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Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium 
urate (MSU) crystal. Previous studies have focused on resident macrophage, infiltrating 
monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular 
changes and the potential involvement of other regulatory immune cells remain largely 
unknown. Invariant natural killer T (iNKT) cells, an innate type of T cell, are involved in 
the development of various inflammatory diseases. Here, we investigate the role of 
iNKT  cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflam-
matory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout 
(KO) and wild-type (WT) control mice. To explore potential mechanisms of iNKT cell 
regulation of gouty inflammation, we cocultured CD4+ or CD4− iNKT cells with bone 
marrow-derived macrophages (BMDMs). We found that iNKT cells quickly migrated to 
the site of inflammation upon MSU crystal stimulation in WT mice. The total number of 
infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 
6 and 12 h (P < 0.01) post-MSU crystal challenge, compared with WT controls. BMDMs 
cocultured with CD4+ iNKT cells produced less tumor necrosis factor-α and expressed 
higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 
(P < 0.01), compared with BMDMs cocultured with CD4− iNKT cells or conventional 
CD4+ T cells. CD4+ iNKT cells are one of the key regulators of MSU crystal-induced 
gouty inflammation through the control of macrophage polarization. iNKT  cells may 
serve as a new therapeutic target for gout.
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inTrODUcTiOn

Gout is a paradigm of acute, self-limited inflammation caused by the deposition of intra-articular 
monosodium urate (MSU) crystal (1). During the progression of the inflammatory response, MSU 
crystal provides both of extracellular and intracellular danger signals (2), whose recognition by 
toll-like receptor 2 (TLR2) and TLR4, as well as CD14, expressed on the surface of monocytes/
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FigUre 1 |  Invariant natural killer T (iNKT) cells are recruited to the site of inflammation induced by monosodium urate (MSU) crystal. (a) Outline of the synovium-
like mouse subcutaneous air-pouch model. Subcutaneous air pouches were generated by injection of 5 mL air into the subcutaneous tissue of the back, followed 
by injection of another 3 mL of air at day 3 and day 5. At day 7, MSU crystal (3 mg in 1 mL) was injected into air-pouch cavities. (B) Flow cytometry analysis 
identified iNKT cells (TCRβhi and CD1d-tetramerhi) in wild-type (WT) air-pouch cavities at 12 h post-MSU crystal challenge (right panel); the bar graph shows the 
absolute number of iNKT cells infiltrating the air-pouch cavities at different time points (left panel). Results are representative of three independent experiments. 
Values are the mean and SEM (n = 3–4 per group). Significance for all data was determined by unpaired Student’s t-test: ns, not significant; *P ≤ 0.05; **P ≤ 0.01.
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macrophages would initiate MSU crystal uptake (3–5). Monocytes 
stimulated by MSU crystal can polarize into hyper-inflammatory 
M1 macrophages, which initiate inflammation via fully func-
tional phagocytizing MSU crystal and delivering to cytoplasmic 
NACHT-LRR-PYD-containing protein-3 (NALP3) inflamma-
some, thereby producing tumor necrosis factor-α (TNF-α) and 
interleukin-1β (IL-1β), both are known as highly inflammatory 
cytokines, and promoting secondary neutrophil physiologic 
flow into the site of inflammation (6, 7). In contrast to M1 
macrophages, anti-inflammatory M2 macrophages can dampen 
acute MSU crystal-induced inflammation and suppress caspase-1 
activation and IL-1β production (8). The polarization from M1 
into M2 macrophages in the development of gout may contribute 
to self-recovery. However, it is still unclear how this process is 
being regulated.

Invariant natural killer T (iNKT) cells are innate T cells that 
develop in the thymus and are selected by the MHC I homolog 
molecule CD1d on double-positive (DP) thymocytes (9). Based 
on their cytokine production profiles, iNKT  cells are further 
subdivided into NKT1, NKT2, and NKT17, while the majority 
of CD4+ iNKT cells are NKT2 in mice, and they are activated by 
glycolipid antigens presented by CD1d on antigen-presenting 
cells (APCs) such as macrophages and dendritic cells. Upon 
activation, the subsets of iNKT  cells differentially influence 
the immune response, producing either Th1 cytokines, such as 
interferon-γ (IFN-γ) and IL-2, or Th2 cytokines, such as IL-4 
and IL-10 (10). Recently, a number of studies have reported that 
iNKT cells play a major role in mediating joint inflammation, 
including that of rheumatoid arthritis (11, 12). Nonetheless, 
the involvement of iNKT  cells in gouty inflammation has 
yet to be clarified. In this study, we produced MSU crystal-
induced gouty inflammation in a synovium-like subcutaneous 
air-pouch model using iNKT  cell-deficient mice to identify 
the protective role of iNKT  cells in MSU crystal-induced 

gouty inflammation. Our bone marrow-derived macrophage 
(BMDM)-iNKT coculture experiment indicates the regulatory 
role of iNKT  cells in macrophage polarization, which could 
contribute to the protective function of iNKT  cells in gouty 
inflammation.

MaTerials anD MeThODs

Mice
CD1d knockout (KO) mice on a C57BL/6 background and 
wild-type (WT) C57BL/6 mice were purchased from the Jackson 
Laboratory and housed in a specific pathogen-free barrier unit. 
Experiments were conducted at 8–12 weeks of age and gender 
matched. Animal handling and the experimental procedures 
were approved by Institutional Animal Care and Use Committee 
of Henry Ford Health System.

subcutaneous air-Pouch Model
Injection of 5 mL of air into the subcutaneous tissue on the back 
of mice was followed by injection of an additional 3 mL of air 
on day 3 and day 5. On day 7, MSU crystal (3 mg in 1 mL) was 
injected into the air-pouch cavities, and cells were harvested with 
2 mL PBS at 3, 6, or 12 h for flow cytometry and enzyme-linked 
immunosorbent assays (ELISA) analyses (Figure 1A).

Purification of inKT and cD4+ T cells
Total spleen cells from WT mice were first stained with anti-
mouse CD8 biotin and anti-mouse B200 biotin Abs, then CD8+ 
and B220+ cells were depleted with anti-biotin beads using auto 
MACS (Miltenyi Biotec). Negatively selected cells were then 
stained with anti-mouse TCR-β, anti-mouse CD4 Ab, and PBS57-
CD1d tetramers. CD4+ iNKT cells, CD4− iNKT cells, and CD4 
T cells (>97% purity) were sorted by BD FACS Aria II.
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inKT–BMDM coculture assay
BM  cells from WT or CD1d KO mice were incubated in  
culture media (RPMI with 10% FBS and 30 ng/mL M-CSF) for 
7 days to induce BMDMs (M0). BMDMs were pre-loaded with 
α-galactosylceramide (α-GalCer, 1  µg/mL) for 6  h before they 
were cocultured with sorted CD4+ iNKT cells, CD4− iNKT cells, 
or CD4+ T cells, respectively, at a 2:1 ratio for 36 h, followed by 
stimulation with MSU crystal (50 µg/mL) for 4 h with or without 
iNKT  cells. After MSU crystal stimulation, BMDMs were col-
lected for flow cytometry analysis or qRT-PCR.

Flow cytometry
Single-cell suspensions were washed twice with staining buffer 
and incubated with Fc block (clone 2.4G2). The following con-
jugated mAbs were used for flow cytometry analysis: TCR-beta 
(H57-597), PBS57-CD1d tetramers, F4/80 (BM8), Ly6G (1A8), 
and TNF-α (MP6-XT22). Dead cells were first gated out by 
propidium iodide (PI) staining. All mAbs were purchased from 
BD biosciences or eBioscience. Data were analyzed using FlowJo 
software.

MsU Phagocytosis of Macrophages
The peritoneal cells were harvested at 6 h after MSU crystal (3 mg 
in 0.5 mL) treatment through peritoneal cavity. The phagocytosis 
of MSU crystals was determined by analyzing the side scatter 
(SSC) change in the flow cytometry.

rna extraction and Quantitative rT-Pcr
Total RNA was extracted from BMDMs using a Mammalian 
Total RNA Miniprep Kit (Sigma). Q-PCR data collected on the 
QuantStudio 7 were normalized to the β-actin gene in the cor-
responding sample. Primer sequences are listed in Table S1 in 
Supplementary Material.

enzyme-linked immunosorbent assays
Cytokines in the supernatant of air-pouch cavities were measured 
using the ELISA Ready-Set-Go kit (eBioscience).

statistical analysis
Statistical analysis was performed with Prism 7.0 (GraphPad 
Software). The two-tailed Student’s t-test was used. Differences 
were considered statistically significant when P < 0.05.

resUlTs

inKT cells are Quickly recruited into the 
inflammatory site induced by MsU crystal
The air-pouch inflammation model was used for the investiga-
tion of synovial inflammation-mediated by MSU. To determine 
whether iNKT  cell recruitment is a general feature in MSU 
crystal-induced gouty inflammation, cellular components in 
the washing fluid of the air-pouch cavity were analyzed by flow 
cytometry at different time points post-MSU crystal challenge. 
The iNKT cell population was identified by CD1d-tetramer and 
anti-TCRβ staining (Figure 1B). To our surprise, iNKT cells were 
recruited into the air-pouch cavities starting at 3 h and reached 

the peak at 12 h post-MSU crystal challenge (Figure 1B). Thus, 
it is reasonable to speculate that the iNKT  cells recruited to 
sites of inflammation may have a role in the regulation of gout 
development.

inKT-Deficient Mice Developed More 
severe MsU crystal-induced inflammation
CD1d is required for iNKT cell selection in the thymus and CD1d 
KO mice fail to develop iNKT cells. As shown in Figure 2A, there 
is no iNKT cell migration into air-pouch cavities of CD1d KO 
mice upon MSU crystal stimulation. To understand the function 
of iNKT cells in MSU crystal-induced gouty inflammation, we 
examined inflammatory profiles in WT mice and iNKT-null 
CD1d KO mice using an air-pouch gouty model. Upon MSU 
crystal stimulation, the total inflammatory cell number in the 
washing fluid from air-pouch cavities was significantly increased 
in CD1d KO mice compared with WT mice at 6 h (P < 0.01) 
and 12  h (P <  0.01) post-MSU crystal challenge (Figure  2B). 
We next evaluated neutrophils and macrophages in the washing 
fluid of air-pouch cavities by flow cytometry (Figure 2C). Even 
though the frequencies of neutrophils were not significantly 
increased, the absolute number of neutrophils increased dra-
matically (P < 0.05 at 6 h, P < 0.01 at 12 h) in CD1d KO mice. 
Nevertheless, no significant changes in frequency or number of 
macrophages were observed (Figure  2D). Therefore, the mice 
without iNKT cells developed more severe MSU crystal-induced 
inflammation.

Next, the levels of IL-4 and IL-1β in the supernatants from 
air-pouch cavities were analyzed by ELISA. As expected, both 
cytokines were elevated at 3 h following MSU crystal treatment in 
WT mice, then quickly downregulated at 6 and 12 h (Figure 2E). 
Interestingly, the level of IL-1β was dramatically increased in 
CD1dKO mice compared with WT mice at 6 h, whereas IL-4 was 
significantly reduced in CD1dKO mice at 3 h post-MSU crystal 
challenge. Thus, iNKT  cells may regulate cytokine production, 
reducing IL-1β but increasing IL-4 production by macrophages. 
Taken together, these results suggest that iNKT  cell deficiency 
significantly enhances the inflammatory response to MSU crystal 
in vivo.

lack of cD1d in Macrophages Does not 
affect Their MsU crystal Phagocytosis
The uptake of MSU crystal by macrophages is a feature for rec-
ognition by NALP3 inflammasome, thereby triggering caspase-1 
activation and IL-1β processing (7, 13). Recently, Liu-Bryan et al. 
found that CD14 mediated ingestion of MSU crystal was able to 
induce an inflammatory response, leading to IL-1β release, which, 
however, is independent of modulation of MSU crystal uptake (5, 
14). To explore if the increased production of IL-1β in CD1d KO 
air-pouch cavities was due to the modulation of capacity of MSU 
crystal uptake in the deletion of iNKT cells, we next preformed 
macrophage MSU crystal uptake assay in  vivo. WT and CD1d 
KO mice were challenged with MSU crystal peritoneally for 6 h. 
Subsequently, the macrophages (Ly6G−F4/80hi) were further 
analyzed for their SSC change, whose increasing would reflect the 
uptake of MSU crystal. As shown in Figures 3A,B, MSU crystal 
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FigUre 2 | Deletion of invariant natural killer T (iNKT) cells enhances the monosodium urate (MSU) crystal-induced inflammatory response. (a) Flow cytometry 
analyses of iNKT cells from CD1d knockout (KO) air-pouch cavity at 12 h post-MSU crystal challenge; (B) a bar graph showing the total cell numbers from air-pouch 
cavities in wild-type (WT) and CD1d KO mice at different time points after MSU crystal treatment; (c) flow cytometry analyses of macrophages (Ly6G−F4/80hi) and 
neutrophils (Ly6GhiF4/80−) from air-pouch cavities based on the expression of Ly6G and F4/80 at different time points post-MSU crystal treatments. (D) The absolute 
numbers of infiltrating macrophages (left) and neutrophils (right) in the air-pouch cavities from WT mice (white) and CD1d KO mice (gray) over 12 h. (e) Supernatant 
from air-pouch cavities was analyzed for interleukin-4 (IL-4) and interleukin-1β (IL-1β) by enzyme-linked immunosorbent assays. Results are representative of three 
independent experiments. Values are the mean and SEM (n = 3–4 per group). Significance for all data was determined by unpaired Student’s t-test: ns, not 
significant; *P ≤ 0.05; **P ≤ 0.01.
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phagocytosis were comparable between WT and CD1d KO mice, 
which indicated that MSU crystal-induced severe inflammation, 
including high production of IL-1β, observed in CD1d KO mice 

is not due to increased MSU crystal phagocytosis. Thus, CD1d 
deficiency does not affect phagocytosis. Next, to rule out the 
possibility that lack of iNKT cells may affect macrophage death 
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FigUre 3 | Comparable monosodium urate (MSU) crystal phagocytosis in macrophage between wild-type (WT) and CD1d knockout (KO) mice. Flow cytometry 
first gated peritoneal macrophages (Ly6G−F4/80hi) (a) and then analyzed their side scatter (SSC) increase (B) and PI+ dead cells (c) at 6 h post-MSU crystal 
treatment. The bar graph showed the frequencies of SSC increased macrophages (B) and PI+ macrophages (c). Results are representative of three to four mice per 
group. Values are the mean and SEM. ns, not significant.
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during MSU crystals  induced gouty inflammation, we did a cell 
viability assay. As shown in Figure 3C, the frequency of PI+ dead 
macrophages was comparable between WT and CD1d KO mice. 
Thus, lack of iNKT cells unlikely affect MSU crystal induced 
macrophage death.

cD1d Deficiency Does not affect 
Macrophage Function
Since CD1d is also expressed in APCs, including macrophages, 
to exclude the possibility that the exacerbation of MSU crystal-
induced gouty inflammation in CD1d KO mice was due to the 
lack of CD1d in the macrophages, we examined the TNF-α 
production by CD1dKO BMDMs using flow cytometry. As 
shown in Figure S1 in Supplementary Material, the frequen-
cies of TNF-α secreting BMDMs from WT and CD1d KO 
mice were comparable post-MSU crystal stimulation. Thus, 
CD1d deficiency in macrophages may not affect their cytokine 
production in response to MSU crystal. Therefore, deficiency 
of iNKT cells in CD1d KO mice likely contributes to enhanced 
gout development.

activation of cD4+inKT cells inhibits MsU 
crystal-induced gouty inflammation
Given that iNKT  cells present quite early in sites of inflam-
mation and may interact with CD1d+ APCs, macrophages in 
particular, we raised the hypothesis that the cross talk between 
iNKT cells and macrophages may interrupt MSU crystal-induced 
inflammation. There are at least two subsets of iNKT cells, such 
as CD4+ and CD4− iNKT cells, which seem to possess different 
functions in regulating disease development (15). To investigate 
the contribution of iNKT cells to the cellular events at the site of 
gouty inflammation, we performed the in vitro iNKT cell–BMDM 
coculture experiment. BMDMs from CD1d KO or WT mice were 
cocultured with either sorted CD4+ or CD4− splenic iNKT cells, 
and treated with α-Galcer, an agent to activate iNKT cells (16). 
BMDMs were collected after MSU crystal stimulation, with or 
without the washing off of iNKT cells before MSU crystal stimula-
tion (Figure 4A). As shown in Figure 4B, BMDMs from WT mice 
cocultured with CD4+ iNKT cells produced less TNF-α upon MSU 
crystal stimulation than macrophages not cocultured with CD4+ 
iNKT cells. Coculture with CD4− iNKT cells did not dramatically 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 4 | Activated CD4+ invariant natural killer T (iNKT) cells suppress monosodium urate (MSU) crystal-induced inflammation by promoting M2 polarization. (a) 
Outline of the bone marrow-derived macrophage (BMDM) and iNKT cell coculture system. BMDMs were cultured in media (RPMI with 10% FBS) with or without the 
presence of α-galactosylceramide (α-GalCer) (100 ng/mL, 6 h), cocultured with CD4+ iNKT or CD4− iNKT cells for 36 h, then treated with MSU crystal for 4 h with or 
without iNKT cells. (B) BMDMs, cultured with CD4+ or CD4− iNKT cells and treated with MSU crystal, were analyzed by flow cytometry for the presence of tumor 
necrosis factor-α (TNF-α)-producing BMDM. (c) BMDM from wild-type (WT) or CD1d knockout (KO) mice, cultured with CD4+ or CD4− iNKT cells and treated with 
MSU crystal, were analyzed by flow cytometry for the presence of TNF-α positive BMDM. (D) Q-PCR analysis of M1 (TNF-α, IL-6, and MIP-1a) and M2 [Clec7a, 
pdcd1Ig2, and interleukin-4 (IL-4)] genes in BMDMs from WT mice cocultured with CD4+ iNKT cells, compared with CD4+ T cells or BMDM alone. (e) The potential 
working model of iNKT cells in gouty inflammation.
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change TNF-α production compared with the BMDMs alone. 
This result suggests that it was CD4+ iNKT cells rather than CD4− 
iNKT cells that played a key role in controlling gouty inflamma-
tion. As expected, coculture of iNKT cells with the BMDMs from 
CD1d KO mice, which are unable to stimulate iNKT cells due to 

their lack of the CD1d molecule, showed that neither CD4− nor 
CD4+ iNKT cells inhibited TNF-α production (Figure 4C), which 
suggests that the activation of iNKT  cells is required to inhibit 
TNF-α production in BMDMs. Thus, CD4+ iNKT cells regulate 
gouty inflammation in a CD1d-dependent manner.
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activation of cD4+inKT cells enhance M2 
Macrophage Polarization in MsU crystal- 
induced gouty inflammation
Previous studies have suggested that activated iNKT cells modu-
late macrophage differentiation from M1 to M2 macrophages 
(17–19). To test if iNKT cells can regulate gouty inflammation 
through macrophage polarization, we assessed macrophage 
polarization-related cell markers using qRT-PCR analysis. As 
shown in Figure 4D, coculture with CD4+ iNKT cells significantly 
upregulated M2-related gene expressions on BMDMs, including 
Clec7a (P  <  0.01), Pdcd1Ig2 (P  <  0.01), and IL-4 (P  <  0.01), 
compared with that of BMDMs cultured alone or cocultured 
with CD4+ conventional T cells; whereas expression levels of M1 
markers (IL-6 and MIP-1a) were unaffected. Collectively, activa-
tion of CD4+ iNKT cells promotes M2 polarization, which may 
contribute to iNKT cell-mediated protection from MSU crystal-
induced gouty arthritis.

DiscUssiOn

To the best of our knowledge, this is the first study to show that 
iNKT cells are actively involved in the development of gouty 
inflammation. We found that post-MSU crystal stimulation, 
iNKT  cells quickly migrate to the site of inflammation, and 
that iNKT cell deficiency results in more severe MSU crystal-
induced gouty inflammation in mice. Thus, early iNKT  cell 
migration to the site of inflammation is required to control 
gouty inflammation, which could be a key mechanism contrib-
uting to gout self-recovery. A previous study strongly suggested 
that CD4+ iNKT cells mainly produce Th2 cytokines, such as 
IL-4 and IL-10; and control the development of autoimmune 
and inflammatory diseases (20). In our study, the CD4+, but not 
the CD4−, subset of iNKT cells can reduce macrophage TNF-α 
production in response to MSU crystal, which further supports 
previous notions. The cross talk between iNKT cells and mac-
rophages has recently been identified in different diseases (17, 
21–25). iNKT cells have the potential to promote macrophage 
polarization to the M2 subtype in adipose tissue and are 
involved in the development of metabolic syndrome, such as 
obesity, insulin resistance, and diabetes (17–19, 26). Recently, 
more evidence supports the notion that hyperuricemia and gout 
are tightly linked to metabolic syndrome (27). Consistent with 
previous findings in metabolic syndrome, we found that CD4+ 

iNKT cells can enhance M2 polarization, which may contribute 
to protection against MSU crystal -induced inflammation.

Accumulated clinical studies suggest that iNKT cell number 
and subset derangements are related to the development of auto-
immune and inflammatory diseases (11, 12). Thus, it is worth-
while to further investigate iNKT cell number and function in 
gout. Based on current findings, we suggest the potential working 
model for the involvement of iNKT cells in gouty inflammation 
described in Figure 4E. Overall, iNKT cells quickly migrate to 
inflammatory site upon MSU crystal stimulation, and activation 
of CD4+ iNKT cells control MSU crystal-induced gouty inflam-
mation by promoting M2 macrophage polarization. Our data 
strongly suggest that CD4+ iNKT cells are one of the key regula-
tors in the control of MSU crystal-induced gouty inflammation, 
and that iNKT cells may serve as a new therapeutic target for gout.
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