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ABSTRACT: We present unbiased, finite-variance estimators of energy
derivatives for real-space diffusion Monte Carlo calculations within the
fixed-node approximation. The derivative dλE is fully consistent with the
dependence E(λ) of the energy computed with the same time step. We
address the issue of the divergent variance of derivatives related to
variations of the nodes of the wave function both by using a
regularization for wave function parameter gradients recently proposed
in variational Monte Carlo and by introducing a regularization based on
a coordinate transformation. The essence of the divergent variance
problem is distilled into a particle-in-a-box toy model, where we
demonstrate the algorithm.

1. INTRODUCTION

Variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC) are numerical stochastic approaches based on a real-
space representation of a correlated trial wave function to
study many-body quantum systems, including electronic
structure problems. VMC calculates expectation values of
quantum operators on the trial function, which in turn is
optimized via minimization of a suitable cost function such as
the variational energy. DMC further improves the VMC results
through a stochastic implementation of the power method,
which projects the lowest-energy component of the trial
function. Its accuracy, in the fixed-node (FN) approximation
almost invariably adopted to avoid the sign problem, is
ultimately limited by the error in the nodal surface of the trial
function.1

In the past decade, the efficient calculation of analytic energy
derivatives,2,3 leveraging modern optimization methods,4−6

spawned impressive progress in both accuracy and scope of the
VMC method.7−10

DMC largely benefits from advances in VMC because
improved trial functions tend to have better nodes. However, it
would be desirable to have efficient and unbiased estimators of
derivatives in DMC as well to perform such tasks as the direct
optimization of the nodal surface or DMC structural relaxation.
This is still an open issue, with the latest developments
featuring uncontrolled approximations and/or a very low
efficiency.11−13 Here, we present an algorithm to calculate
unbiased energy derivatives in FN-DMC with finite variance
and demonstrate it on a model where the effect of the nodes is
dominant. In the Supporting Information, we also include an
application to the lithium dimer.

2. ENERGY DERIVATIVES
In both VMC and DMC, the energy is calculated as

E P R E R R P R R E( ) ( )d / ( )dL L P∫ ∫= ≡ ⟨ ⟩
(1)

where R represents the coordinates of all the particles, EL(R) =
HΨ(R)/Ψ(R) is the local energy of the trial function Ψ(R),
and P(R) is proportional to the underlying probability
distribution: in VMC, P(R) = Ψ2(R), and in DMC, P(R) =
Ψ(R)Φ(R) with Φ(R) being the FN solution. The derivative
with respect to a parameter λ is

E E E E Pd d ( )d ln PL L= ⟨ + − ⟩λ λ λ (2)

The variance of this naıv̈e estimator is 0 if both Ψ and its
derivative dλΨ are exact; however, for an approximate trial
function, EL(R) diverges at the nodes as 1/d(R), where d =
|Ψ|/∥∇Ψ∥, and the variance diverges as well.14,15

2.1. Regularized Estimators. In VMC, this problem was
fully solved by Attaccalite and Sorella14 with a reweighting
scheme, hereafter dubbed AS, whereby one samples the square
of a modified trial function Ψ̃ which differs from Ψ only for d
smaller than a cutoff parameter ϵ and stays finite on the nodal
surface of Ψ. A similar sampling scheme was proposed by
Trail.16 The AS estimator has the same average of the bare
estimator of eq 2 for any value of ϵ and finite variance.
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An alternative regularized estimator, recently proposed by
Pathak and Wagner,15 simply consists in multiplying the term
in brackets of eq 2 by the polynomial fϵ(x) = 7x6 − 15x4 + 9x2,
with x = d/ϵ, whenever x < 1. This estimator, hereafter dubbed
PW, has finite variance for any finite ϵ and a bias which
vanishes as ϵ → 0. The polynomial is chosen in such a way to
remove from the bias the linear term, shown15 to be ∝∫ 0

1( fϵ −
1)dx, and to be continuously differentiable in (0, 1). The odd
parity of fermionic wave functions near a node then implies a
cubic leading term in the bias. Since various values of ϵ can be
used in the same simulation, the bias can be eliminated at no
cost by extrapolation. The PW estimator has been proposed for
parameter gradients in the VMC optimization of Ψ, but it is
equally applicable to VMC interatomic forces and, as will be
shown, to generic derivatives in DMC.
We introduce a third regularized estimator, which we denote

as “warp” by analogy with the space−warp transformation of
ref 17 devised to reduce the statistical noise of the forces.
There, as a nucleus is displaced, a transformation is applied to
the coordinates of nearby electrons, in such a way to maintain
the electron−nucleus distances approximately constant. Here,
the goal is to maintain constant the value of d(R) when the
nodal surface is displaced by a variation of the parameter λ. In
this way, the diverging term in the local energy does not
change, and the variance of the derivative is finite.
The warp transformation, illustrated in Figure 1, is defined

as

R R R R R n R u Rd( ) d ( ) sign( ( )) ( ) (d( ))̅ = + [ − ′ ] Ψ′ ′ (3)

where primed quantities are calculated for the value λ′ of the
parameter, n′ is the unit vector in the direction of ∇Ψ′(R), and
u(d) is a cutoff function with support [0, ϵ] which decreases
smoothly from 1 to 0, restricting the warp transformation to a
region close to the nodal surface. We use the quintic
polynomial with zero first and second derivatives at the
boundaries of the support.
For a finite increment of λ, the energy is

E E R P R J R P R J R( ) ( ) d / ( ) dL∫ ∫′ = ′ ̅ ′ ̅ ′ ̅ (4)

where J = detJij = det∂R̅i/∂Rj is the Jacobian of the
transformation. For the practical implementation, we formulate
a differential expression of the finite energy difference E′ − E
so that no actual transformation is needed: the analytic
derivative dλE, calculated at the value of the parameter λ = λ0,
is

E

E E R E E PJ P R

d

( ) ln( ) ln PL L L

0
| =

⟨∂ + ∇ ·∂ ̅ + − [∂ + ∇ ·∂ ̅]⟩

λ λ

λ λ λ λ
(5)

This warp regularized estimator has finite variance and no
bias for any value of ϵ (see the Supporting Information).
Note that all the functions in eq 5 are evaluated at λ = λ0,

where R̅ = R and J = 1. Therefore, the warp transformation
only contributes to the estimator through the derivatives ∂λR̅i|λ0
and ∂λln J|λ0, while the sampling is done over one and the same
distribution P(R) for any parameter we may vary.
Furthermore, for λ = λ0, the cofactors of the Jacobi matrix Jij

are Mij = δij, and the seemingly awkward derivative of the
Jacobian greatly simplifies, ∂λln J|λ0 = ∑ijMij∂λJij|λ0 = ∑i∂λJii|λ0,
so that the implementation of eq 5 is not overly complicated.
In particular, most of the derivatives needed are already
presentor very similar to those already presentin VMC
codes with analytic derivatives for structural and full variational
optimization. The only exceptions are the off-diagonal
components of the Hessian ∂

2Ψ/∂Ri∂Rj and their derivatives
with respect to λ, which contribute to ∂λJ. These extra
derivatives are only needed when the nodal distance is smaller
than the cutoff ϵ, that is, for a very small fraction of the
sampled configurations. Furthermore, we will show (heuristi-
cally) that the bias incurred by neglecting these terms can be
extrapolated out at no cost.

2.2. Variational Monte Carlo. Before addressing the
derivatives in DMC, we compare the three regularized
estimators PW, AS, and warp in VMC. To this purpose, it is
expedient to consider a system stripped of all complexities of
external and interparticle potentials so that we can focus
exclusively on the divergence of the local energy at the nodal
surface. Our toy model is a free particle in an elliptic box with
hard walls, meant to represent the configuration of a generic
system within a nodal pocket. Atomic units are used
throughout. We choose Ψ = Ψ0(x,y) = a2 − x2/C − y2/(C
− 1) with C = [cosh(1)]2 = 2.3810978, which is positive inside
the ellipse, vanishes at the border, and is not the true ground
state. Therefore, the ellipse is defined through the wave
function, and we take the derivative with respect to the
parameter a, which changes the size of the ellipse at constant
eccentricity.
The average and variance of the various estimators,

calculated by quadrature, are shown in Figure 2. None of the
regularized estimators entails uncontrolled approximations. In
particular, although there is no rigorous way to establish the
range where the leading correction in ϵ is sufficient, or the
number of powers in ϵ needed over an arbitrary range, PW can
be accurately extrapolated to the unbiased result. Here, the bias
of the PW estimator has a leading contribution of ϵ2 because
Ψ0 does not have odd parity across the node. The second-
order bias can be removed with a different choice of the
polynomial, for example, fϵ̃(x) = 60x2 − 200x3 + 225x4 − 84x5,
at the expense of a larger variance for the given value of the
cutoff ϵ. The right panel shows that the relative efficiency may

Figure 1. Schematic picture of the warp transformation. The curve S
is the nodal surface for the value λ0 of the parameter λ. The value of d
for the current configuration R is pictorially represented as the
distance from S (this is strictly true only if Ψ is linear, i.e., close
enough to the node). When a variation of λ from λ0 to λ′ shifts S to S′,
the value of d changes to d′. Hence, we displace R by an amount Δ =
d − d′ to R̅ in the direction of sign(Ψ′)∇Ψ′(R) so that the value of
|Ψ′(R̅)|/∥∇Ψ′(R̅)∥ is approximately equal to d.
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depend on the system at hand; in this example, it varies over
the range of a considered.
The bias of the warp estimator when the off-diagonal

elements of the Hessian are neglected is compared to the bias
of the PW estimator in Figure 3. Since we need a non-diagonal
Hessian to start with, we consider (i) a rotated, more eccentric
ellipse with a further non-symmetrical distortion of the wave
function, and (ii−iv) the positive lobe of a wave function
limited to half of the original ellipse by the nodal line y +
sin(αx) = 0, with α = 0.5, 1, and 1.5 (see the contour plots in
Figure 3). The derivative is taken with respect to a for Ψ1 and
with respect to α for Ψ2−Ψ4. Within this (very limited) set of
test cases, the bias is smaller and less system-dependent for the
warp than for the PW estimator. The important result is that
neither involves uncontrolled approximations as both can be
extrapolated to the unbiased result in a single run. We have
also verified that the warp estimator with the full Hessian is
unbiased for finite ϵ.
2.3. Diffusion Monte Carlo. We now consider the

derivative in DMC. The FN-DMC algorithm is a branching
random walk of many weighted walkers, generated by a short-
time approximation G(R′,R) to the importance-sampled
Green’s function, which asymptotically samples the distribu-
tion P(R) = Ψ(R)Φ(R).1 The problem with the derivative
estimator, eq 2, is the presence of the logarithmic derivative of
P(R), which is not a known function of R. However, P is the
marginal distribution of the joint probability density Pjoint of
the whole random walk, which does have an explicit expression
as a product of Green’s functions,

P R R R P R R R

R R G R R P R

( ) d ...d ( , ..., )

d ...d ( , ) ( )

n n n n

n
i

n

i i

0 1 joint 1 0

0 1
0

1

1 0 0

∫

∫ ∏

=

≡

− −

−
=

−

+
(6)

where P0 is the (largely arbitrary) probability distribution of
the initial configuration R0. Therefore, it is sufficient to
consider the estimator of dλE in eq 2 as an average over the
whole trajectory of the random walk, rather than over the
current configuration, to bring an explicitly known probability
distribution to the fore.13 This is similar to the calculation of
forces in path integral Monte Carlo.18

In practice, the inclusion of the entire trajectory in the
estimator is not necessary. As shown in ref 13, the logarithmic
derivative of the DMC density distribution P in the estimator
of eq 2 can be replaced with the summation

P R G R Rd ln ( ) d ln ( , )n
i n k

n

i i

1

∑= ′λ λ
= −

−

(7)

over the last k steps of the random walk, with Rn being the
current configuration R of eq 2. The omitted term,13 ⟨[EL(Rn)
− E]dλ ln P(Rn−k)⟩, vanishes for sufficiently large k because
EL(Rn) and dλ ln P(Rn−k) become statistically independent
variables and ⟨EL − E⟩ = 0.
In eq 7, G(Ri′,Ri) is the transition rule from Ri to Ri′ of the

random walk. It includes a Metropolis test to reduce the time-
step error;1 therefore, Ri′ is the configuration proposed when
the walker is at Ri, and the next configuration Ri+1 is Ri′ or Ri if
the move is accepted or rejected, respectively. Note that in the
formal expression of Pjoint, eq 6, the arguments of Green’s
functions are integrated over, whereas in the contribution to
the estimator of the derivative, eq 7, they are the particular
values of the particles’ coordinates effectively sampled by the
random walk. Correspondingly, the actual value taken by G(R′,
R) is

Figure 2. VMC calculations of daE, with integrals performed by
quadrature. Left panel: derivative at a = 1 obtained with the warp,
PW, and AS estimators as a function of the cutoff ϵ, compared to the
“exact” result daEfit, defined as the derivative of a fit to E(a) calculated
separately for several values of a. AS and warp, shown here only near ϵ
= 0.2, are unbiased; PW can be extrapolated to the unbiased result
either including only the leading term in ϵ, here ϵ2, on a sufficiently
small range (dashed line) or using a sufficiently large number of terms
on an extended range (solid line). Middle panel: variance (in a
logarithmic scale) of the various regularized estimators as a function
of the cutoff. As ϵ vanishes, all schemes regress to the infinite variance
of the bare estimator. Right panel: variance (in a logarithmic scale) of
the various regularized estimators as a function of the parameter a.
For the warp and AS estimators, ϵ = 0.2; for PW, data are reported for
ϵ = 0.0125, 0.025, 0.05, 0.15, and 0.2 in the order of decreasing
variance. Common data in the middle and the right panels are circled.

Figure 3. Bias of the VMC derivative for PW and warp with
approximate Hessian, calculated by quadrature for various wave
functions Ψ1−Ψ4. In each case, we show a contour plot of the
normalized Ψi with level lines from 0 in steps of 0.2 (the contour plot
of Ψ0 in the top left inset defines the (x, y) scale). The colored labels
near each curve indicate the powers in ϵ needed to extrapolate to the
unbiased value with a five-digit accuracy. The bias of PW for Ψ2−Ψ4
has a leading term ϵ3 because of the use of the modified polynomial fϵ̃.
Empirically, we see that the warp estimator has a cubic leading term in
all cases.
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where T is the a priori transition probability, p is the
probability of accepting the move, and W is the branching
factor (see below).
The inclusion of rejected configurations in eq 7 and of the

factor p or 1 − p in eq 8 in the derivative of the full Green’s
function is instrumental to obtain an estimate of dλE
completely consistent with the DMC energy E(λ) calculated
at the same time step. Their omission still can give an unbiased
result in the limit τ→ 0, but it may cause an unacceptably large
time step error on the derivative.13

The functions T, p, and W are standard19

T R R R R F R V R

p R R
R T R R
R T R R

W R R S R S R

( , ) exp ( ) ( ) /2
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crosses a node

min 1,
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τ τ

τ

′ = {−[ ′ − − ] }

′ =
Ψ ′ ′
Ψ ′

′ = {[ ′ + ] }
(9)

Here, τ is the time step, V = ∇lnΨ is the so-called velocity, and

F R V V( ) 2 1 /( )2 2τ τ= − is the damping factor of its
divergence near the nodes; the logarithm of the branching
factor is also damped at the nodes, S(R) = [Eest − EL(R)]F(R)
− ln(N/N0), where Eest is the best current estimate of the
energy and N and N0 are the current and the target number of
walkers.
The presence of Eest, the Monte Carlo estimate of E, in the

branching term S implies that the calculation of dλE includes a
contribution proportional to dλE itself,

E R E F R E F E( ) ( ) d d
i

n n iL∑τ [ − ] ≡ ̅λ λ−
(10)

This does not require prior knowledge of the result: we can
calculate the factor F̅ and (dλE)0, the derivative when the
contribution of eq 10 is omitted, and combine them to get the
unbiased result as dλE = (dλE)0 + F̅dλE, or dλE = (dλE)0/(1 −
F̅).
The main technical complication in DMC is the need to

store a few quantities for each derivative and for each value of ϵ
over the last k steps of each walker, namely, dλ ln G and ELdλ
ln G, to implement eq 2 with the probability distribution P of
eq 7 and F and ELF to implement eq 10.
The AS regularized estimator has been applied to

approximate DMC forces in refs 13 and 20. However, it
pushes a finite density of walkers on the nodes, which is
presumably not optimal in DMC. Furthermore, unlike in
VMC, it requires13 an extrapolation to ϵ → 0 whichat
difference with the PW and warp estimatorscannot be done
in a single run.
Therefore, for the DMC derivatives, we consider only the

PW and the warp estimators. For the former, we insert eq 7
into eq 2 and multiply each term of the resulting summation by
a polynomial fϵ calculated at the appropriate configuration. For
the latter, we just insert eqs 7 in 5. For the warp estimator, the

argument of the Jacobian needs some care: we evaluate ∂λ ln J
in the proposed configuration R′ for both accepted and
rejected moves; alternatively, we can include ∂λ ln J only for
the accepted moves, provided the warp transformation is not
considered in the derivatives at R′ when the move is rejected.
We present results of DMC simulations with the wave

function Ψ0, time step τ = 0.1, and target number of walkers N0
= 100. We have verified that in the limit τ → 0, we recover the
analytic results21 for the ground-state energy, E = 2q/a2 with q
= 0.825352549, within a statistical error of less than 1 part in
10,000. To this level of accuracy, the population control bias1

is negligible.
Figure 4 exposes the drawback of the bare estimator: the

probability distribution p(ξ) for the block averages of the

derivative features a right heavy tail, consistent with the
expected11,22 leading decay ∝|ξ − ξ0|

−5/2. In the data trace,
shown in the inset, heavy tails result in large spikes that would
mar the smooth convergence of structural or variational
optimization. Meaningful averages and statistical uncertainties
of heavy-tailed distributions with known tail indices can be
computed with a tail regression analysis.23 This technique,
however, requires a heavy post-processing not very practical for
large-scale applications. The regularized estimators PW and
warp, instead, have nearly Gaussian distributions amenable to
standard statistical analysis with significantly smaller statistical
errors and, most importantly, no large spikes in the data trace.
The central result of this work is shown in Figure 5. We

calculate the energy E and its derivative daE for a set of values
of a and compare the DMC derivatives with the derivative of a
fit to the DMC energies. All the estimators (bare, extrapolated
PW, and warp) are unbiased, which demonstrates the
correctness of the proposed algorithm. For comparison, the
variational drift-diffusion (VD) approximation of ref 13 gives
for a = 1 a bias of ∼0.2, twice the full scale of the right panel,
and it gets even worse for smaller time steps (although the VD
approximation is devised to exploit good wave functions, while
our Ψ0 is poor on purpose to test the unbiased estimators).
For given a, the same run is used for all the estimators.

Therefore, the statistical error is a direct measure of the square

Figure 4. Histogram of 46,000 block averages, each of which taken
over 10,000 steps of 100 walkers in a DMC calculation of daE|a=1. The
warp and PW estimators (with ϵ = 0.2 and 0.0125, respectively) have
nearly Gaussian distributions. The bare estimator has a heavy-tailed
distribution; the largest value in the present sample exceeds x = 10.
Inset: the data trace of the first 1000 block averages.
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root of their relative efficiency. The statistical errors of the
bare, PW, and warp estimators, averaged over the values of a
shown in Figure 5, are in the ratio of 4.9:2.4:1. These figures
may belittle the PW estimator somewhat because in this
particular example, a large quadratic bias needs to be
eliminated by extrapolation, but they convey the relevant
message that both PW and warp are significantly more efficient
than the bare estimator.

3. CONCLUSIONS

In summary, we have presented an algorithm to calculate
unbiased, finite-variance derivatives in DMC. The estimate of
the derivative with respect to a given parameter is fully
consistent with the dependence on that parameter of the FN
energy, calculated with the same time step. The tail regression
statistical analysis23 can cope with the problem of the infinite
variance of the bare estimator. Alternatively, and more
efficiently, both the recently proposed PW regularization15

and the warp regularization introduced in this work can be
used to good effect to eliminate the divergence of the variance.
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