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Abstract

Background: Lymphotoxin-α (LTα), located in the Major Histocompatibility Complex (MHC) class III region on
chromosome 6, encodes a cytotoxic protein that mediates a variety of antiviral responses among other
biological functions. Furthermore, several genotypes at this gene have been implicated in the onset of a
number of complex diseases, including myocardial infarction, autoimmunity, and various types of cancer.
However, little is known about levels of nucleotide variation and linkage disequilibrium (LD) in and near LTα,
which could also influence phenotypic variance. To address this gap in knowledge, we examined sequence
variation across ~ 10 kilobases (kbs), encompassing LTα and the upstream region, in 2039 individuals from the
1000 Genomes Project originating from 21 global populations.

Results: Here, we observed striking patterns of diversity, including an excess of intermediate-frequency alleles,
the maintenance of multiple common haplotypes and a deep coalescence time for variation (dating > 1.0
million years ago), in global populations. While these results are generally consistent with a model of
balancing selection, we also uncovered a signature of positive selection in the form of long-range LD on
chromosomes with derived alleles primarily in Eurasian populations. To reconcile these findings, which appear
to support different models of selection, we argue that selective sweeps (particularly, soft sweeps) of multiple
derived alleles in and/or near LTα occurred in non-Africans after their ancestors left Africa. Furthermore, these
targets of selection were predicted to alter transcription factor binding site affinity and protein stability,
suggesting they play a role in gene function. Additionally, our data also showed that a subset of these
functional adaptive variants are present in archaic hominin genomes.

Conclusions: Overall, this study identified candidate functional alleles in a biologically-relevant genomic
region, and offers new insights into the evolutionary origins of these loci in modern human populations.

Keywords: Archaic hominins, Human population genetics, MHC class III region, Balancing selection, Soft
selective sweep
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Background
Lymphotoxin-α (LTα) in the MHC class III region
encodes a potent cytotoxic polypeptide that plays a key
role in regulating a number of biological processes,
including lipid metabolism, coagulation, neurotransmis-
sion, and immunological response [1–12]. Studies have
also shown that common variants in and/or near LTα
contribute to the onset of complex diseases. For exam-
ple, a recent analysis demonstrated that individuals with
the A-allele at rs909253— located in an intronic region
of LTα— have a higher risk for nasal NK/T-cell lym-
phoma relative to individuals with the G-allele in a
Chinese population [13]. Data have also indicated that
variability at rs2239704, rs909253, rs1041981, and
rs2229094 was associated with elevated risk for other
types of cancer, such as gastric and breast cancers in
East Asians as well as non-Hodgkin lymphoma in indivi-
duals of European ancestry [14–20]. In vivo analyses
using a mouse model further showed that upregulation of
LTα in hepatocytic cells— infected by the hepatitis B or C
virus— contributed to apoptosis and/or cell transformation
leading to the development of hepatocellular carcinoma
[21]. In addition, variability at rs909253, rs1800683 and
rs1041981 has been correlated with increased susceptibility
to cardiovascular disease in European, East Asian and/or
Brazilian populations [10, 22–24]. Lastly, allelic variation at
rs909253 and/or at rs2229094 has been implicated in the
onset of inflammatory/autoimmune disorders, such as
chronic periodontitis [25], ankylosing spondylitis [26], rheu-
matoid arthritis [27], systemic lupus erythematosus [28],
vitiligo [29] and Sjogren’s syndrome [30] in individuals of
non-African ancestry.
Despite the important role that LTα plays in complex

traits, little is still known about levels of nucleotide variation
and LD in and/or near this gene. Equally as important, the
evolutionary processes that have shaped patterns of diversity
in this region are similarly not known. These pieces of infor-
mation are critical for identifying additional alleles in the
LTα region that might contribute to phenotypes, including
disease susceptibility. To address this gap in knowledge, we
analyzed sequence variation across ~ 10 kbs on chromo-
some 6, encompassing the LTα gene and the 5′ region (and
more broadly across the entire chromosome in some cases),
in 2039 individuals from 21 distinct populations in the 1000
Genomes Project. Here, we observed striking patterns of
variation in global populations, including an excess of
intermediate-frequency alleles, the maintenance of multiple
common haplotypes, and a deep coalescent time for varia-
tion (dating > 1 million years ago). We also identified a
number of common alleles in or near LTα that are present
in Neandertal and Denisovan genomes, further supporting
the inferred ancient age of nucleotide variation. While these
findings are generally consistent with a model of long-term
balancing selection, we also observed extensive haplotype

homozygosity on chromosomes carrying derived alleles
primarily in non-African populations, suggestive of recent
selection. Furthermore, a subset of these adaptive alleles
were predicted to alter transcription factor binding site
affinity and protein stability, suggesting they play a role in
gene function. This latter finding could be highly informa-
tive for biomedical studies focused on the development of
therapeutic interventions that mitigate, mimic or magnify
the effects of these functional sites to combat diseases. Over-
all, our study identified candidate alleles that contribute to
phenotypic variation, and offers additional insights into the
evolutionary origins of these loci in modern human
populations.

Results
Patterns of nucleotide variation
We identified a total of 183 bi-allelic single nucleotide
polymorphisms (SNPs) across ~ 10 kbs of sequence,
encompassing LTα (2226 base pairs [bps]) and the adja-
cent 5′ non-coding region (7411 bps) on chromosome 6,
in 21 global populations from the 1000 Genomes Pro-
ject. Of the 183 polymorphisms, 52 SNPs were located
within LTα, while the remaining 131 SNPs were found
in the 5′ region (Additional file 2: Table S1). The LTα
gene is comprised of four exons (Fig. 1); however, the
mature LTα protein is encoded by exons 2 (from bps + 461
to + 559), 3 (from bps + 646 to + 751) and 4 (from bps +
999 to + 1411). In the LTα coding region, we identified 12
polymorphisms in global populations, eight of which were
nonsynonymous changes. Two of these nonsynonymous
polymorphisms (rs2229094 and rs1041981) occurred at rela-
tively high frequency in all populations. More specifically,
the minor allele frequency (MAF) at rs2229094 (C-allele)
and rs1041981 (A-allele) ranged from 27.3 to 45.8% and
from 20.2 to 33.8%, respectively, in South Asian populations.
In Europeans, the rs2229094 minor C-allele and rs1041981
minor A-allele varied from 22.9 to 38.3% and from 24.8 to
30.9%, respectively, while the MAF at these loci ranged from
14.4 to 22.8% and from 38.4 to 54.8%, respectively, in East
Asian populations. Likewise, the minor C-allele at rs2229094
and the minor A-allele at rs1041981 varied from 22.4 to
30.8% and from 36.3 to 61.5%, respectively, in populations
of African descent (which include indigenous Africans, Afri-
can Americans and African Caribbeans). Further com-
parative analysis also showed that allelic variation at
rs2229094 was present in the genomes of two closely
related archaic species to modern humans—Nean-
derthals and Denisovans (Additional file 2: Table S1).
In addition, we detected population-specific nonsynon-

ymous variation in our modern human samples. For
example, the minor alleles at rs538402044, rs562333039,
rs538877791, rs566451995 occurred at < 2.5% frequency
in non-Africans, while these alleles were absent in popu-
lations of African descent. Furthermore, the minor C-
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allele at rs2229092 was common in Europeans varying
from 5.1 to 7.0%, while it occurred at lower frequency in
South Asians (from 1.7 to 5.5%) and in East Asians
(from < 1 to 2.4%). In contrast, the rs2229092 C-allele
was absent in indigenous Africans, but was observed at
relatively low frequency (~ 1–2.5%) in African American
and African Caribbean populations. Additionally, we
found that synonymous variants were either absent or
occurred at very low frequency (< 1.0%) in all popula-
tions (Additional file 2: Table S1). Overall, we observed
a striking deficit of synonymous SNPs relative to
nonsynonymous polymorphisms in global populations.
In the intronic regions of LTα, we identified a total of

31 SNPs (Additional file 2: Table S1). Alleles at four of
these polymorphic sites (rs1800683 rs909253, rs2239704,

and rs746868) occurred at relatively high frequency in
global populations (Additional file 2: Table S1). In parti-
cular, the MAF at rs1800683 and rs909253 both varied
from ~ 20.2 to 33.8% frequency in South Asians, from 38.5
to 54.7% in East Asians, from 26.6 to 30.9% in Europeans,
and from 38.9 to 64.1% in populations of African descent
(Additional file 2: Table S1). Furthermore, the MAF at
rs2239704 and rs746868 (Additional file 2: Table S1) ranged
from ~ 31 to ~ 44.0% in South Asians, from 33.3 to 48.1%
in Europeans, and from 24.1 to 47.1% in East Asians. Com-
paratively, the frequency of minor alleles at these sites was
lower in African and African-descended populations, vary-
ing from ~ 16.0 to ~ 38.0%. Our analysis also uncovered a
moderate level of population-specific variation; specifically,
25.8, 12.9, 9.7 and 22.6% of the intronic variants were

Fig. 1 Gene structure and distribution of variants among major geographic regions. a Gene structure of LTα consists of four exons (yellow
shapes) and intervening introns (black horizontal lines). Exons are labeled 1 through 4, and the start-end nucleotide positions for each exon
are given in bps. The translation start site (ATG) begins at nucleotide position + 461 in exon 2; the entire LTα coding region is 618 bps in length.
Immediately adjacent to the LTα gene is the 5′ regulatory region shown in purple. The combined length of LTα and the 5′ region is 9637 bps; b
Venn diagram showing the number of polymorphisms in LTα found in four geographic regions— namely, Africa, South Asia, Europe and East
Asia; c Venn diagram showing the number of polymorphisms in the 5′ regulatory region present in the above-mentioned geographic regions.
For b and c, the number of polymorphisms shared among geographic regions is given in the interior portions of intersecting ovals, while the
number of polymorphisms private to a particular geographic region is given outside of the intersecting ovals. We did not include African
American and African Caribbean (Barbadian) populations with indigenous Africans when we examined the continental differences in the number
of polymorphisms
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private to populations of African, South Asian, European
and East Asian descent, respectively (Additional file 2:
Table S1; Additional file 1: Figure S1). Additionally, we
found that human derived alleles at rs909253 and
rs2239704 were shared with Neandertal and Denisovan
hominins.
In the adjacent 5′ region, we identified a total of

131 SNPs, and uncovered extensive allele sharing
among distinct populations (Additional file 2: Table
S1). Notably, a subset of these polymorphisms (speci-
fically, rs2009658, rs2844484 and rs915654) have
previously been implicated in the onset of complex
diseases [19, 31]. Like in the LTα gene, our analyses
also showed that modern and archaic humans shared
a number of derived alleles located in the upstream
region (Additional file 2: Table S1).
Lastly, we calculated standard measures of nucleotide

diversity (θπ and θW) in LTα and the upstream region,
separately, for each global population (Table 1). We
found that θπ (the mean number of pairwise differences
per nucleotide) in the LTα gene was similar across

diverse populations. Specifically, θπ ranged from 1.18 ×
10− 3 to 1.39 × 10− 3 in populations of African descent;
from 1.19 × 10− 3 to 1.33 × 10− 3 in South Asians, from
1.34 × 10− 3 to 1.48 × 10− 3 in Europeans and from 1.19 ×
10− 3 to 1.33 × 10− 3 in East Asians (Table 1). Likewise,
estimates of θW (nucleotide diversity calculated based on
the number of segregating sites) did not vary greatly
among populations (Table 1). In the 5′ region, we
detected a similar pattern of nucleotide diversity among
geographically distinct populations (Additional file 2:
Table S2). Overall, we observed little difference in the
level of nucleotide diversity between African and non-
African populations across this ~ 10-kb region.

Tests of neutrality
To determine if patterns of variation are consistent with
neutral evolution, we calculated Tajima’s D (DT) and the
Fay and Wu’s H (H) statistics for the LTα gene and the
upstream region, separately, in each population (Table 1;
Additional file 2: Table S2). We also generated expected
DT and H values under varying models of demographic

Table 1 Summary statistics based on sequence variation in the LTα gene

Population 2N S Singletons h-diversity θπ θW DT H M-K test DN DS PN PS

ACB 192 16 3 0.721 1.34 × 10−3 1.25 × 10− 3 0.190 −0.247 0.400 0 2 3 1

ASW 120 12 1 0.760 1.39 × 10−3 1.02 × 10− 3 0.942 0.341 0.100 0 2 3 0

ESN 198 13 3 0.704 1.22 × 10−3 1.01 × 10− 3 0.511 −0.956 0.333 0 2 2 0

GWD 226 13 4 0.700 1.32 × 10−3 9.90 × 10− 4 0.816 0.204 0.333 0 2 2 0

LWK 198 10 2 0.660 1.18 × 10−3 7.80 × 10− 4 1.208 −0.439 0.333 0 2 0 2

MSL 162 10 1 0.709 1.29 × 10−3 8.00 × 10− 4 1.449 −0.007 0.100 0 2 3 0

YRI 214 15 5 0.742 1.36 × 10−3 1.15 × 10− 3 0.460 −0.107 0.333 0 2 2 0

BEB 168 13 2 0.741 1.19 × 10−3 1.04 × 10− 3 0.364 1.340 0.067 0 2 4 0

GIH 206 13 3 0.736 1.25 × 10−3 1.00 × 10− 3 0.603 1.102 0.100 0 2 3 0

ITU 198 13 1 0.763 1.27 × 10−3 1.01 × 10− 3 0.638 0.896 0.100 0 2 3 0

PJL 186 12 2 0.744 1.33 × 10−3 9.40 × 10−4 1.014 0.681 0.067 0 2 4 0

STU 198 14 4 0.734 1.33 × 10−3 1.09 × 10− 3 0.570 0.569 0.100 0 2 3 0

FIN 198 12 1 0.808 1.48 × 10−3 9.30 × 10−4 1.433 1.365 0.100 0 2 3 0

GBR 178 15 4 0.775 1.41 × 10−3 1.19 × 10− 3 0.486 0.724 0.100 0 2 3 0

IBS 214 15 3 0.728 1.34 × 10−3 1.15 × 10− 3 0.416 0.285 0.067 0 2 4 0

TSI 214 18 5 0.780 1.39 × 10−3 1.38 × 10− 3 0.011 0.995 0.400 0 2 3 1

CDX 186 8 2 0.616 1.19 × 10−3 6.30 × 10−4 1.974 −0.643 0.067 0 3 4 0

CHB 206 13 2 0.694 1.32 × 10−3 1.00 × 10− 3 0.774 0.138 0.143 0 2 4 1

CHS 210 9 3 0.610 1.19 × 10−3 6.90 × 10−4 1.620 −0.792 0.100 0 2 3 0

JPT 208 12 3 0.644 1.28 × 10−3 9.20 × 10−4 0.942 −0.440 0.429 0 2 3 2

KHV 198 15 5 0.687 1.33 × 10−3 1.17 × 10− 3 0.369 −0.009 0.048 0 2 5 0

Tajima’s D (DT) measures the difference between two estimates of nucleotide diversity, θπ and θw. Fay and Wu’s H (H) measures an excess of high compared to
intermediate frequency variants. Statistical significance for each statistic was determined by comparing observed estimates to expected values under different
scenarios of population growth (Additional file 2: Tables S3 and S4) Numbers in bold indicate significance at P < 0.05. 2N is the number of gene copies analyzed in
each population; S is the number of segregating sites; h is the number of haplotypes; and h-diversity is the haplotype diversity. The number of singletons is listed
for each population. The number of silent polymorphic sites (PS), replacement polymorphic sites (PN), silent divergent sites (DS), and replacement divergent sites
(DN) in the LTα coding region is also given. Statistical significance for the McDonald–Kreitman (M-K) test was determined using the Fisher’s exact test; significant
(P < 0.05) values are given in bold
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growth using the ms software [32]. We incorporated
growth as a parameter in these coalescent simulations
given the genetic evidence for past human population
expansion in prior studies [33, 34]. Based on these ana-
lyses, we found that DT for LTα was more positive than
expected (P < 0.05) in South Asians, Europeans and East
Asians (Table 1; Additional file 2: Table S3). Moreover,
we observed a significant departure of H values (P <
0.05) in South Asian and European populations (Table 1;
Additional file 2: Table S4). Our results also showed a
general pattern of positive DT in populations of African
descent, with the largest departures from expected
values occurring in the Mende from Sierra Leone and
the Luhya from Kenya (Table 1; Additional file 2: Table
S3). However, we did not observe significant H values in
African, African American and African Caribbean popu-
lations (Barbadians) (Table 1; Additional file 2: Table
S4).
Additionally, we calculated DT and H statistics for the

adjacent 5′ region in each population (Additional file 2:
Tables S5 and S6), and found significantly positive DT values
(P < 0.05) in South Asians, Europeans, and East Asians
(Additional file 2: Tables S2 and S5). Furthermore, H statis-
tics were more positive than expected (P < 0.05) in these
populations (Additional file 2: Tables S2 and Table S6). In
comparison, we observed a mix of positive and slightly nega-
tive DT values (Additional file 2: Tables S2 and S5) among
populations of African descent. However, we did detect
significantly positive H values (P < 0.05) in both indigenous
and recently admixed Africans (Additional file 2: Tables S2
and S6).
To further assess whether or not variation at LTα is evol-

ving neutrally, we applied the McDonald-Kreitman (M-K)
test, which compares the ratio of synonymous and non-
synonymous sites within and between species, to our
sequence data (Table 1). Our results showed a significant
excess of nonsynonymous variants (P= 0.047) in the Kinh
population from Vietnam and a borderline significant excess
of amino acid variation (0.1 ≥ P ≥ 0.05) in other populations
of African (African Americans and the Mende), South Asian
(Bengali, Gujarati, Telugu, Punjabi and Sri Lankan Tamil),
European (Finnish, Great British, and Iberian), and East
Asian (Dai and southern Han Chinese) ancestry (Table 1).
Thus, we consistently observed a higher proportion of
nonsynonymous polymorphisms relative to synonymous
changes in all populations. Overall, the excess of nonsynon-
ymous variants and the sharply positive DT and H statistics
in global populations are consistent with the action of long-
term balancing selection [35–37].

Haplotype variation and inferred relationships
We analyzed phased haplotype data, encompassing the
entire 9637 base pair (bp) region, and identified 223 dis-
tinct haplotypes in global populations (Additional file 2:

Table S7A). Of these variants, 23 haplotypes (H6, H8,
H12, H30, H36, H37, H80, H82, H86, H105, H119, H128,
H132, H136, H142, H158, H160, H187, H190, H204,
H214, H217 and H219) were common, and six of these
haplotypes were found in all populations (Additional file
2: Table S7A); 16–18 common haplotypes accounted for
80.4–88.4%, 77.6–83.1% and 77.1–88.9% of the total num-
ber of haplotypes in South Asian, European and East
Asian populations, respectively (Additional file 2: Table
S8). Comparatively, a smaller number of common haplo-
types (H6, H30, H37, H82, H86, H119, H128, H142,
H187, H190, H217 and H219) comprised 66.7–74.2% of
all haplotype lineages in African and African-descended
populations (Additional file 2: Table S9). Further analysis
of all haplotype variation also showed that Africans and
non-Africans exhibited high levels of haplotype diversity
(h-diversity). Specifically, h-diversity varied from 90.5 to
95.0% in populations of African descent; from 91.5 to
93.6% in South Asians; from 91.9 to 93.3% in Europeans;
and from 85.9 to 89.9% in East Asians (Table 1).
We also performed a median-joining network analysis

[38] to explore the phylogenetic relationships among
haplotype lineages, and found that haplotype variation
grouped into three distinct clusters (arbitrarily labeled I,
II, III; Fig. 2). Each cluster consisted of low-frequency
haplotypes radiating from common haplotypes in a
“star-like” pattern which is the genetic pattern predicted
under a model of positive or purifying selection [39].
Moreover, the highest-frequency haplotypes (specifically,
H37, H82, H128, H142 and H190) in clusters I, II and
III were shared among globally diverse populations, and
these haplotype lineages differed from one another at 28
polymorphic sites. Intriguingly, we also found that 22 of
the 28 polymorphic sites on these high-frequency haplo-
types were present in the Neandertal and Denisovan
genomes (Additional file 2: Table S7B).

Pairwise linkage disequilibrium in the LTα region and
surrounding genes
To quantify the allelic associations between SNPs across
~ 10 kbs, encompassing LTα and the 5′ region, we esti-
mated pairwise LD using the D′ statistic [40]. Our
results generally showed a faster decay of LD between
loci (D′ < 100) in populations of African ancestry com-
pared to non-Africans. For example, in the Esan from
Nigeria, we observed lower levels of allelic association
(D′ < 100) within and between LTα and the upstream
region (Fig. 3; Additional file 1: Figure S1; Additional file
2: Table S10), implying a history of recombination in
this population. By contrast, our LD plots revealed a
higher level of allelic association in South Asians, Eur-
opeans, and East Asians. In particular, we observed a
greater number of instances of complete LD (D′ = 100)
between loci in non-Africans compared to populations of
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African descent (Fig. 3; Additional file 1: Figure S1; Addi-
tional file 2: Table S10). The inference of recombination
across LTα and the 5′ region is further supported by our
phylogenetic network which displayed a small number of
reticulations or loops among haplotype lineages (Fig. 2). It is
known that these reticulate (non-bifurcating) relationships
among haplotypes can arise due to historical recombination
events [41].
To explore possible gene-gene interactions, we also

quantified pairwise LD between genetic markers in the
LTα region and neighboring genes (specifically,
NFKBIL1, TNFα, and LTβ) within a 35,538-bp region on
chromosome 6 (Additional file 1: Figure S2). This analy-
sis showed that African and African-descended

populations exhibited less LD (D′ < 100) between SNPs
in the LTα region and nearby genes (Additional file 1:
Figure S2). In comparison, however, we observed more
instances of complete LD (D′ = 100) across this ~ 35.5
kilobase (kb) region in Eurasian populations (Additional
file 1: Figure S2).

Long-range haplotype structure
We further characterized long-range LD across the entire
∼170megabase (Mb) region of chromosome 6 for each
population using the iHS statistic [42]. In particular, we cal-
culated the absolute standardized |iHS| scores by normaliz-
ing raw values with the selscan and norm software [43].
Based on this analysis, we observed outlier |iHS| statistics

Fig. 2 Haplotype network of global variation across ~ 10 kbs encompassing LTα and the 5′ region. Haplotype relationships were constructed
using the median-joining algorithm implemented in Network 5.0 [38]. The resulting phylogeny consists of nodes (representing haplotypes), and
links which connect the nodes in the shortest possible tree. The size of the nodes is proportional to the number of chromosomes with a given
haplotype, and the colors within haplotypes (or nodes) indicate the frequency of that haplotype in pooled populations (such as, South Asians or
East Asians). Distinct clusters of haplotypes are surrounded by circles/ovals with dashed lines, and the alleles that define the highest-frequency
haplotype(s) are also given in each cluster. Underlined nucleotides indicate alleles that are inferred to be under selection and are shared with
archaic hominins. Each haplotype cluster was arbitrarily labelled as Cluster I, Cluster II and Cluster III
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for multiple SNPs— namely, rs4947326, rs4947327,
rs9267497, rs36221456, rs73396237, rs148407582,
rs9267499, rs2857709, rs2857708 and rs2229092— in the
coding and 5′ regions in South Asians (Fig. 4; Additional
file 1: Figure S3; Additional file 2: Table S12). We also iden-
tified multiple SNPs with elevated |iHS| values in the
upstream, intronic and exonic regions in European popula-
tions (Fig. 4; Additional file 1: Figure S3; Additional file 2:
Table S12). In addition, we detected several outlier |iHS|
scores for loci in the 5′ region only (rs73396237, rs915654,
rs2857709) in populations from East Asia (Fig. 4; Additional
file 1: Figure S3; Additional file 2: Table S12). We did not,
however, observe outlier values for SNPs in the LTα
gene or the 5′ region in populations of African descent,
except in African Americans where we detected a single

extreme |iHS| score for rs73396237 located in the
upstream region (Fig. 4; Additional file 1: Figure S3;
Additional file 2: Table S12).
To complement our |iHS| scans, we applied the nSL

statistic which is a test for detecting both soft and hard
sweeps in genomic data [44]. One advantage of this
statistic is that it does not depend on the recombination
rate, which can lead to false positive signals of haplotype
homozygosity in chromosomal regions with low levels of
recombination [44]. Using this method, we observed
extreme standardized |nSL| scores (defined as |nSL| > 2)
for variation in the 5′ region (rs36221456, rs73396237,
rs2857709, rs4947326, rs2857601, rs2857708) and in the
LTα coding region (rs2229092) in South Asians (Addi-
tional file 1: Figure S4; Additional file 2: Table S11),

Fig. 3 Pairwise LD across ~ 10 kbs encompassing LTα and the 5′ region in selected populations. We measured pairwise LD, using the D′ statistic,
calculated with Haploview [40], which outputs a graphical representation of allelic associations. In the resulting plots, pairwise LD coefficients D′ ×
100 are given in each cell. The color scheme of each cell signifies the strength of association between SNP alleles. Specifically, bright red squares
indicate statistically significant LD between SNP pairs (D′ = 100; logarithm of odds (LOD) > 2), while shades of pink/white cells signify little
evidence of LD (D′ < 100; LOD < 2) between loci and purple cells signal high LD but with little statistical support (low LOD) [40]. The bold
triangles in the plots also indicate strong blocks of LD between SNP markers. The corresponding genomic coordinate for each marker can be
found in Additional file 2: Table S10. The genomic region analyzed is given at the top of each plot (exons are labeled 1 through 4) The genomic
region analyzed is given at the top of each plot (exons are labeled 1 through 4)
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generally overlapping with the |iHS| results. We also
detected outlier |nSL| values for a similar set of loci
upstream (rs73396237, rs2857709, rs3093540, rs2071590,
rs4947326, rs2857601, rs2239704 and rs3093546) and

within the LTα gene (rs3093542 and rs2229092) in Eur-
opean populations (Additional file 1: Figure S4; Additional
file 2: Table S12). Furthermore, we found a single
extreme |nSL| score for rs73396237 in the upstream

Fig. 4 Integrated haplotype score (iHS) and extended haplotype homozygosity (EHH) plots for selected populations. a–d Manhattan plots of
standardized |iHS| statistics for selected populations. The dashed horizontal lines represent the cut-off for extreme |iHS| scores (|iHS | > 2),
representing the most extreme 5% of empirical |iHS| values. The red dots in plots represent outlier SNPs in and/or near LTα; (E–H) EHH plots for
selected populations show the decay of identity of haplotypes on chromosomes with a derived allele (the blue line) versus an ancestral allele
(the red line) at core SNPs as a function of distance. The distance from the core SNP (at zero) is displayed on the x-axis; the negative numbers
indicate distance upstream from the core SNP, while positive values indicate distance downstream from the core SNP. The EHH values are shown
on the y-axis. The distance from the core SNP (at zero) is displayed on the x-axis and the EHH values are shown on the y-axis. It is important to
note that these EHH plots are selected examples from a larger set of EHH curves that were generated in the present study, which can be found
in Additional file 1: Figure S5)
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region in East Asians. By contrast, we did not
observe unusual |nSL| scores for loci in any popula-
tion of African descent (Additional file 1: Figure S4;
Additional file 2: Table S12).
We also plotted the decay of haplotype homozygosity

from core SNPs (represented by loci with extreme |iHS|
or |nSL| scores) using the EHH statistic [45]. This analysis
revealed long-distance haplotype homozygosity, spanning up
to 1.4 megabases (Mbs), on chromosomes carrying the
derived allele relative to chromosomes with the ancestral
allele mainly in Eurasian populations (Fig. 4; Additional file
1: Figure S5). For example, we detected unusually long hap-
lotype structure around derived alleles at rs73396237,
rs2857709, rs2857708, rs4947326, rs4947327, rs148407582,
rs9267497, rs9267499, and rs2229092 in the South Asian
Telugu (ITU) population (Fig. 4; Additional file 1: Figure S5).
We also observed a similar pattern of EHH on chromosomes
carrying derived alleles in other non-African populations. In
addition, we detected long-range EHH around the derived
G-allele at rs73396237 (extending no more than 80 kbs) in
African Americans in agreement with our |iHS| results
(Fig. 4; Additional file 1: Figure S5). We did not, how-
ever, observe a difference in EHH curves for chromo-
somes harboring the derived versus the ancestral allele
in other populations of African descent (Additional file
1: Figure S5).

Population differentiation and structure
To examine patterns of genetic differentiation, we calcu-
lated mean FST among geographic regions (namely Africa,
South Asia, East Asia, and Europe) using polymorphisms
across the ~ 10 kbs encompassing LTα and the upstream
region. Mean global FST was estimated to be 0.010132,
much lower than FST estimates for autosomal loci, which
typically range from 0.10 to 0.16 [46, 47]. Our analyses also
revealed that per-site FST values for common SNPs were
below 0.10 (Additional file 2: Table S1). For example, FST
values for rs1800683, rs2239704, rs909253, rs746868,
rs2229094, rs3093542, rs2229092 and rs1041981 within the
LTα gene were estimated to be 0.069033, 0.020427,
0.068599, 0.021288, 0.029649, 0.026510, 0.034892 and
0.067877, respectively (Additional file 2: Table S1). Simi-
larly, FST values for common SNPs in the 5′ region varied
from 0.0055 to 0.0745 (Additional file 2: Table S1).
Although the above estimates of FST were not outliers in
the empirical distribution of FST, calculated for ~ 7.5
million genome-wide SNPs, they did fall within the 15th
percentile of empirical values. Thus, we consistently
observed low estimates of FST in both the LTα gene and
the upstream region.

Inferred ages of variants in LTα and the adjacent 5′ region
Using a coalescent-based method [48], we inferred the
mean time to the most recent common ancestor

(TMRCA) for variation in both LTα and the upstream
region, and calculated the mean ages of individual poly-
morphisms (in years ago ± standard deviation in years)
(Additional file 2: Table S13). Our analysis revealed a
deep coalescence time for the origin of variation, esti-
mated to be ~ 1.0 million years ago (ya) ± 57,207.68
years. We also found that the ages of common poly-
morphisms in the 5′ region ranged from 200,571.46 ya
(± 77,877.56 years) to 734,694 ya (± 140,326.55 years)
(Additional file 2: Table S13). Furthermore, variants with
the oldest inferred ages—namely, rs2857710 (734,694
ya ± 140,326.55 years), rs3131641 (453,306.20 ya ± 69,
869.40 years), rs2857602 (718,530.73 ya ± 141,061.25
years), rs2844486 (626,693.98 ya ± 177,795.95 years) and
rs1121800 (472,408.24 ya ± 106,530.63 years)—were also
found in the Neanderthal and/or Denisovan genomes
(Additional file 2: Tables S1 and S13). Additionally,
several of the SNPs with deep coalescence times (i.e.,
rs4947326, rs4947327, rs148407582 and rs9267497) were
inferred to be targets of recent selection based on our
long-range haplotype analyses (Additional file 2: Tables
S11 and S13).

Inferred functional consequences
Given the higher proportion of nonsynonymous poly-
morphisms relative to synonymous changes in the LTα
coding region, we inferred the possible effects of nonsy-
nonymous SNPs on protein function using SIFT [49].
SIFT classifies nonsynonymous substitutions as either
“tolerated” or “deleterious” based on sequence homology
and the properties of amino acids [49]. This method pre-
dicted that seven of the eight nonsynonymous polymorph-
isms (specifically, rs538402044, rs2229094, rs368539892,
rs2229092, rs1041981, rs538877791 and rs566451995)
were “tolerated”, while variation at rs562333039 was pre-
dicted to be “deleterious”. Moreover, three “tolerated”
variants— rs2229094, rs2229092, rs1041981— were com-
mon (MAF ≥ 5%) in at least one population, while the
other four “tolerated” polymorphisms were either rare
(MAF < 5%) or absent in global populations. The single
“deleterious” SNP was present only in the Kinh population
from Vietnam at very low frequency (MAF < 0.01). We
also determined if common missense variation was con-
served across mammalian species using GERP++ [50],
phyloP [51] and phastCons [52]. Our results showed that
the conservation score for each polymorphic site did not
reach the “deleterious” threshold level, in agreement with
our SIFT results (Table 2).
In addition, we analyzed changes in LTα protein stability

(i.e. the folded conformation) caused by missense mutations
at different common SNPs with two bioinformatic tools:
FoldX [53] and I-Mutant3 [54]. Our analyses revealed that
the total energy change (ΔΔG) for rs1041981, determined
by FoldX, was − 0.802 kcal/mol, suggesting that mutation
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(the A-allele) at this site slightly destabilizes protein struc-
ture (Table 2). By contrast, the FoldX ΔΔG for rs2229092
was 1.180 kcal/mol, implying that variability at this site
largely stabilizes the folding conformation of the LTα pro-
tein (Table 2). The I-Mutant3 method yielded similar pre-
dictions of protein stability changes due to nucleotide
variation at the rs1041981 and rs2229092 loci. The folding
energy difference caused by mutation at rs2229094 —calcu-
lated using I-Mutant3— was 0.07 kcal/mol (Table 2), indi-
cating that variability at this site has little effect on the
folded structure of the LTα protein. Regrettably, we were
unable to determine the FoldX ΔΔG for rs2229094 because
the available template structure, used as input for this bioin-
formatic tool, did not include residues encoded by this SNP.
Lastly, we examined the potential regulatory effects of var-

iants in or near the LTα gene using the SNP2TFBS database
[55]. Based on this analysis, we identified 13 non-
coding polymorphisms that map to transcription factor

binding sites (TFBSs), and are predicted to alter transcrip-
tion factor binding site affinity (Table 3) [56]. Our data also
showed that the transcription factors (TFs) affected by
nucleotide changes in the TFBSs were Pdx1, Prrx2, KLF1,
ZNF263, SP2, SP1, KLF5, ELF-1, Zfx, Nr1h3/Rxra, Arnt/
Ahr, EGR2, Foxd3, FOXI1, IRF1, SPIB, ARID3A. Further-
more, a subset of these 13 SNPs (namely, rs2857709,
rs4947326, rs4947327 and rs3093542, which are predicted to
affect the binding of TFs ELF-1, Zfx and ZNF263) had
extreme |iHS| and/or |nSL| scores, suggesting these candi-
date functional alleles are or have been targets of recent
selection (Table 3; Additional file 2: Table S12). In addition,
derived alleles at these sites had coalescence times that ran-
ged from 56,718.38 ya (± 32,106.13 years) to 668,571.54 ya
(± 105,795.94 years) (Additional file 2: Table S13). Our ana-
lysis also revealed that one of the 13 candidate functional
polymorphisms (specifically, rs909253)— not inferred to be
under selection— is a known genetic risk factor for several

Table 3 The effect of allelic variation on transcription factor binding affinity

Genomic
coordinate

rs identifier Reference
allele

Alternate
allele

Genic region Transcription
factor

Selection
status

MAF ClinVar

31,532,814 rs2857709 A G intergenic ELF-1 Yes Common No

31,533,718 rs4947326 A G intergenic Zfx Yes Common No

31,533,722 rs113019108 C T intergenic Zfx No Common No

31,533,728 rs4947327 G A intergenic Zfx Yes Common No

31,534,206 rs2844485 A G intergenic Nr1h3/Rxra No Common No

31,535,455 rs549446426 G A intergenic Arnt/Ahr, EGR2 No Common No

31,535,459 rs62395772 G A intergenic Arnt/Ahr, EGR2 No Common No

31,535,462 rs538596719 T C intergenic Arnt/Ahr, EGR2 No Common No

31,536,796 rs2844483 T G intergenic FOXI1, Foxd3 No Common No

31,537,221 rs62395778 G A intergenic IRF1, ZNF263 No Common No

31,540,313 rs909253 A G intronic SPIB No Common Yes

31,540,693 rs3093542 G C intronic ZNF263 Yes Common No

31,541,848 rs3093547 T A non-coding exon/
UTR

ARID3A, Prrx2 No Common No

SNP2TFBS [55] was used to map variants to known transcription factor binding sites (TFBSs) in the human genome. In the Table, we have listed the genomic
coordinate (from build GRCh 37) of each polymorphic site along with the rs identifier, Reference/Alternate alleles, the genic region in which each site is located, as
well as the corresponding transcription factor that binds to the TFBSs where polymorphisms occurred. Furthermore, we indicated whether or not a given
polymorphic site was inferred to be under selection (Yes/No) and if alleles at this site were common (based on minor allele frequency [MAF]). We also determined
if variants were previously reported in the ClinVar database (Yes/No) [57]

Table 2 Predictions of amino acid changes on LTα protein function

SNP Mutation Damaging Effect Conservation Score Protein Stability (ΔΔG)

SIFT phyloP phastCons GERP++ I-Mutant3 FoldX

rs2229094 C13R 0.783 (T) 0.065 0.09 1.26 −0.070 (N) N/A

rs2229092 H51P 0.253 (T) 0.153 0.184 −2.81 0.660 (I) 1.180 (I)

rs1041981 T60N 0.392 (T) 0.073 0.936 3.15 −0.520 (D) −0.802 (D)

GEPR++, phyloP, and phastCons were applied to the LTα coding region to determine if common alleles at rs2229094, rs2229092 and rs1041981 are under
evolutionary constraint across mammalian species. The SIFT algorithm was used to predict if a SNP has a (generally negative) effect on protein function. Variants
with scores ranging from 0.05 to 1 were considered to be tolerated (T). We also predicted protein stability changes caused by missense mutations at these same
three sites—as indicated by ΔΔG— using the FoldX [52] and I-Mutant3 [53] tools (I Increased, D Decreased, N Neutral; ΔΔG is in units of kcal/mol). The
corresponding amino acid position, amino acid polymorphisms, and conservation scores are given for each SNP; N/A indicates that ΔΔG could not be calculated
for rs2229094 using FoldX as outlined in the Methods section
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complex diseases [10, 13, 57, 58] , and is predicted to alter
the binding of TF SPIB (Table 3).

Discussion
Evidence for soft sweeps in global populations
Our analyses uncovered striking patterns of diversity in
LTα and the 5′ region in African and non-African popu-
lations. In particular, we found significantly positive DT

and H statistics, indicating an excess of intermediate-
frequency-derived alleles, within and outside of Africa.
Furthermore, we observed the maintenance of multiple
high-frequency haplotype lineages in global populations,
and inferred a deep coalescent time of variation (> 1.0
million years ago). We also detected low levels of genetic
differentiation and extensive sharing of variation among
globally diverse populations. A comparative analysis
further revealed that a number of polymorphisms were
shared between archaic and modern humans (i.e. trans-
species polymorphisms). Taken together, these results
are largely consistent with a model of long-term balan-
cing selection. However, we also detected long-range
EHH on chromosomes carrying derived alleles primarily
in non-African populations, and observed a “star-like”
phylogeny of haplotypes radiating around common hap-
lotypes in our network. These genetic patterns are con-
sistent with the predictions for positive selection. To
reconcile these findings, which appear to support differ-
ent models of selection, we argue that long-term balan-
cing selection has acted to maintain alleles/haplotypes in
African populations, while patterns of diversity and LD
in non-Africans were shaped by recent selection.
Within Africa, we found evidence for balancing selec-

tion based on the site frequency spectrum and the
persistence of multiple common haplotypes in popula-
tions. These results are similar to the findings in a prior
study that detected signatures of balancing selection at
the TAS2R38 locus—which is associated with normal
variation in bitter taste perception—in ethnically diverse
African populations [59]. In addition, we detected
shorter blocks of EHH in most populations of African
descent, likely reflecting a history of recombination in
and around LTα [60–62]. One exception to this general
pattern of LD, however, was observed in African Ameri-
cans where we found unusually long haplotype structure
around the derived allele at rs73396237. This SNP is also
inferred to be a target of selection and is common in
European populations. One possible explanation for this
pattern is that the extended LD surrounding this
selected SNP could have been introduced into African
Americans through gene flow from the ancestors of wes-
tern Europeans to enslaved West Africans during the
Trans-Atlantic slave trade [63]. Indeed, prior studies
have shown that contemporary African Americans have
varying levels of European ancestry due to this historical

event which occurred between the 15th and 19th centu-
ries [63–65]. Additionally, the presence of other derived
variation in African Americans (for example, the C-allele
at rs2229092 in the LTα coding region), common in Eur-
opeans but notably absent in West Africans, also sup-
ports this model of historical admixture. Alternatively,
and more provocatively, the common derived allele at
rs73396237 (inferred to be under selection) could have
already been present in the enslaved ancestors of African
Americans and then became selectively advantageous in
the new environments (for example, novel pathogens) to
which these individuals were exposed, leading to
extended haplotype structure over time. However,
further analysis of a larger set of populations will be
needed to distinguish: 1) whether the above extended
LD in African Americans was due to strong selection on
pre-existing common variation at rs73396237 that
became beneficial in novel environments, or 2) a selec-
tive event had occurred first in the ancestors of
Europeans who then admixed with the West African
ancestors of present-day African Americans. Interest-
ingly, recent studies have reported instances of popula-
tions acquiring selected alleles through past admixture
[66–68]. Thus, it is highly conceivable that a selected
allele could have been introduced into African Americans
through admixture between African and non-African
parental populations.
After modern humans migrated from Africa ~ 60,000–

80,000 ya, we contend that positive selection on pre-
existing genetic variation occurred in regions of the
world outside of the African continent. Indeed, this
model of adaptation has been reported for several genes
in non-African populations [69]. In particular, a recent
study uncovered evidence for long-term balancing selec-
tion at several loci (CLCNKB, PKDREJ, SDR39U1, and
ZNF473) in West and East Africans [69]. However, these
genes showed an absence of some of the signals of bal-
ancing selection in European and/or East Asian popula-
tions; data also indicated that one of the two alleles
under balancing selection in Africa underwent a soft
sweep in non-Africans [69], likely in response to changes
in selective pressures outside of Africa [69–73]. In the
present study, we propose that a similar phenomenon
occurred in the LTα region during the history of non-
Africans, leading to the presence of long-range haplo-
types in these populations.
Additionally, we suggest that soft sweeps of multiple

advantageous mutations occurred— such that pre-
existing alleles of similar benefit were selected for and
increased in frequency simultaneously, or in short suc-
cession of one another (in response to different selective
pressures). Under this model of evolution (i.e. a
multiple-locus soft sweep model), none of the favored
mutations rise rapidly to fixation [74], but rather
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beneficial alleles at different loci undergo an incomplete
selective sweep. In this scenario, multiple mutations can
co-exist at intermediate frequency in populations,
mimicking balancing selection (resulting in strongly
positive DT and H values) [37, 75–78]. Furthermore,
multiple haplotypes carrying selectively advantageous
alleles will become frequent within populations, leading
to an increase in haplotype diversity [37, 79, 80]. Expli-
citly, both of these genetic patterns were consistently
observed in Eurasian populations. This proposed model
of selection is distinct from a classic selective sweep in
which a novel beneficial mutation arises once and
quickly rises in frequency until it becomes fixed [7].
Lastly, we detected a significant and marginally signifi-

cant excess of nonsynonymous polymorphisms in African
and non-African populations. This bias towards amino
acid variation in the LTα coding region could arise due to
several evolutionary forces, such as positive selection, a
relaxation of functional constraint, or balancing selection
in diverse populations [60, 81–83]. Although the precise
environmental/external pressures driving the different
types of selection in and outside of Africa are currently
unknown, it is clear that multiple loci in LTα and the
upstream region are or have been functionally important
during human evolution.

Identification of functional candidate loci
The human genome contains thousands of experimen-
tally corroborated transcription factor binding sites
(TFBSs)[84, 85]; precise knowledge of the genetic var-
iants that disrupt TFBSs is critical for understanding the
molecular changes that contribute to phenotypic varia-
tion [86]. Using a computational approach, we identified
a number of SNPs that were predicted to alter the bind-
ing of multiple TFs— most notably Zfx, ELF-1, SPIB and
ZNF263. Prior studies have also documented the role
that these TFs play in gene regulation and immunity.
For example, studies have reported that Zfx is essential
for the survival of recirculating mature B-cells and
embryonic stem cells. Moreover, in vitro experiments
demonstrated that Zfx-deficient peripheral T-cells failed
to proliferate and expand after microbial antigen stimu-
lation [87–89]. Other studies have also indicated that
the ELF-1 binding site is important for the initiation of
transcription and that the knockdown of this TF inhib-
ited gene expression [90–92]. Data further showed that
TF SPIB plays a role in B-cell differentiation (via gene
regulation), enabling these lymphocytes to appropriately
respond to environmental cues [93, 94]. In addition, ana-
lyses focused on ZNF263 found that this TF can have
both positive and negative effects on transcriptional re-
gulation of gene targets; more specifically, in cells where
ZNF263 levels were low, a subset (∼15–20%) of genes
exhibited decreased transcription, while a larger

proportion of genes showed elevated expression [95]. As
a result, we suggest that the candidate loci, identified in
the present study, likely contribute to phenotypic varia-
tion through the regulation of gene expression (though
it is not completely clear from our data in which direc-
tion these variants affect expression; that is to say, we do
not know if they inhibit or enhance expression). Intrigu-
ingly, we also found that rs909253, which is predicted to
alter the binding of SPIB, is associated with increased
risk for myocardial infarction, non-Hodgkin lymphoma,
and psoriatic arthritis [10, 13, 58], suggesting that the
onset of these complex diseases may be due in part to
LTα expression levels. However, further studies are
needed to elucidate the role that LTα expression plays in
complex disease susceptibility.
Our analyses also revealed strong LD among alleles in

and between LTα and the 5′ region, raising the possibi-
lity that our candidate SNPs are in LD with previously
identified variants in the literature. Therefore, it is con-
ceivable that our candidate loci are either causal or act
epistatically with previously described alleles in associa-
tion studies. Furthermore, given the evidence for strong
LD between alleles located in different genes (mainly in
non-African populations), it is possible that loci in the
LTα region and in neighboring genes could also interact
epistatically, influencing gene expression. Additionally, a
subset of the candidate functional sites (i.e., rs2857709,
rs4947326, rs4947327, and rs3093542) were inferred to
be under selection, suggesting that adaptive evolution in
the LTα region involved changes in the level of gene
expression.
Although computational approaches have been benefi-

cial for predicting the impact of nucleotide variation on
TF-DNA binding [96–102], the ability to infer functional
consequences of nucleotide changes in TFBSs using such
methods has its limits. One important limitation to note
is that only a small fraction of all existing TFs in the
genome have been characterized in terms of their bind-
ing properties to date [86]. As a result, a number of
TFBSs in the genome do not have known cognate TFs.
Equally as important, current computational methods
examine each variant in DNA binding sites indepen-
dently, neglecting the potential epistatic interactions
among distinct TFBSs. Therefore, future in vitro and
in vivo TF binding experiments will be important for
further clarifying how the novel loci in our study singly
or jointly, influence function, leading to differences in
gene expression.
Our data also indicated that the high levels of amino

acid change in the LTα protein is generally tolerated (i.e.
they do not disrupt protein function), suggesting that
sequence diversity may have a functional purpose. For
example, greater amino acid diversity could expand the
ability of the LTα protein to recognize a broad range of
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antigens, enhancing immune surveillance. Equally as
important, the accumulation of amino acid changes
could be critical for the other key functions that the LTα
protein performs. While the reasons underlying this bias
towards amino acid polymorphisms are not clear, this
pattern of diversity has been previously reported for a
number of other MHC genes [81]. In addition, our ΔΔG
results indicated that the “mutant” proline residue at
amino acid position 51— encoded by rs2229092— has a
stabilizing effect on LTα protein structure relative to the
“wild-type” histidine residue at the same site (Table 2).
Indeed, it is widely recognized that high stability is
important for preserving protein function in a range of
conditions over time (for example, temperature and pH)
[103]. Furthermore, extra stability is often correlated
with protein evolution; specifically, it increases the toler-
ance of proteins to amino acid substitutions while still
folding to its native structure [104]. Thus, highly stable
proteins can function across broader physiochemical
environments and accept a greater number of amino
acid changes, increasing their capacity to perform
diverse biochemical tasks [104]. Given that rs2229092
was also inferred to be a target of adaptive evolution in
non-Africans, we contend that there has been recent
selection for nucleotide variability that enhances protein
monomer stability, suggesting that the LTα protein may
play functionally important and diverse roles in these
populations.
Though our analyses of protein structure indicated

that nucleotide changes at rs2229092, rs2229094 and
rs1041981 were generally tolerated, prior studies have
reported that missense mutations at rs2229094 and
rs1041981 are associated with elevated risk for several
complex diseases [14, 17, 29]. Given our findings in the
present study, we argue that protein instability (leading
to dysfunction of the LTα protein) is not likely a major
contributor to disease outcome. Further investigation of
other possible molecular mechanisms may be more
informative for understanding the underlying cause(s) of
disease susceptibility (for example, rs2229094 and
rs1041981 may be in LD with other loci that alter the
expression of LTα proteins leading to increased risk for
disease).

Timing of common variants in African and non-African
populations
Our GENETREE analysis revealed an ancient TMRCA for
variation in and near LTα (dating to > 1.0 million ya), and
a deep coalescence time for common alleles that predate
the origin of anatomically modern humans ~ 200,000–
300,000 ya [63, 105]. The presence of human poly-
morphisms in Neanderthal and Denisovan genomes
further support the inferred ancient age of common
nucleotide variation in our dataset. This sharing of alleles

among closely related species suggests that variation in
and/or near LTα likely arose in modern H. sapiens
because it was either: 1) inherited from the last ancestor
that modern humans shared with Neandertals and
Denisovans more than 500,000 ya [106], or 2) introduced
into modern humans through admixture with Neanderthal
and Denisovan populations who overlapped in space
and time with H. sapiens. Because we observed these
ancient polymorphisms in indigenous African popula-
tions, which are known to have low levels of Neander-
tal/Denisovan ancestry [107, 108], we argue that it is
likely these variants originated from the last common
ancestor of H. sapiens, Neandertals, and Denisovans in
Africa rather than through introgression. Regardless,
the inferred deep TMRCA of polymorphisms and their
presence in closely related hominins suggest that these
variants have persisted in the Homo lineage for a rela-
tively long period of time.
Lastly, although classical and soft selective sweeps are

expected to increase allele frequency differences among
populations [109, 110], we did not observe extreme
genetic differentiation at common SNPs in and/or near
LTα. One possible explanation for this pattern is that
both ancestral and derived alleles were common in
populations in Africa. When modern humans migrated
out of Africa within the last 100,000 years [63, 111], they
carried ancestral and derived alleles at common sites
with them. Because these alleles occur at appreciable fre-
quencies in global populations, it is not surprising that
we would not observe large among-population differ-
ences in allele frequency and thus not detect unusually
large FST values at common sites [112].

The function and evolution of MHC genes
The MHC is a key component of the adaptive immune
system in all jawed vertebrates [113–115]. In humans,
MHC is a gene-dense region that spans ∼4 on the short
arm of chromosome 6 and contains over 200 genes
[113]. The classical MHC class I and class II genes (also
called the human leukocyte antigen, HLA, system)
encode cell-surface glycoproteins that play a key role in
adaptive immunity [114, 115]. In particular, in cells
infected by intracellular parasites, MHC class I mole-
cules present parasite-derived peptides to cytotoxic T
lymphocytes [114, 115]. Similarly, the MHC class II
molecules present antigens (mainly from extracellular
pathogens) on the surface of antigen-presenting cells
[114, 115]. These exposed peptides are then recognized
by helper T lymphocytes, resulting in a series of immune
responses [116, 117]. In comparison, proteins encoded
by MHC class III genes have somewhat different func-
tions, playing roles in inflammation and complementary
immune responses among other immune-related
activities [118].
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The classical MHC genes are among the most poly-
morphic in the human genome [114]. Furthermore,
alleles at these loci are ancient in age (often predating
species divergence events) and can be retained across
multiple species. Studies have also indicated that
balancing selection has likely acted at these genes to
enhance the level of nonsynonymous substitutions in
codons and allelic diversity over extremely long time
periods [81, 114, 119, 120]. Comparatively, little is
known about patterns of variation at genes within the
MHC class III region or the microevolutionary forces
that have shaped these patterns. However, some stu-
dies have identified intergenic sequences in this region
that contain cis-acting elements for transcriptional or
post-transcriptional regulation of gene expression
[121, 122]. For example, non-coding sequences
upstream of TNF-α were found to contain transcrip-
tion factor and enhancer binding sites that influence
TNF-α expression in blood serum [122]. In the present
study, we similarly identified polymorphisms in the 5′
region of LTα that are predicted to alter LTα expres-
sion levels. However, more in-depth studies of the
MHC class III region are needed in order to identify
variants with a similar regulatory effect on other struc-
tural genes in this chromosomal region, and to better
understand the evolutionary history of these genes in
the human lineage.

Concluding remarks
It has been estimated that more than 90% of the SNPs
identified in prior association studies lie outside of pro-
tein coding genes and that a substantial fraction of these
polymorphisms affect gene regulation [123]. Therefore,
understanding whether or not variation within TFBSs
disrupts or creates functional sites will be informative
for elucidating the molecular basis of gene regulation
and complex traits, including disease susceptibility. Our
study identified SNPs in TFBSs that potentially influ-
ence gene expression and were also shared with archaic
hominins. The biological consequences of polymorph-
isms (in modern H. sapiens) that originate from closely
related species have been a focus of intense scientific
inquiry in the field of human genomics [124, 125]. For
example, a number of studies have indicated that intro-
gressed Neandertal alleles, occurring at relatively high
frequency in contemporary Eurasian populations, contri-
bute to immunity, metabolism, height, hair color, and
skin tone [124–136]. Analyses have also shown that
introgressed archaic alleles have been targets of positive
selection in modern populations. Thus, polymorph-
isms of non-modern origin are argued to have played
important roles in human biology. In the current study,
our data suggest that ancient shared alleles in the LTα
region— likely inherited from the common ancestor of

H. sapiens, Neandertals, and Denisovans— were func-
tional and adaptive in modern humans. These findings
raise new and intriguing questions about whether or not
archaic and modern humans exhibited similar phenoty-
pic variation due to their shared allelic variation. Indeed,
interrogating the genomes of related species— such as
Neandertals and Denisovans— can provide insights into
the evolutionary origins of alleles associated with traits
that may or may not be unique to modern humans.

Methods
Population samples
We analyzed the 9637 bps, encompassing the LTα gene
(2226 bps) and the adjacent 5′ region (7411 bps) on
chromosome 6 in 2039 unrelated individuals from the
1000 Genomes Project (Phase 3). These individuals ori-
ginated from four geographic regions: [1] Africa includes
99 Esan (ESN, Nigeria), 113 Mandinka (GWD, The
Gambia), 54 Mende (MSL, Sierra Leone), 107 Yoruba
(YRI, Nigeria), 99 Luhya (LWK, Kenya), 60 African
Americans (ASW, United States), 96 Barbadians (ACB,
Barbados); [2] South Asia encompasses 84 Bengali (BEB,
Bangladesh), 103 Gurjarati (GIH, India), 99 Indian Tel-
ugu (ITU, India), 93 Punjabi (PJL, Pakistan), 99 Tamil
(STU, Sri Lanka); [3] East Asia consists of 93 Dai (CDX,
China), 103 Han (CHB, Beijing), 105 Han (CHS, south-
ern China), 104 Japanese (JPT, Japan), 99 Kinh (KHV,
Vietnam); [4] Europe comprise 90 Great British (GBR,
Great Britain), 99 Finnish (FIN, Finland), 107 Iberian
(IBS, Spain), 104 Toscani Italians (TSI, Italy) [137].
Although we grouped African Americans and African
Caribbeans (Barbadians) with indigenous Africans above,
we did not combine these recently admixed population
with Africans when we examined the geographic distri-
bution of polymorphisms in Fig. 1b and c. As a result,
the total number of variants in Fig. 1b and c does not
include the population-specific variation present in
African Americans and African Caribbeans.

Nucleotide variation
We extracted variant calls (in vcf files; build GRCh 37
human assembly) from the LTα gene and the adjacent 5′
region in the 1000 Genomes sequencing dataset using
vcftools [138]. The start and end positions for this
region (build GRCh 37) were obtained from NCBI [139].
The minor allele frequency (MAF) was defined as the
second most frequent allele at a given site in pooled
populations (i.e., 4078 chromosomes). SNPs were also
broadly classified as common or rare based on the MAF
at a given site. More explicitly, SNPs with an MAF ≥ 5%
were classified as common, while SNPs with an
MAF < 5% were categorized as rare. For comparative
analysis, we examined sequence contigs for ~ 10 kbs,
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encompassing the LTα and 5′ region, in Neandertal and
Denisovan samples from the UCSC genome browser [140].

Tests of neutrality
We calculated the Tajima’s D (DT) [141] and Fay and
Wu’s H (H) [142] statistics for LTα and the adjacent 5′
region, separately, in each population. Significance of the
test statistics was assessed by comparing the observed
values to expected values generated from 10,000 neutral
coalescent simulations incorporating different models of
growth using the ms software [32]. If a sample showed a
statistically significant deviation from the expected theo-
retical distribution, the null hypothesis of no selection
was rejected. For Africans, we calculated expected DT

and H statistics under a 2-, 4-, 6-, 8-, and 10-fold
increase in population size (starting from 10,000 indivi-
duals) beginning 70,000 ya until the present [34, 143–
145]. For non-Africans, we calculated the expected DT

and H values under a range of demographic scenarios
that included a population bottleneck at 60,000 ya (from
an initial population size of 10,000 individuals and
decreasing to 2000 individuals), followed by 10-, 20-,
and 40- fold growth beginning at 50,000 ya until the pre-
sent [144, 145]. For all simulations, we used a generation
time of 20 years. Because LTα and the 5′ region are dif-
ferent sizes, we also incorporated sequence length as a
parameter in these simulations.
In addition, we applied the McDonald–Kreitman (M-

K) test to the LTα coding region using DnaSP [146]. The
M-K test compares the ratio of polymorphism to diver-
gence at replacement and silent sites. Under neutrality,
the ratio of replacement to silent substitutions between
species (DN/DS) is expected to equal the ratio of replace-
ment to silent polymorphisms within species (PN/PS).

Haplotype variation and inferred relationships
We extracted fully phased haplotype data from the 1000
Genomes Project for 2039 individuals using vcftools
[138], and then applied a custom script to identify
unique haplotypes along with the number of times that
each haplotype appeared in the pooled global dataset.
The genealogical relationships among haplotypes were
inferred using the median-joining algorithm implemen-
ted in the Network 5.0 program [38]. The resulting phy-
logeny was a tree with the minimum number of changes
among all possible trees [38]. Haplotype diversity
(h-diversity) was also calculated for each population
using the DnaSP software [146].

Linkage disequilibrium
We examined pairwise LD: 1) in the LTα region span-
ning ~ 10 kbs, and separately 2) in an ~ 35.5-kb genomic
region, encompassing neighboring genes (NFKBIL1,
LTα, TNFα, and LTβ), using the Haploview software

[40]. LD was quantified using the D′ statistic [147],
which indicates the magnitude of LD between SNP loci
based on allele frequency. To maximize our power to
detect a relationship between SNP loci, we filtered out
SNPs with a MAF < 1% in our analyses. In the resulting
LD plots, the color intensity of each square represents
the strength of the relationship between SNP alleles.
Specifically, bright red squares indicate complete LD
between SNP pairs (D′ = 100; logarithm of odds
(LOD) > 2); shades of pink/white squares signify little evi-
dence of LD (D′ < 100; LOD < 2); purple squares denote
high LD but with little statistical support (low LOD) [40].
The bold triangles in the plots also indicate strong blocks
of LD between SNP markers.

Extended haplotype homozygosity
We characterized long-range LD on chromosome 6 for
each population using the iHS statistic [42], which indi-
cates the amount of haplotype homozygosity on chromo-
somes carrying the derived allele compared to
chromosomes with the ancestral allele. To identify outlier
values, the unstandardized scores for > 340,000 SNPs
across the ~ 170-Mb region of chromosome 6 were nor-
malized with the norm program implemented in the sels-
can package [43]. SNPs with a standardized |iHS| > 2
represent the most extreme 5% of scores. We also esti-
mated the length of haplotype homozygosity with another
haplotype-based statistic, nSL, using selscan [43]. This sta-
tistic measures haplotype lengths based on the number of
segregating sites in a sample and does not depend on the
recombination rate, unlike the iHS statistic, making it
robust to recombination rate variation [44]. The output
results were normalized following the same procedure
used for iHS. To complement these scans for selection, we
quantified the decay of identity of haplotypes with
distance by calculating the EHH statistic using loci with
extreme iHS and/or nSL scores as core SNPs [45].

Population differentiation and structure
To measure the degree of genetic divergence among glo-
bal populations, we calculated average FST derived from
genomic data using the Weir and Cockerham method
implemented in vcftools [138, 148]. We also computed
among-population FST at individual polymorphic sites
across the ~ 10-kb region of interest and at ~ 7.5 million
randomly selected SNPs from across the genome. The
observed FST estimates for SNPs in and/or near LTα
were then compared with the empirical distribution of
FST values derived from genome-wide SNPs in order to
identify outlier values (≤ 2.5th percentile or ≥ 95th
percentile of the distribution). FST values at individual
sites in or near LTα, and FST values at the ~ 7.5 million
genome-wide polymorphisms were calculated using the
same 21 populations.
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Age estimates of mutations
We used a coalescent-based approach to estimate: 1) the
expected TMRCA of the gene tree and 2) the expected ages
of individual polymorphisms. This method requires an out-
group that provides the ancestral state at each polymorphic
site. We applied the GENETREE software [48] to our
sequence data to obtain the maximum likelihood estimate
(MLE) of θ over 1,000,000 runs [48]. Using the MLE of θ
and our estimate of μ, we calculated the effective popu-
lation size (Ne) parameter, which was determined to be
18,367 based on the formula Ne = θ/4μ. Then, the
TMRCA of the gene tree and the ages of individual
polymorphisms were estimated from the weighted
average of simulated ages over 100,000 independent
runs [48]. GENETREE assumes an infinite alleles model
and no recombination [48]. We removed haplotypes
and/or sites that were not compatible with these
underlying assumptions before applying the GENETREE
algorithm.

Functional analysis
The effects of nonsynonymous SNPs at LTα on protein
function were inferred using the SIFT algorithm imple-
mented in the Ensembl Variant Effect Predictor toolset.
SIFT predicts the functional impact of amino acid
substitutions (i.e., “tolerated” or “deleterious”) based on
sequence homology, the physical properties of amino
acids and multiple alignment information [49]. In addi-
tion to SIFT, we executed GERP++ [49], phyloP [50] and
phastCons [51] to evaluate whether or not common mis-
sense variation was conserved across 20 different mam-
malian species [149]. We also predicted changes in LTα
protein stability caused by common missense mutations
using two bioinformatic tools: FoldX [53] and I-Mutant3
[54] tools. ΔΔG is the difference in the Gibbs free energy
for folding between the final state (the mutant) and the
reference state (the wild-type). For each polymorphic
site, ΔΔG was computed from the free energy of the
wild type protein (encoded by the major allele at a given
site) minus the Gibbs free energy of the mutated protein
(encoded by the minor allele at a given site). In other
words, ΔΔG= ΔG WT – ΔG MUT. Given this defini-
tion, mutations resulting in negative ΔΔG values were
classified as “destabilizing”, while mutations resulting in
positive ΔΔG values were categorized as “stabilizing”.
We constructed the protein structure of LTα, which
served as the input for FoldX, with the homology model-
ling server SWISS-MODEL [150]. The resulting LTα
protein structure only consisted of amino acids from
positions 48 to 80, which encompassed rs2229092
(H51P) and rs1041981 (T60N), but excluded rs2229094
(C13R). Therefore, the ΔΔG could not be calculated for
rs2229094 using the FoldX tool.

We also analyzed polymorphisms in and near the LTα
gene using the SNP2TFBS tool [55], which predicts if
SNPs in TFBSs affect transcription factor binding in the
human genome. The effect of a given SNP on transcrip-
tion factor (TF) binding is estimated based on a position
weight matrix (PWM) model for the binding specificity
of the corresponding TF factor [55, 56]. In addition,
using the NCBI ClinVar database [57], we searched for
any reports of an association between variants (inferred
to be functional in Table 3) and human health
outcomes.
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Additional file 1 : Figure S1. contains pairwise LD plots (spanning
~9.64 kbs) for African and non-African populations that were not
included in Fig. 3 of the main manuscript. Figure S2. contains pairwise
LD plots for loci located across a larger genomic region (spanning ~ 35.5
kbs) for each population. Figure S3. displays Manhattan plots of standar-
dized |iHS| values in populations that were not included in Fig. 4 of the
main manuscript. Figure S4. shows
Manhattan plots of standardized |nSL| scores for all populations. Figure
S5. presents the remaining EHH plots for populations that were not
included in Fig. 4 of the main manuscript.

Additional file 2 : Table S1. contains the frequency of alleles at
polymorphic sites across LTα and 5′ regulatory region in global
populations, and estimates of per site FST. Tables S2. gives summary
statistics for the 5′ regulatory region only. Table S3. lists the observed
Tajima’s D (DT) statistics for the LTα gene and their corresponding P-
values under different scenarios of population growth. Table S4. shows
the observed Fay and Wu’s H (H) statistics for the LTα gene and their
corresponding P-values under different scenarios of population growth.
Table S5. lists the observed DT statistics for the 5′ regulatory region and
their corresponding P-values for different scenarios of population growth.
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and their corresponding P-values under different scenarios of population
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frequency haplotypes in the network differ from one another and
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dertal and Denisovan genomes. Table S8. presents the frequencies of
common haplotypes in non-African populations. Table S9. shows the fre-
quencies of common haplotypes in African populations. Table S10. gives
the genomic coordinates for markers in the LD plots (spanning ~9.64
kbs) in Fig. 3 and in Additional file 1: Figure S1. Table S11. gives the
genomic coordinates for markers in the LD plots (spanning ~35.5 kbs) in
Additional file 1: Figure S2. Table S12. lists outlier standardized |iHS| and
|nSL| scores for SNPs in each population. Table S13. presents the inferred
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