain their
immunogenic nature when linked with CNT. In the animal model, the CNT-viral protein
molecular complexes were effective in eliciting particular immune responses against the
viral proteins. Pantarotto et al. showed that the peptide-CNT conjugates elicited IgG
responses that were specifically able to neutralize antibodies [206]. Figure 12 represents the
antigen that might be connected to the surface of the nanoparticles or could be encapsulated.
The renovation of the surface of nanoparticles with targeting molecules (e.g., antibodies, fab-
fragments, peptides, etc.) potentially improves particle distribution to antigen-presenting
cells (APCs) in order to induce innate and adaptive immune responses.
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Figure 12. Schematic depiction of antigen delivery through nanocarriers with surface modification
to enhance efficacy of vaccine against specific diseases [207]. Copyright © 2021 Pati, Shevtsov and
Sonawane. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY).

Meng et al. conjugated cell lysate to SWCNTs to study vaccine protection using a
murine hepatoma model [208]. The SWCNT-conjugated lysate vaccine enhanced protection
levels, as compared to cell lysates only, through the improved activation of cytolytic T
cells. Purified protein derivative (PPD) in Freund’s adjuvant generated a predominantly
Th-2 response when it was given to the mouse models while, conjugated with an SWCNT,
the PPD response was shifted in the direction of a Th-1 [209]. Some researchers studied
when the MWCNTs and embryonic stem cells injected into mice suppressed the growth
of murine colon carcinoma and enhanced the activation CD4 and CD8 cells. In one study,
Villa et al. reported that CNT-peptide constructs might enhance the immunogenicity of a
less immunogenic, clinically appropriate cancer-associated peptide [210]. They utilized
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different methods to conjugate 19-amino acid peptides on SWCNTs, conjugated peptides
with an easy uptake by dendritic cells, and macrophages in vitro, and the mice immunized
with it demonstrated peptide-specific IgG responses. Some researchers have designed
self-assembled fullerenol for dual DNA vaccine delivery for HIV. The conjugate showed
promising activity by reducing the antigen dosage and enhanced the protection level,
which helps in the activation of signaling pathways [211].

GO is widely utilized for the delivery of biomolecules. It has shown promising results
in encapsulating and delivering antigens, as well as the ability to induce the immune
system. The functionalization of GOs with hydrophilic groups improve their bio-solubility
and biocompatibility; as delivery vehicles, the consequent hybrid GOs possess superior
adjuvant properties [212].

Due to the excellent adsorbing properties of GOx, it was used in combination with
protein. Consequently, it showed intracellular protein delivery, thus demonstrating its
potential use in vaccination. The researcher demonstrated that adsorbed proteins on GO
were selectively and effectively taken by dendritic cells and induced the presentation of
antigen specifically to the cytotoxic T cells. In this way, it induced a powerful cellular
antigen-specific immune response against intracellular pathogens and cancer [213]. Table 8
exhibits recently used CNMs in vaccine implementation.

Table 8. Different CNMs’ uses in vaccination.

Serial Number Carbon Nanomaterial Vaccinating Agent Vaccine Applications Ref.

1 SWCNTs SWCNTs coupled with recombinant
plasmid pcDNA-ORF149 (antigen).

Anti-KHV (Koi herpes virus)
vaccine. [214]

2 MWCNTs with OVA
MWCNTs (delivery system) with

tumour-derived NY−ESO−1
(testis antigen).

Increased specific antibodies level in
mouse model and delayed growth
of tumor and prolonged survival.

[215]

3
Carboxylated MWNTs

co-delivered with
OVA, CpG and αCD40

OVA (antigen) and CpG and αCD40
(adjuvants).

Elevated T cell proliferation and
IFN−γ secretion and enhanced
antigen-specific CTL response

reduce tumor growth and prolong
survival.

[216]

4 Fullerene
Multihydroxylated fullerene as
adjuvant and HCV recombinant

proteins as antigens.

Induce humoral and cellular
immune responses. [217]

5 Carbon Dots Fluorescent CDs as delivery system.
Provide access to trace antigen

movement from the injected site to
the lymph organs.

[218]

6 Graphene Oxide

Antigen-loaded alum-based adjuvant
modifies GO nanosheets and induces

humoral immune response the
cellular immune response.

Powerful ability to raise cellular-
and humoral-type immune response

and improves cancer
immunotherapy efficacy.

[219]

10. Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) is an authentic and easy procedure commonly used
in the treatment of cancer. PDT is composed of a combination of light, a class of drugs
known as photosensitizers (PS), and molecular oxygen, in order to achieve a therapeutic
effect on the target area. Broadly speaking, the therapeutic procedure involves the topical
or intravenous administration of a photosensitizing agent to the patient, followed by
irradiation with light of a particular wavelength that is within the absorbance range of the
sensitizer [220]. Energy from the electronically excited PS is transferred to the ground state
of molecular oxygen and generates excited singlet oxygen that is toxic to the cells, causing
the death of cancerous cells by apoptosis or necrosis. It also causes serious damage to the
cancerous microvasculature, and dramatic changes in the tumor’s surroundings [221,222].
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Figure 13 represents the diverse PDT approaches of CNMs: (a) a nanocarrier loaded
with PSs sensitizes in the presence of light and converts O2 to ROS, which helps in tumor
destruction at that specific site; and (b) various types of CNMs are used in PDT applications
as shown in Table 9 and after light eradication, PSs in cells produce ROS. The two types of
photosensitized processes, Type 1 and Type 2, are based on the type of oxygen consumption.
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Ogbodu et al. showed the synthesis of spermidine adsorption on SWCNTS. The
conjugation of spermidine, a poly-amine compound, with zinc mono-carboxy phenoxy
phthalocyanine results in improving the effect of PDT. The experiment revealed that the
cell viability of breast cancer cells lines decreased by 97% [224]. Shine et al. performed an
experiment that showed various applications of fullerenes, including the role of PDT and
magnetic targeting. The experiment also showed no toxicity of fullerenes during in vivo
analysis [225]. For tumor imaging, researchers have developed carboxyl group functional-
ized fullerene carriers, which can penetrate into cells and can kill cancer cells [226]. Another
study revealed the anti-tumor effect and MRI tumor imaging obtained by using fullerenes.
The researched conjugated PEG with fullerenes along with pentetic acid, using gadolinium
acetate solution. The complex showed an antitumor effect when administered through
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the IV route [227,228]. Table 10 shows list of patents describe CNTs used in the delivery of
therapeutics, imaging and in disease diagnosis.

Table 9. Different CNMs used in PDT applications.

Serial Number Carbon Nanomaterial Photodynamic Therapy Agent Applications Ref.

1 SWCNTs

SWCNTs coated with Fe3O4 and
CQDs conjugated to a DOX-loaded
sgc8c aptamer act as both NIR ROS

generators and drug loading
carriers.

The multifunctional delivery platform
should also carry chemotherapeutic

agents for multifunctional
imaged-guided PDT/PTT/

chemotherapy in cancer therapy.

[229]

2 MWCNTs
mTHPC

(m-tetrahydroxyphenylchlorin) as
photosensitizer.

Cancer treatment with combination of
PDT and PTT. [230]

3 SWCNHs
SWCNHs nanohybrid coated with
TSCuPc and MPc, in which TSCuPc

acts as PDT agent.

A 650 nm laser significantly increases
the anticancer efficacy of combined

noninvasive PDT.
[231]

4 Fullerene

DOX conjugated to C60 attached to
a hydrophilic shell provides more

stability and remote control
through a laser (532 nm) for PDT.

Tumor targeted with “on-off” state for
strengthening the treatment of cancer
through combined therapeutic effects.

[232]

5 Nano-Graphene oxide
(NGO) NGO conjugated with ICG for PDT. Enhanced antimicrobial and

anti-biofilm activity against E. faecalis. [233]

6 Carbon−silica
nanocomposite (CSN)

CSN as PDT and as
immunoadjuvant.

Harbors photothermal and
photodynamic properties with potent

antitumoral effects.
[234]

(MPc = metal phthalocyanines, TSCuPc = tetrasulfonic acid tetrasodium salt copper phthalocyanine, ICG = indocyanine green).

Table 10. Some foremost patents describe CNTs used in the delivery of therapeutics, imaging and in disease diagnosis.

Serial Number Patent Number Patent Description Ref.

1 US20090062785

SWCNTs were attached to proteins (including, but not limited to, annexins)
or peptides and formed protein-CNT complexes. Complexes bound to

specifically to tumor cells rather than to healthy cells; the cells were used to
diagnose and irradiate tumors at specific wavelengths. However, an

immunostimulant was also administered to intensify the immune response
of the patients against antigen released by tumor cells.

[235]

2 US20080227687
Proteins (annexins) were linked with SWCNTs to target cancerous cells,

particularly tumor vasculature endothelial cells. To diagnose and destroy
these tumors, a specific electromagnetic wavelength was employed.

[236]

3 US20100209479 MWCNTs were attached to chemotherapeutic agents, such as mitomycin C. [237]

4 US20090136987 CNTs were loaded with contrasting agents and used as imaging agents for
detection in a cell. [238]

5 US20080193490
CNTs employed as drug delivery vehicles for cancer drugs. CNTs were
encapsulated with therapeutic agents and surface modifications were

performed with different functional groups.
[239]

11. Conclusions

Over the past decades, carbon nanomaterials have shown great promise in the devel-
opment of smart nanomaterials for biomedical applications in drug delivery, bioimaging,
biosensing, and tissue engineering. Their uniqueness is due to their increased surface
area, substantial mechanical strength, and atypical optical properties; these attributes may
prove very beneficial for many biomedical applications. The inherent traits of CNMs,
including their carbon-rich nanostructures, tiny size, ease of surface functionalization, and
high purity, are key to keeping CNM-based complexes at the forefront of in vivo based
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studies. However, some limitations might still impede their use in certain biomedical
applications in particular drug delivery. Current research focuses on improving the surface
chemistry of carbon nanomaterials towards increased bioavailability and biocompatibility
and reducing toxicity. Already, researchers have been able to overcome the cytotoxicity
of some types of carbon nanomaterials in order to use them as nanocarriers for drugs
and genes, as contrasting agents in imaging, as well as scaffolds for tissue regeneration,
and various biomedical applications, with exciting results. In our opinion, more research
needs to focus on the biomedical applications of CNMs. This would provide researchers
in chemistry and biology with an opportunity to overcome the limitations imposed on
CNMs by their toxicity and dispersibility. Surface modifications through conjugation and
the grafting of more compatible materials would improve CNMs’ toxicity and solubility,
which would in turn aid in the development of more biocompatible and soluble materials
based on CNMs. We believe that the use of composite materials based on CNMs will
expand as their limitations are overcome and they become more appropriate for use in
human applications.
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