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Abstract: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neu-
rodegenerative disorders that belong to a common disease spectrum. The molecular and cellular
aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, includ-
ing mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside
from therapies with subtle effects on the post diagnostic lifespan and symptom management. This
presents great interest and necessity for the discovery and development of new compounds and
therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in
plant-based foods and are well known for their antioxidant activity. Recent research suggests that
they also have a diverse array of neuroprotective functions that could lead to better treatments for
neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell
line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most
researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
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1. Introduction

With the ageing population, the treatment and management of neurodegenerative
diseases is a major and increasing challenge for health care systems and societies around the
world [1]. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects
motor neurons, resulting in deterioration of motor function, and frontotemporal dementia
(FTD) is a neurodegenerative disorder characterised by changes in personality, behaviour,
and language. The development of both diseases is a progressive and ultimately fatal
multistep process with a complex genetic and molecular background. Despite extensive
research efforts, only two treatment options with limited effects on survival and motor
function are currently approved for ALS. The vast majority of compounds researched as
possible ALS therapies until today were found to be ineffective in clinical trials, highlighting
the need for further research [2]. Currently, only symptomatic treatments with limited
effects are available for FTD [3].

Polyphenols are natural compounds whose neuroprotective effects have been demon-
strated in various models of neurodegenerative diseases such as Alzheimer’s and Parkin-
son’s disease. These compounds are being explored for possible dietary intervention and
supplementation as preventive measures against neurodegenerative diseases, and also as
possible candidates for therapies to slow disease progression and alleviate symptoms [4].
Due to the lack of disease-changing treatments for ALS/FTD and the growing interest
in natural compounds as therapeutic agents, this article reviews an intriguing topic of
potential use of polyphenols in the development of treatments for ALS/FTD symptoms.
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1.1. Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

ALS is a neurodegenerative disease characterised by progressive loss of both upper
and lower motor neurons. Initial signs of the disease may include weakness of the limbs
(in spinal-onset ALS) or difficulties with speech and swallowing (in bulbar-onset ALS) [5].
Disease progression eventually leads to paralysis and death from respiratory failure, on
average 24 to 50 months after onset [6–10]. The worldwide incidence of ALS is 1.75 with a
reported mean age at diagnosis between 51 and 69 years [11,12]. ALS cases can be divided
into the familial form of the disease (fALS, 5–15% of patients), where there is a clear family
history, and the predominant sporadic form (sALS) [13]. Frontotemporal dementia (FTD) is
a type of dementia primarily associated with alterations in the frontal and temporal lobes.
Symptoms manifest as changes in behaviour, personality, language, and motor skills [14,15].
The incidence of FTD is 1.6 and the mean age of onset is 65 years [16]. FTD can be divided
into one behavioural (bvFTD) and two language variants (or primary progressive aphasias
(PPA)) [14]. Mean survival time for most forms of FTD is approximately 8 years [17]. Up to
40% of FTD patients have a family history of the disease [18,19].

Clinical, genetic, pathological and biochemical data show that there is an overlap
between ALS and FTD. First observations that ALS and FTD might be connected were
made in the early 1990s [20,21]. Data show that about half of ALS patients have cognitive
impairment and 15% meet the criteria for FTD [22,23]. Similarly, about 30% of patients
with FTD develop signs of motor dysfunction and 10–15% have ALS [24,25]. The discovery
of common genetic causes and biological mechanisms further confirmed that ALS and FTD
are closely associated (Figure 1) [5,26].
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ALS and FTD pathologies are multistep processes that affect many aspects of cellular
activity. The most prominent pathological hallmark of both ALS and FTD are changes
in protein homeostasis, including protein misfolding and aggregation, altered localisa-
tion, and defects in autophagic and proteasomal degradation. The combination of these
mechanisms leads to the formation of toxic cytoplasmic inclusions in motor neurons and
surrounding cells. Proteins that predominantly form these structures are two RNA-binding
proteins, TAR DNA binding protein (TDP-43, protein product of TARDBP), and fused in
sarcoma (FUS), microtubule-associated protein tau (gene MAPT), and superoxide dismu-
tase 1 (SOD1) [27,28]. The correlation between pathology and genetics is complex [29–31].
Pathologically, 97% of ALS cases have pathognomonic TDP-43 aggregates, while only 1%
of those are associated with mutations in TDP-43 and in the rest TDP-43 is not mutated. A
total of 1% of ALS shows FUS aggregates, all of which are associated with mutations in
FUS. Mutations in FUS or TDP-43 are extremely rare in FTD; however, 50% of FTD have
TDP-43 aggregates and 10% of FTD have FUS aggregates. A total of 40% of FTD is tau
aggregates. Impairments in protein turnover and clearance are also observed. Mutations in
genes associated with different stages of autophagy are also causative for ALS/FTD, from
autophagy regulating activities of C9ORF72 to impaired functions of autophagic receptors
SQSTM1 and optineurin [32–37].

In healthy cells, TDP-43 and FUS are predominantly nuclear RNA/DNA-binding
proteins with functions in RNA splicing, transcription, microRNA biogenesis, and mRNA
transport [38–47]. Both play important parts in ribonucleoprotein coacervates that form
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membrane-less organelles such as stress granules in the cytoplasm and paraspeckles in
the nucleus [48,49]. In ALS/FTD, FUS or TDP-43 mislocalise to the cytoplasm and form
aggregates that are most likely toxic, although loss of function from the nucleus may
also be the key disease-causing factor. This mislocalisation is instigated by a number of
disruptions, including dysfunctions in proteostasis, nucleocytoplasmic shuttling, and the
cellular stress response [50–52]. Upon stress, TDP-43, FUS, and some other ALS-associated
RNA-binding proteins separate into stress granules, which may be the first step in the
formation of insoluble aggregates [53,54]. Another common factor in the disruption of
RNA metabolism is G4C2 repeat expansions in the C9ORF72 gene, which are the most
common cause of familiar forms of ALS/FTD [55–57]. The repeats form stable nucleic acid
secondary structures known as G-quadruplexes, hairpin loops, and i-motifs, that sequester
RNA-binding proteins and form nuclear foci similar to paraspeckles, or can be translated
into toxic dipeptide repeats via repeat-associated non-ATG translation [58–65].

Mitochondria play a central role in neurons, primarily fulfilling high needs for energy.
ALS/FTD-associated changes include defects in oxidative phosphorylation and calcium
homeostasis, elevated production of ROS, structural impairments, and reduced clearance
of damaged mitochondria [66]. Changes in mitochondrial morphology are observed in
cells overexpressing mutant SOD1, FUS, or TDP-43 [67–70]. The increased localisation of
mutant SOD1 in the mitochondrial intermembrane space causes mitochondrial dysfunction
and toxicity to neurons [71–73]. Overall, mitochondrial changes result in decreased electron
transport chain activity and reduced ATP production [66]. Moreover, oxidative stress has
been proposed to be crucial in ALS pathogenesis and has been well documented in patient
samples [74–76].

1.2. Currently Used Therapies for ALS/FTD

Treatments currently in clinical trials for ALS/FTD were comprehensively reviewed
by Liscic et al. [26]. Therapeutic targets include a reduction in glutamate excitotoxicity and
protein aggregation, upregulation of certain heat shock proteins, and activation of troponin
in skeletal muscle. Interesting novel strategies for ALS/FTD treatment may also come
from stem cell therapy, non-invasive brain stimulation, and the growing knowledge of the
influence of the gut microbiota on the development of neurological diseases [26]. Currently,
only two drugs are approved for the treatment of ALS. Riluzole was approved for clinical
use in 1995 and trials observed reduced one year mortality and slower deterioration of
muscle function [26,77,78]. The mechanisms behind the beneficial effects of riluzole are not
entirely clear. Different neuroprotective actions have been proposed, such as inhibition of
glutamate excitotoxicity, blockade of Ca2+- or Na+-ion channels, and modulation of GABA
pathways [79]. In recent years, some countries have also approved the use of edaravone
(also known as MCI-186 or Radicava) for the treatment of ALS [26]. Its actions could benefit
a subgroup of patients with early onset and rapidly progressive disease [80]. Edaravone is
thought to act as an antioxidant and free radical scavenger, but the mechanisms are not
well understood [81]. There are currently no approved direct treatments for FTD, other
than symptom management [82].

2. Therapeutic Potentials of Polyphenols in ALS/FTD

Many potential therapeutic compounds have antioxidant and anti-inflammatory
properties. Polyphenols (Figure 2) are a diverse group of naturally occurring compounds
with a characteristic chemical structure that has one or more phenolic rings. They are found
in plant foods such as fruits, vegetables, and whole grains [83,84]. In plants, polyphenols
are categorised as secondary metabolites and have functions in normal growth as well as in
the plant defense system [85]. They are synthesised in the shikimate and phenylpropanoid
pathways [86]. Many different polyphenols have been described to have neuroprotective
effects in mammalian cell and animal models of ALS/FTD [87]. In this review, the focus will
be on resveratrol, epigallocatechin gallate (EGCG), and curcumin (Figure 2). We will also
explore the effects of some other flavonoids and phenolic acids in the context of ALS/FTD.
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2.1. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenol found in grapes, red wine,
berries, and peanuts [88]. Both cis- and trans- isomers occur naturally, with trans-form
being the focus in terms of potential neuroprotective activity [89]. Effects of resveratrol in
ALS were first demonstrated in neuronal cell lines expressing the SOD1G93A mutant [90–92].
Resveratrol treatment halved the cell death observed as a consequence of SOD1-mediated
toxicity [90]. Treatments of mouse motor neuron cells NSC34 expressing SOD1G93A showed
a minor dose-dependent improvement in cell viability and a simultaneous reduction in the
concentration of cytosolic ROS [91]. Administration of resveratrol protected rat cortical
motor neurons from the toxic effects of cerebrospinal fluid (CSF) from ALS patients [93].
Further studies in mice ALS models expressing mutant SOD1G93A showed conflicting
results, which are probably a consequence of different protocols on dosing and route
of administration. Chronic oral administration of resveratrol at 25 mg/kg/day did not
improve motor abilities and life span of ALS mice [94]. On the other hand, intraperitoneal
injections of 20 mg/kg/twice a week improved survival and delayed the onset of ALS [95].
A similar positive effect on survival and motor function was observed with a higher dose
(160 mg/kg/day) administered orally [96]. The neuroprotective effects of resveratrol
in ALS mice have been further demonstrated in coadministration with other potential
therapeutics [97,98]. Resveratrol has also been researched in models of tauopathies, a
hallmark of FTD, but the overall effects on tau aggregation are inconclusive [99].

The predominant mechanism behind the neuroprotective effect of resveratrol is the
activation of SIRT1, a NAD+-dependent protein deacetylase [90,92,95,96,100]. Structural
studies suggested a mechanism in which resveratrol acts as an adaptor for the interaction
between the peptide substrate and SIRT1 [101]. Many downstream mechanisms of SIRT1
targets have been proposed as possible mediators of the beneficial effects. SIRT1 deacety-
lates p53 [90,96], a known tumor suppressor protein involved in mechanisms of motor
neuron cell death [102]. Resveratrol treatment upregulates factors involved in mitochon-
drial biogenesis, which could improve altered energy metabolism observed in ALS [92,96].
SIRT1 also targets HSF1 (heat shock factor 1) that activates several heat shock proteins.
Their activity as chaperones possibly mitigates formation of toxic protein aggregates [95].
Normalisation of autophagic flux was also observed in resveratrol-treated ALS mice, but
it is not clear whether SIRT1 is involved [96]. Independent of SIRT1, resveratrol can also
activate AMPK (AMP-activated protein kinase) [96,103] that has downstream targets in-
volved in neuroprotective mechanisms [104]. Moreover, a molecular mechanistic study on
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SOD1G93A showed a stabilising effect of resveratrol that could impede the aggregation of
mutant protein [105]. A similar inhibitory effect was observed in aggregation studies of wt
SOD1 [106].

2.2. Curcumin

Curcumin (diferuloylmethane) is the predominant curcuminoid found in turmeric
(Curcuma longa), which is widely used in traditional Indian medicine. The potential
benefits of curcumin are being explored in many neurodegenerative diseases. In models
of Alzheimer’s and Parkinson’s disease, curcumin can reduce oxidative stress, affect toxic
protein aggregation, and protect against apoptosis [107,108].

Regarding ALS, curcumin was shown to impede aggregation of reduced wt SOD1
in vitro by binding its aggregation prone regions. Curcumin-bound SOD1 aggregates were
smaller, unstructured, and less cytotoxic [109]. A similar effect of inhibiting beta-sheet
formation and aggregation was observed with tau, a protein involved in FTD [110]. In
contrast, the binding of curcumin to tau aggregates was not observed in post-mortem brain
tissue sections from FTD patients [111].

Curcumin presents a challenge for in vivo use due to its poor absorption, fast metabolism,
and rapid elimination. Several strategies can be utilised to overcome the low oral bioavail-
ability of curcumin [112]. The protective effect of an analogue, dimethoxy curcumin,
was demonstrated in a neuronal cell line expressing TDP-43 mutants Q331K or M337V.
Dimethoxy curcumin restored mitochondrial damage by improving transmembrane poten-
tial, increasing electron transfer chain complex I activity, and upregulating UCP2 (uncou-
pling protein 2) [113]. The same compound also improved abnormally high excitability
of cells expressing mutant TDP-43 [114]. Furthermore, an improved curcumin analogue,
monocarbonyl dimethoxycurcumin C, prevented aggregation of mutant TDP-43 and re-
duced oxidative stress, possibly due to increased expression of heme oxygenase-1 [115].

Another approach to improve the bioavailability of curcumin is delivery using nanopar-
ticles. The potential for ALS treatment was demonstrated with curcumin-loaded inulin-
D-alfa-tocopherol succinate micelles, which were effectively delivered into mesenchymal
stromal cells [116]. Furthermore, the efficiency of a turmeric supplement in nanomicelles
was tested in a clinical trial involving 54 ALS patients treated primarily with riluzole.
Nanocurcumin improved the survival probability of the patients, but did not significantly
improve their motor function [117].

2.3. Catechins

Green tea, produced from the leaves and buds of Camellia sinensis, is rich in polyphenols
catechins, predominantly (−)epigallocatechin gallate (EGCG), but also (−)-epigallocatechin
(EGC), (−)-epicatechin gallate (ECG), (−)-epicatechin (EC), and (+)-catechin [118]. In ALS models,
EGCG has been shown to protect motor neuron cells from oxidative stress and mitochondrial
damage [119]. Presymptomatic oral supplementation of EGCG at doses of at least 2.9 mg
EGCG/kg body weight in SOD1G93A mice significantly delayed symptom onset, improved
motor function, and increased lifespan [120,121].

EGCG likely acts by upregulating a prosurvival signaling pathway PI3K/Akt. Among
other pathways, PI3K/Akt regulates the activity of GSK-3. Increased GSK-3 levels are
associated with the formation of neurofibrillary tangles and neuronal death. In addition,
GSK-3 induces apoptosis through downstream signaling, including mitochondrial damage
and caspase-3 activation. It was shown that Akt phosphorylates GSK-3, resulting in less
mitochondrial damage [119]. Observations in ALS mice further confirm an increase in
PI3K/Akt and a decrease in death signals such as caspase-3, cytosolic cytochrome c, and
cleaved PARP (poly (ADP-ribose) polymerase) [120]. EGCG also has antioxidant and
anti-inflammatory effects on microglia and astrocytes [121]. In addition, it can decrease
lipid peroxidation, but has no effect on iron metabolism despite its presumed chelating
abilities [122]. A molecular docking study showed the potential of EGCG to reduce mutant
SOD1 aggregates [123]. In vitro studies confirmed an inhibitory effect on apo-SOD1 aggre-
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gation [124]. It has also been shown that the addition of EGCG induces oligomerisation of
TDP-43 and inhibits its degradation into toxic aggregation-prone fragments [125]. In FTD,
inhibition of tau filament formation was observed for ECG, but not for EC [126].

2.4. Other Flavonoids

In addition to green tea catechins, several other flavonoids have been tested in ALS/FTD
models. Presymptomatic administration of 2 mg/kg body weight of an anthocyanin-enriched
strawberry extract with callistephin (pelargonidin 3-glucoside) as the predominant component
delayed ALS onset, preserved grip strength, and prolonged survival in SOD1G93A mice [127].
Oral supplementation of fisetin (3,3,4,7-tetrahydroxyflavone) improved motor functions,
delayed disease onset, and increased survival in SOD1G93A mice (at a dosage of 9 mg/kg)
and SOD1G85R Drosophila melanogaster. The predominant mechanism behind the activity of
fisetin in motor neuron cell lines expressing SOD1G93A appears to be the activation of the ERK
pathway involved in the regulation of cell survival. Moreover, fisetin decreased both wt and
mutant SOD1 levels in cells, possibly by activating autophagy [128].

A computational study confirmed the binding of kaempferol (3,4′,5,7-tetrahydroxyflavone)
and kaempferide to mutant SOD1G85R [129]. Both compounds were experimentally shown to
have antioxidant properties and could reduce the formation of SOD1G85R aggregates in N2a
mouse neuroblastoma cells. Kaempferol could act via increased phosphorylation of AMPK
and downstream induction of autophagy [130]. The antioxidant effect of quercetin (3,3′,4′,5,7-
pentahyroxyflavone) was first observed in lymphoblast cell lines from ALS patients [131]. In vitro
tests showed that quercetin glycosides, namely quercitrin and quercetin 3-beta-d-glucoside,
inhibit misfolding and aggregation of SOD1A4V mutant [132]. A similar effect on aggregation
was observed with quercetin and baicalein [133]. Furthermore, preventive administration of
quercetin in rats reduced oxidative stress, defective mitochondria, and brain cell death caused by
aluminium exposure [134].

SOD1G93A mice treated with 5 mg/kg 7,8-dihydroxyflavone exhibited significantly
improved motor performance and increased numbers of spinal motor neurons compared
with untreated animals [135]. Interestingly, it was observed that treatment with 16 mg/kg
genistein (4′,5,7-trihydroxyisoflavone) had a protective effect on disease progression in
male SOD1G93A mice [136]. In contrast, in further studies, a delay in symptoms and higher
survival of motor neurons was observed in both sexes, possibly due to anti-inflammatory ef-
fects and restored autophagy [137]. Twice-daily administration of 700 mg luteolin (3′,4′,5,7-
tetrahydroxyflavone) in combination with palmitoylethanolamide showed some improve-
ment of symptoms in patients with FTD [138].

2.5. Phenolic Acids and Derivatives

Phenolic acids are found in fruits, coffee, tea, and grains. Their diverse neuroprotective
effects make them interesting candidates for better ALS therapies. It has been reported
that protocatechuic acid administration at 100 mg/kg in SOD1G93A mice prolongs survival,
improves motor function, and reduces gliosis [139]. Caffeic acid phenethyl ester (CAPE)
showed a dose-dependent improvement in survival and a simultaneous reduction in
cytosolic ROS in the NCS34 cell line expressing SOD1G93A. CAPE decreased the activation
of the oxidative stress-associated transcription factor NF-κB and activated the antioxidant
response element (ARE) [91]. Further studies in SOD1G93A mice confirmed that daily
administration of 10 mg/kg CAPE after disease onset slowed symptom progression and
prolonged survival. A reduction in glial activation and phospho-p38 levels was observed
as a result [140]. Gallic acid and wedelolactone improved locomotor function and motor
learning abilities in an aluminium or quinolinic acid-induced rat model of sALS. The effects
may be due to a reduction in inflammatory cytokines, normalisation of L-glutamate levels,
and decreased activation of caspase-3 [141,142]. Rosmarinic acid, the main compound in
rosemary (Rosmarinus officinalis) extract, reduced weight loss, improved motor performance,
and prolonged survival of SOD1G93A mice [143,144]. The effects of treatment with higher
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doses were compared with the established ALS therapeutic agent riluzole, but were not
found to be more effective [144].

2.6. Overview of Potential Therapeutic Effects of Polyphenols in ALS and FTD

We have summarised the therapeutic implications of polyphenols, including their
proposed mechanisms in animal and cell line models of ALS and FTD (Table 1). The
predominant mechanism behind the neuroprotective role of resveratrol is the activation of
SIRT1. Its downstream targets may impact processes such as neuronal survival, mitochon-
drial biogenesis, and prevention of protein aggregate formation, all of which contribute
to the observed delay in symptoms and increased viability in ALS models [90,92,95,96].
Curcumin derivatives show neuroprotective value through several mechanisms, such as
restoring mitochondrial functions, normalising cell excitability, and preventing the forma-
tion of toxic protein aggregates [113–115]. Green tea catechin EGCG has been observed to
upregulate a prosurvival signaling pathway PI3K/Akt and decrease signals leading to cell
death, such as activation of caspase-3, which is associated with apoptosis [119,120]. Both
resulted in the delayed onset of ALS and increased survival in mice models treated with
EGCG [120,121]. Fisetin acts by activating the ERK pathway, which modulates cell survival
and upregulates HO-1, both of which contribute to the cellular response against oxidative
stress [128]. Another mechanism exerted by some polyphenols is the downregulation of
the NF-κB pathway that, overall, has an anti-inflammatory effect [91].

Table 1. Therapeutic implications of different polyphenols in ALS and FTD models.

Compound Animal/Cell Line Mechanism of Action Outcome Ref.

resveratrol

rat cortical primary neurons expressing
SOD1G93A activation of SIRT1 reduced cell death [90]

NCS34 cell line expressing SOD1G93A antioxidant activity reduction in ROS,
increased viability [91]

VSC4.1 cell line expressing hSOD1G93A activation of SIRT1,
mitochondrial biogenesis

increased viability,
reduced apoptosis [92]

rat cortical neurons with ALS-patient
CSF

possibly reduction in cytosolic
Ca2+ concentration increased viability [93]

mice expressing SOD1G93A activation of SIRT1, heat shock
protein response

delayed onset, increased
survival [95]

mice expressing SOD1G93A
activation of SIRT1, mitochondrial
biogenesis, normalised autophagic

flux

delayed onset, improved
motor function, increased

survival
[96]

bone marrow-mesenchymal stem cells
of ALS patients activation of SIRT1 and AMPK increased differentiation

rate [103]

dimethoxy curcumin

NSC34 cell line expressing
TDP-43Q331K, TDP-43M337V

decreased expression of UCP2,
improved mitochondrial

transmembrane potential and
morphology

improved mitochondrial
function [113]

NSC34 cell line expressing
TDP-43Q331K not determined

lowered excitability, no
observed change in

survival
[114]

monocarbonyl
dimethoxycurcumin

NSC34 cell line expressing
TDP-43Q331K upregulation of HO-1 reduced oxidative stress

and toxicity [115]

epigallocatechin gallate

VSC4.1 cell line expressing SOD1G93A
protection from oxidative stress,

increase in survival signals
through PI3K

increased viability,
reduced apoptosis [119]

mice expressing SOD1G93A increase in survival signals
through PI3K

delayed onset, increased
lifespan [120]

mice expressing SOD1G93A reduced activation of NF-κB and
caspase-3

delayed onset, increased
lifespan [121]

rat spinal cord culture with THA
(induced glutamate excitotoxicity) decrease of lipid peroxidation increased viability [122]
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Table 1. Cont.

Compound Animal/Cell Line Mechanism of Action Outcome Ref.

anthocyanin enriched
strawberry extract mice expressing SOD1G93A

preservation of neuromuscular
junctions, reduction in reactive

astrocytes

delayed onset, increased
survival [127]

fisetin

NCS34 cell line expressing SOD1G93A antioxidant activity, activation of
ERK pathway increased viability [128]

Drosophila melanogaster expressing
SOD1G85R

antioxidant activity, activation of
ERK pathway

increased survival,
improved motor function [128]

mice expressing SOD1G93A antioxidant activity
delayed onset, increased

survival, improved motor
function

[128]

kaempferol N2a cells expressing SOD1G85R
reduction in mutant SOD1
aggregates, induction of

autophagy (AMPK)
increased viability [130]

quercetin

lymphoblast cell lines from
ALS patients reduction in ROS not determined [131]

rats, aluminium-induced
neurodegeneration

reduced oxidative stress, improved
mitochondrial function

increased neuronal
viability, inhibition

of apoptosis
[134]

7,8-dihydroxyflavone mice expressing SOD1G93A not determined, possibly as
TrkB agonist

improved motor function,
higher motor neuron

count and density
[135]

genistein

mice expressing SOD1G93A not determined
delayed onset and
increased survival

in males
[136]

mice expressing SOD1G93A anti-inflammatory,
autophagy promotion

delayed onset and
improved motor

performance, increased
survival in both sexes

[137]

protocatechuic acid mice expressing SOD1G93A anti-inflammatory, preservation of
neuromuscular junctions

increased survival,
improved motor

performance
[139]

caffeic acid
phenethyl ester

NCS34 cell line expressing SOD1G93A
reduced activation of NF-κB,

activation of antioxidant
response element

increased viability,
reduction in ROS [91]

mice expressing SOD1G93A anti-inflammatory, anti-cell
death signals

slower progression,
increased survival [140]

gallic acid rats, aluminium- or quinolinic
acid-induced neurodegeneration

antioxidant and anti-inflammatory
activity, prevention of apoptosis,

reduction in glutamate
improved motor function [141,

142]

rosmarinic acid
mice expressing SOD1G93A not determined

increased survival,
improved motor function,

reduced weight loss
[143]

mice expressing SOD1G93A antioxidant activity increased survival,
improved motor function [144]

nordihydroguaiaretic acid mice expressing SOD1G93A TNFα antagonist increased survival,
reduced weight loss [145]

The importance of the gut–brain axis in ALS/FTD has been recognised. On the
one hand, polyphenols may serve as prebiotics and alter the gut microbiota, affecting
disease pathogenesis [146], (for a detailed review, see [147]). On the other hand, certain
polyphenols such as EGCG are degraded by some gut microbiota, which reduces their
bioavailability [148,149]. However, some metabolites do target the brain and have beneficial
effects on neurons [118,150].
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3. Conclusions

Polyphenols offer new possibilities for the development of therapies for ALS/FTD.
However, more research is needed in this field, including strategies for effective targeting
and delivery to the site of action. When evaluating the therapeutic potential of polyphenols,
we must also consider their uptake in the gut, degradation by the microbiota, and the
delivery to the brain. Therefore, it is important whether polyphenols are consumed or
administered intravenously and how well they can cross the blood–brain barrier [151,152].
Another hurdle for potential ALS/FTD medication is translating findings from animal
models into successful clinical trials. Additional aspect of potential variability in successful
treatment lies in the use of purified polyphenols or plant extracts that may act synergisti-
cally. Most of the findings reviewed here come from various successful preclinical stages
and have yet to be tested in humans. Nevertheless, polyphenols have the potential to
improve the treatment of ALS/FTD, either through the development of new drugs or as
dietary supplements.
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