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Abstract

The hoverfly, Eupeodes corollae, is a worldwide natural enemy of aphids and a plant pollina-

tor. To provide insights into the biology of this species, we examined its population genetic

structure by obtaining 1.15-GB random genomic sequences using next-generation sequenc-

ing and developing genome-wide microsatellite markers. A total of 79,138 microsatellite loci

were initially isolated from the genomic sequences; after strict selection and further testing of

40 primer pairs in eight individuals, 24 polymorphic microsatellites with high amplification

rates were developed. These microsatellites were used to examine the population genetic

structure of 96 individuals from four field populations collected across southern to northern

China. The number of alleles per locus ranged from 5 to 13 with an average of 8.75; the

observed and expected heterozygosity varied from 0.235 to 0.768 and from 0.333 to 0.785,

respectively. Population genetic structure analysis showed weak genetic differentiation

among the four geographical populations of E. corollae, suggesting a high rate of gene flow

reflecting likely widespread migration of E. corollae in China.

Introduction

Eupeodes corollae is one of the most common hoverflies with a worldwide distribution [1, 2].

The larval stage of this species is mostly insectivorous, feeding mainly on aphids [3–5] while

adults are pollinators [6–8]. Many hoverfly species are important biological control agents of

aphids due to their rapid dispersal and absence of summer diapause compared with other

aphidophaga [9]. Understanding the biology and behavior of hoverflies can help in assessing

their potential as biological control agents of aphids.

Hoverflies migrate seasonally as revealed by radar monitoring [10] and isotopic tools [11].

Population genetic analysis is also frequently employed to reveal the migration of species as a
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complementary approach to traditional methods [12–15]. In populations of the hoverflies

Cheilosia longula [16], Blera fallax [17], Sphaerophoria scripta and Episyrphus balteatus [18],

population genetic differentiation has not been found between some regions, suggesting

migratory movements of these hoverflies between regions including southern and northern

regions of Europe [18, 19]. However, some hoverflies, such as E. balteatus and Scaeva seleni-
tica, are only partially migratory [20].

Previous studies reported that E. corollae is a highly migratory species in Europe [21–23],

but its migratory behavior of E. corollae remains unclear in other areas. Eupeodes corollae is

commonly found across China, but the ecology and biology of this species has rarely been

studied [8]. In this study, we conducted a preliminary examination of the population genetic

structure of E. corollae in China. First, we obtained random genomic sequences of E. corollae
using next-generation sequencing and developed an effective and informative set of microsat-

ellite markers of E. corollae. We used this novel set of microsatellite markers to investigate the

genetic structure of four E. corollae populations collected from four representative regions

across China.

Materials and methods

Sample collection and DNA extraction

A male adult from a laboratory (Sichuan Academy of Agriculture Sciences)-reared line of E.

corollae was used for generating genome sequences. Four field populations of E. corollae were

collected from China in March to July 2017 (Table 1, Fig 1A). To avoid the sampling of sib-

lings, adults in a site were collected using insect net with individuals sampled separated by

about 20 meters. A total of eight individuals from field collections were used for initial testing

of selected primers. Twenty-four individuals from each of the four populations were then used

for a population level survey. All samples were stored in absolute ethanol, frozen at −80˚C and

stored at the Integrated Pest Management Laboratory of the Beijing Academy of Agriculture

and Forestry Sciences. The thorax from each individual E. corollae was used for genomic DNA

extraction using DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany).

Genome sequencing and assembly

The extracted genomic DNA from a laboratory-reared individual was used in constructing a

high-throughput sequencing library with 500-bp insert size using the Illumina TruSeq DNA

PCR-Free HT Library Prep Kit (Illumina, San Diego, CA, USA). The prepared library was

sequenced on an Illumina Hiseq4000 Sequencer using the Hiseq Reagent Kit v3 (Illumina, San

Diego, CA, USA) by Beijing BerryGenomics Co., Ltd. The paired-end 150 bp raw data were

trimmed by removing the low quality reads using Trimmomatic 0.36 [24] and then the

sequences were evaluated by FastQC v 0.11.5 [25]. The genome size of P. solenopsis was esti-

mated by JELLYFISH v2.2.6 software with a K-mer method [26]. IDBA was used to assemble

the generated genomic sequences with K-mer from 20 to 140 [27].

Genome-wide microsatellite survey and primer design

Microsatellite markers were developed from genome sequences as in previous publications

[28–30]. MSDB was used to search all potential microsatellite loci (repeat units of 2, 3, 4, 5,

and 6 corresponding to the minimum number of repeats of 7, 5, 4, 4, and 4, respectively) from

the assembled genomic sequences of E. corollae [31]. QDD was used to isolate microsatellites

and design primers [32]. The outputs of primer pairs from QDD were further filtered by the

following criteria [33, 34]: (i) the corresponding microsatellites were pure and specific; (ii) the
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design strategy of ‘A’ was used to avoid primer secondary structure and repeats; (iii) the mini-

mum distance between the 30 end of a primer and its target region should be longer than 10

bp; (iv) the annealing temperature for each primer pairs was set between 58˚C and 62˚C to

avoid large differences among primers; (v) the estimated PCR product size of the primer pairs

was from 100 to 350 bp.

Polymorphic microsatellite isolation

After screening primers from the QDD program, a universal primer (CAGGACCAGGCTAC

CGTG) was added to the 50 end of each selected forward primer to allow efficient combining

with the fluorescent label [35]. Amplifications were performed using the GoTaq Green Master

Table 1. Collection information of Eupeodes corollae for microsatellite development and population genetic structure analysis.

Code Collection location Longitude (˚E), Latitude(˚N) Crop field Collection date Number

HNHK Haikou, Hainan Province 110˚27020.034@ 20˚1042.3444@ Rape 01/03/2017 24

BJFS Fangshan, Beijing 115˚51046.2096@ 39˚43036.3108@ Weeds 08/06/2017 24

YNYX Yuxi, Yunnan Province 102˚32042.2448@ 24˚22013.6092@ Rape 20/06/2017 24

HLHB Harbin, Heilongjiang Province 126˚40025.4136@ 45˚3809.8952@ Watermelon 28/07/2017 24

https://doi.org/10.1371/journal.pone.0215888.t001

Fig 1. Collection sites of Eupeodes corollae (a) and population genetic structure analysis of four geographical

populations using BAPS (a) and STRUCTURE (b). The map was drawn in R function map_data. BAPS analysis

showed that all population are clustered into one cluster (blue color in figure a). STRUCTURE analysis showed that

the optimal delta K was three and all populations were composed of the three clusters. Codes for the population are

shown in Table 1.

https://doi.org/10.1371/journal.pone.0215888.g001
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Mix (Promega, USA) in a final volume of 10 μl system with 0.5 μl of template DNA (5–20 ng/

μl), 5 μl of Master Mix (Promega, Madison, WI, USA), 3.94 μl of ddH2O, 0.08 μl forward

primer, 0.16 μl reverse primer and 0.32 μl universal primer labeled with fluorescence (FAM,

HEX, and ROX sequencing dyes). The PCR protocol was set as: 5 min for 95˚C, 35 cycles of

amplification with 95˚C for 30s, 56˚C for 40s, and 72˚C for 40s. Final extension was with 72˚C

for 15 min. PCR products were analyzed on an ABI 3730xl DNA Analyzer (Applied Biosys-

tems, USA) using the GeneScan 500 LIZ size standard (Applied Biosystems, USA). Genotyping

was conducted by GENEMAPPER 4.0 (Applied Biosystems, USA). Those primer pairs with

amplification efficiency lower than 75%, showing monomorphism in eight individuals, or pro-

ducing more than two peaks (non-specific amplification) were discarded.

Genetic diversity and population genetic structure analyses

GENEPOP version 4.0.11 [36] was used to test the likelihood of deviation from Hardy-Wein-

berg equilibrium (HWE) and the linkage disequilibrium (LD) at each microsatellite locus, the

inbreeding coefficient (FIS) and pairwise population differentiation (FST). Allele frequencies,

expected heterozygosity (HE) and observed heterozygosity (HO) were calculated with the mac-

ros Microsatellite Tools [37].

Population genetic structure was analyzed by STRUCTURE version 2.3.4 [38]. The cluster-

ing test was replicated 30 times for each K value ranging from 1 to 5 with a burn-in of 100,000

iterations followed by 200,000 Markov Chain Monte Carlo iterations. The Delta (K) method

was used to estimate optimal K values by submitting the STRUCTURE output to Structure

Harvester Web 0.6.94 [39]. Visualization of the results was handled by CLUMPP version 1.1.2

[40] and DISTRUCT version 1.1 [41]. Additional, BAPS version 6.0 software (Bayesian analy-

sis of population structure) was used to incorporate spatial information into clustering of

individuals.

Results and discussion

Genomic sequences of E. corollae
The genomic size of E. corollae was estimated to be 12,315 Mb. A total of 51.53 Gb paired-end

(PE) sequences (184,394,506 reads each with a length of 150 bp) was obtained. Trimmed reads

were assembled into 2,563,327 scaffolds with a total length of 1.15 Gb ranging from 100 bp to

437.63 KB, with an N50 of 1510 bp. These contigs were used for microsatellite discovery.

Microsatellite characteristics of E. corollae
In total 79,138 microsatellite loci were isolated from the randomly sequenced genome

sequences of E. corollae with 5000 (6.32%) dinucleotide repeat (DNR) sites, 29221 (36.92%) tri-

nucleotide repeat (TNR) sites, 30988 (39.16%) tetranucleotide repeat (TTNR) sites, 6635

(8.38%) pentanucleotide repeats (PNR) sites and 7294 (9.22%) hexanucleotide repeat (HNR)

sites. The frequency of dinucleotide repeats in E. corollae is unusually low when compared

with other insect species such as Grapholita molesta [34] (Lepidoptera), Aphis glycines (Hemi-

ptera) [42] and Obolodiplosis robiniae (Diptera) [43], which shows the distribution of micro-

satellites to vary among species [44, 45].

Development of variable microsatellite markers

The QDD program initially generated 18114 primer pairs (S1 Table); we selected those corre-

sponding to tri- and tetra-nucleotide microsatellites for further filtering under criteria listed in

the methods and obtained 40 primer pairs (S2 Table). These primer pairs were validated in

E. corollae genetic structure
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eight individuals of E. corollae; six pairs with no polymorphism (S12, S15, S30, S32, S34, S40)

and ten pairs (S30, S35, S32, S04, S10, S19, S20, S27, S37, S38) with low amplification efficiency

(< 75%) were discarded. The remained 24 primer pairs that generated polymorphic genotypes

were used for population-level examination.

Development of an appropriate set of markers is often the first step in population genetic

and evolutionary studies. The recent development of genomic sequencing technology has

made it relatively easy to isolate powerful microsatellites from large numbers of candidates at a

genome-wide scale [46]. This method has been used in population structure analyses in many

species, such as Grapholita molesta [34], Frankliniella occidentalis [47] and Carposina sasakii
[33]. In our study, the 24 microsatellites developed are highly efficient in terms of amplifica-

tion and polymorphism, enabling us to assess the population genetic structure of E. corollae
(Table 2).

Population genetic diversity

A total of 96 individuals with 24 individuals from each of the four populations was used for the

genetic diversity study. The number of alleles per locus for all individuals ranged from five to

13 with an average of 8.75, which showed the level of polymorphism of the selected loci. The

observed (HO) and expected (HE) heterozygosity values ranged from 0.235 to 0.768 and from

0.333 to 0.785, respectively. Four loci (S01, S07, S24, S39) showed a significant gap between

Table 2. Twenty-four microsatellite loci developed for Eupeodes corollae.

Locus Motif Forward primer Reverse primer Size(bp) FL

EC7-S01 (ACG)7 CCTATACATAACGGGCCGGG CCCAGCGAAGGATGTTCTCC 103 HEX

EC7-S02 (ACG)7 CCCTCAACAGCCATTCCGAT ACCAGCGTGACCATGTTGAA 115 HEX

EC7-S03 (AGC)8 GCCTTGCAGAGCCTACTGTT CTCAGTAGTCTGGCGCTTCC 116 HEX

EC7-S06 (AGC)7 AGCTTCCCAGTTCCAAAGCC CCAGCGAACCAACAAACCAG 127 HEX

EC7-S07 (ATC)10 TACGCCTCTGTCTTTGCCTC AACGGGAATCGACAAGCACT 130 HEX

EC7-S08 (ATC)10 TCAGTAACGTCACGAAGGGC GTGGTCCTGGAAGCTGTCTC 131 HEX

EC7-S09 (ATC)10 GCTGCCTTATCACTTGCCCT TGTGGTCCAACTGAGTGTCG 133 HEX

EC7-S11 (AAG)11 AGCGAAAGAACAATGCCACG GAAGGTCTCTGGATGGACGG 150 HEX

EC10-S13 (AAG)8 CACACGAACTTCTGGCTGGA GGGTAAGGTGTAGTGTGGGC 158 FAM

EC7-S14 (ATC)9 AACACCCGAACTCCAAACCG TTTCAACATTCGCGTCGCTG 161 FAM

EC10-S16 (AAC)7 TGGAGCGAGCTGGATTGATC TTCGAGTGATGAGCCTGTGG 180 FAM

EC7-S17 (AAC)12 CATTGGAAAGGCTGCAACGG TGGAACTCCATGGCATTCCG 186 FAM

EC7-S18 (AAC)7 TGCCTTGACGATTACCACGT GATGGTGACGGATTGCGACT 187 FAM

EC7-S21 (ACG)7 TGCATGGATGGACACCAGAC GCGATGCCAACCTCATGTAC 200 FAM

EC7-S22 (CCG)7 TGGTGTGGAGGGTGGAAATG GTTTGTGCATCCGTGAACGA 203 FAM

EC11-S23 (ACG)7 CTGAGGGCTTGCTTCATGTG TGGACTTTCGTGTACCAGCC 204 FAM

EC7-S24 (ACC)7 GTCGTCCTCATCGTCACAGG TCATTGATTCGGCAGCAGGT 212 FAM

EC7-S25 (ATC)7 CGCACAGCATCACATCCATG TAAGTGCGAGTACGGGCATT 215 ROX

EC12-S26 (AGC)7 GGTAGTGGCATCAGTGGAGG GTTGGTGGTTGGGATGCAAA 220 ROX

EC10-S29 (ACG)11 CATGAACCCATCAGCGTCCT ATACCCTGATCCAGCCCGAT 225 ROX

EC33-S31 (ATC)33 TAACTGGGTGGCATCGGTTC GTTTGTGCGACTTGTGAGCT 259 ROX

EC13-S33 (AAAG)13 AGGGCAGCTATTGAATCCCG TGACTCCGAATGTGCTCAGG 285 ROX

EC7-S36 (AGAT)24 TGGGCTCAAGTGTAAACGGA AACAGCTTTGCCCTACCGAA 310 ROX

EC20-S39 (ATC)8 CCATCGCGAACTGTTCCTCT TGCTGCTATGTCTCCGTGTT 324 ROX

FL, fluorescent label.

https://doi.org/10.1371/journal.pone.0215888.t002
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observed and expected values, while the inbreeding coefficient (FIS = (HE-HO)/HE) calculated

by GENEPOP for these loci was relatively high (Table 3).

Significant deviations from HWE after sequential Bonferroni correction [48] (P< 0.05)

were detected in 9 of 24 loci (S01, S02, S07, S11, S14, S24, S25, S33&S39), and three of the 24

loci (S07, S24 & S39) deviated in all populations. None of the loci were in linkage disequilib-

rium (LD) in the four populations.

Population genetic structure

Pairwise FST analysis showed no significant differentiation between each pair of populations

with FST values ranging from -0.007 to 0.001 (Table 4). BAPS analysis showed all populations

Table 3. Summary statistics of 24 microsatellite markers for Eupeodes corollae validated in four populations. FIS, inbreeding coefficient; He, expected heterozygosity;

Ho, observed heterozygosity; HWE, average P-value of Hardy–Weinberg equilibrium.

Locus Allele FIS HWE HE HO

BJFS HLHB HNHK YNYX BJFS HLHB HNHK YNYX BJFS HLHB HNHK YNYX BJFS HLHB HNHK YNYX

EC7-S01 9 0.64 0.49 0.51 0.30 0.00 0.00 0.00 0.09 0.46 0.72 0.61 0.55 0.17 0.38 0.30 0.39

EC7-S02 6 0.12 0.29 0.52 -0.21 0.22 0.23 0.01 0.63 0.33 0.35 0.34 0.34 0.29 0.25 0.17 0.42

EC7-S03 10 -0.01 -0.08 -0.06 -0.16 0.10 0.79 0.71 0.82 0.47 0.54 0.51 0.61 0.48 0.58 0.54 0.71

EC7-S06 5 0.01 -0.21 -0.06 0.14 0.65 0.75 0.84 0.49 0.62 0.55 0.59 0.53 0.61 0.67 0.63 0.46

EC7-S07 7 0.47 0.42 0.45 0.40 0.01 0.01 0.01 0.00 0.62 0.64 0.68 0.62 0.33 0.38 0.38 0.38

EC7-S08 5 -0.08 0.15 0.02 0.09 0.90 0.34 1.00 0.08 0.54 0.49 0.38 0.55 0.58 0.42 0.38 0.50

EC7-S09 8 0.02 -0.11 0.16 0.09 0.35 0.86 0.25 0.80 0.73 0.67 0.69 0.64 0.71 0.75 0.58 0.58

EC7-S11 6 0.47 0.52 -0.06 -0.05 0.01 0.00 1.00 1.00 0.47 0.51 0.24 0.18 0.25 0.25 0.25 0.19

EC10-S13 10 0.16 0.08 0.19 -0.13 0.29 0.17 0.13 0.98 0.79 0.77 0.77 0.81 0.67 0.71 0.63 0.91

EC7-S14 6 0.38 -0.02 0.12 -0.09 0.01 0.19 0.04 0.84 0.34 0.45 0.56 0.42 0.21 0.46 0.50 0.46

EC10-S16 10 -0.03 -0.10 0.06 -0.05 0.35 0.68 0.15 0.72 0.72 0.83 0.62 0.79 0.74 0.92 0.58 0.83

EC7-S17 7 0.00 -0.18 0.15 -0.03 0.48 0.78 0.55 0.96 0.58 0.64 0.64 0.59 0.58 0.75 0.54 0.61

EC7-S18 6 -0.18 -0.13 0.12 -0.12 1.00 1.00 0.61 1.00 0.41 0.26 0.33 0.34 0.48 0.29 0.29 0.38

EC7-S21 11 0.07 -0.01 0.08 0.06 0.58 0.01 0.44 0.14 0.67 0.74 0.77 0.70 0.63 0.75 0.71 0.67

EC7-S22 13 0.05 -0.03 0.03 -0.02 0.91 0.59 0.76 0.44 0.79 0.81 0.73 0.70 0.75 0.83 0.71 0.71

EC11-S23 8 0.13 0.18 0.01 0.02 0.58 0.11 0.63 0.92 0.76 0.76 0.72 0.77 0.67 0.63 0.71 0.75

EC7-S24 13 0.34 0.37 0.62 0.33 0.04 0.00 0.00 0.02 0.63 0.72 0.66 0.73 0.42 0.46 0.25 0.50

EC7-S25 8 0.05 0.16 0.28 0.08 0.88 0.03 0.03 0.74 0.66 0.69 0.64 0.67 0.63 0.58 0.46 0.62

EC12-S26 8 0.27 0.15 0.08 0.10 0.16 0.18 0.43 0.95 0.79 0.73 0.72 0.83 0.58 0.63 0.67 0.75

EC10-S29 6 -0.14 0.26 -0.10 -0.10 1.00 0.11 0.54 1.00 0.37 0.34 0.53 0.28 0.42 0.25 0.58 0.30

EC33-S31 5 0.02 0.25 0.02 0.05 0.53 0.07 0.43 0.84 0.43 0.33 0.42 0.44 0.42 0.25 0.42 0.42

EC13-S33 8 0.14 -0.01 0.05 -0.11 0.60 0.22 0.42 0.04 0.53 0.43 0.44 0.60 0.46 0.43 0.42 0.67

EC7-S36 10 0.00 0.18 0.13 0.06 0.30 0.56 0.82 0.17 0.75 0.76 0.71 0.74 0.75 0.63 0.63 0.70

EC20-S39 14 0.52 0.40 0.66 0.60 0.00 0.02 0.00 0.00 0.60 0.63 0.54 0.52 0.29 0.38 0.19 0.21

All 8.75 0.14 0.12 0.17 0.06 0.59 0.60 0.58 0.58 0.50 0.53 0.48 0.55

https://doi.org/10.1371/journal.pone.0215888.t003

Table 4. Pairwise FST of 4 Eupeodes corollae populations based on 24 microsatellites.

Population BJFS HLHB HNHK YNYX

BJFS — 0.901 0.306 0.892

HLHB -0.004 — 0.838 0.973

HNHK 0.005 -0.001 — 0.468

YNYX -0.004 -0.007 0.001 —

The bottom triangle shows the pairwise FST values, while the upper triangle shows the corresponding P values. See Table 1 for population code.

https://doi.org/10.1371/journal.pone.0215888.t004
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clustered into one group (Fig 1A) while STRUCTURE analysis showed an optimal value of

K = 3. All populations were evenly spread across the three clusters, indicating a lack of genetic

differentiation among populations (Fig 1B). This pattern of genetic structure is congruent with

an estimated pairwise FST values among populations. Pairs of nearby populations had relatively

small FST value while pairs of populations with large geographical distance had relatively larger

FST values (Table 4).

A lack of population differentiation is common in hoverflies. For example, a previous study

on the hoverfly Cheilosia naruska from Finland showed that the species lacks differentiation at

both the genetic and phenotypic levels [49]. Another study of two hoverfly species (Episyrphus
balteatus and Sphaerophoria scripta) in Europe using 12 species-specific microsatellite markers

also revealed a lack of genetic differentiation within species [18]. High levels of genetic diver-

sity associated with a lack of structuring at a large spatial scale may indicate a high tolerance to

environmental variability and a high migration rate [50]. Our study indicated that E. corollae
in China may be highly mobile. The geographically related pattern of population structure

may indicate that migration is restricted by geographical barriers. Our study provides prelimi-

nary insight into the biology and ecology of E. corollae. Further denser sampling is required to

assess the population genetic structure of this species as well as other approaches to investigate

its migration pattern.

Microsatellite markers are popular and powerful DNA markers because they are cost-effec-

tive and with a high diversity [45]. With the development of next-generation sequencing,

genome-wide single nucleotide polymorphisms (SNPs) are becoming more powerful to screen

genome-wide polymorphisms in a rapid and cost-effective manner [51]. Incorporating high-

density SNPs in population genetic analysis may provide information on biology and ecology,

such migration routes, of E. corollae, and help to understand adaptive evolution in this species

[52].

Conclusions

We developed 24 microsatellite markers in E. corollae at a genome-wide scale which provides

genetic markers for population genetic analyses of this species. Our preliminary examination

of four geographical populations of E. corollae across China suggested weak but geographically

lined population differentiation. The results provide insight into migration of E. corollae in

China.
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26. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences

of k-mers. Bioinformatics. 2011; 27(6):764. https://doi.org/10.1093/bioinformatics/btr011 PMID:

21217122

27. Peng Y, Leung HCM, Yiu SM, Chin FYL, editors. IDBA–A practical iterative de bruijn graph De Novo

assembler2010; Berlin, Heidelberg: Springer Berlin Heidelberg.

28. Castoe TA, Poole AW, Gu W, Jason de Koning A, Daza JM, Smith EN, et al. Rapid identification of thou-

sands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454

shotgun genome sequence. Molecular Ecology Resources. 2010; 10(2):341–7. https://doi.org/10.1111/

j.1755-0998.2009.02750.x PMID: 21565030

29. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ. Rise of the machines–recommendations for ecologists

when using next generation sequencing for microsatellite development. Molecular Ecology Resources.

2011; 11(6):1093–101. https://doi.org/10.1111/j.1755-0998.2011.03037.x PMID: 21679314

30. Abdelkrim J, Robertson BC, Stanton J-AL, Gemmell NJ. Fast, cost-effective development of species-

specific microsatellite markers by genomic sequencing. BioTechniques. 2009; 46(3):185–92. https://

doi.org/10.2144/000113084 PMID: 19317661

31. Du L, Li Y, Zhang X, Yue B. MSDB: A user-friendly program for reporting distribution and building data-

bases of microsatellites from genome sequences. Journal of Heredity. 2013; 104(1):154–7. https://doi.

org/10.1093/jhered/ess082 PMID: 23144492
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