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Abstract

Heart failure is a common, costly, and potentially fatal condition. The cardiac sarcoplasmic

reticulum Ca-ATPase (SERCA2a) plays a critical role in the regulation of cardiac function. Pre-

viously, low SERCA2a expression was revealed in mice with heart failure. Epigallocatechin-3-

gallate (EGCG) can function as an epigenetic regulator and has been reported to enhance car-

diac function. However, the underlying epigenetic regulatory mechanism is still unclear. In this

study, we investigated whether EGCG can up-regulate SERCA2a via histone acetylation and

play role in preventing heart failure. For this, we generated a mouse model of heart failure by

performing a minimally invasive transverse aortic constriction (TAC) operation and used this to

test the effects of EGCG. The TAC+EGCG group showed nearly normal cardiac function com-

pared to that in the SHAM group. The expression of SERCA2a was decreased at both the

mRNA and protein levels in the TAC group but was enhanced in the TAC+EGCG group. Levels

of AcH3 and AcH3K9 were determined to decrease near the promoter region of Atp2a2 (the

gene encoding SERCA-2a) in the TAC group, but were elevated in the TAC+EGCG group.

Meanwhile, HDAC1 activity and binding near the Atp2a2 promoter were increased in the TAC

group but decreased with EGCG addition. Further, binding levels of GATA4 and Mef2c near

the Atp2a2 promoter region were reduced in TAC hearts, which might have been caused by

histone hypoacetylation; this was reversed by EGCG. Together, upregulation of SERCA2a via

the modification of histone acetylation plays a role in EGCG-mediated prevention of pressure

overload-induced heart failure, and this might represent a novel pharmacological target for the

treatment of heart failure.

1. Introduction

Heart failure is defined as “a clinical syndrome characterized by systemic perfusion which is

inadequate to meet the body’s metabolic demands as a result of impaired cardiac function”.
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This remains an increasing global disease, with an estimated prevalence of> 37.7 million indi-

viduals globally [1]. Although substantial efficacy is associated with evidence-based therapies

such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers

(ARBs), aldosterone antagonists, and β-adrenergic receptors blockers (β-blockers), poor clini-

cal outcomes remain a major public-health issue, and the prevalence of this syndrome contin-

ues to expand globally [2]. Thus, novel pharmacological agents aimed at new targets or based

on new mechanisms are needed.

The cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a), which regulates intracel-

lular calcium handling, plays a critical role in initiating cardiac contraction and relaxation

[3]. The expression levels of SERCA2a mRNA and protein were shown to be significantly

decreased in animal models of pressure overload-induced heart failure [4–6]. Further-

more, studies on human hearts have suggested that decreases in SERCA mRNA, protein,

or activity are closely correlated with suppressed myocardial function and impaired force-

frequency response [7–10]. As such, increasing the expression or activity of SERCA2a by

genetic modification is considered a revolutionary approach to address the treatment of

heart failure [11, 12]. Studies have shown that SERCA2a overexpression in myocytes via

adenoviral gene transfer results in increased contractility and faster relaxation of the tran-

sient calcium [13, 14]; it can also improve myocardial systolic and diastolic function in

animals with pressure overload-induced heart failure [15–17]. Recently, histone epige-

netic modification was revealed to regulate SERCA2a in a mouse model of pressure over-

load-induced heart failure [18], indicating that the epigenetic regulation of SERCA2a

might represent a new mechanism to prevent heart failure.

Epigallocatechin-3-gallate (EGCG), derived from green tea, has been shown to have multi-

ple effects on human pathological and physiological processes, especially cardiovascular dis-

eases [19, 20]. EGCG significantly enhances the contractility of intact murine myocytes by

increasing sarcoplasmic reticulum Ca(2+) content [21]. Meanwhile, EGCG also plays a consid-

erable role in epigenetic regulation; for example, it can inhibit class I histone deacetylases

(HDACs) to increase levels of acetylated histone and inhibit DNA methyltransferase to reacti-

vate methylation-silenced genes [22–24]. However, the epigenetic mechanism through which

EGCG contributes to the prevention of heart failure remains unclear.

We hypothesized that the upregulation of SERCA2a, via EGCG-induced histone hyperace-

tylation, plays a role in preventing heart failure. To verify this hypothesis, we performed trans-

verse aortic constriction (TAC) to create an animal model of heart failure. We then used this

model to investigate the effects of EGCG treatment on the localization of SERCA2a, as well as

other markers of epigenetic regulation, to DNA near the SERCA2a promoter.

2. Materials and methods

2.1. Experimental animals

Adult male mice C57BL/6 (8–10-weeks old) were purchased from the Animal Center of

Chongqing Medical University (Chongqing, China). All experimental procedures involving

animals were approved by the Animal Care and Use Committee at Chongqing Medical Uni-

versity. The mice were maintained in individually-ventilated cages (at 25˚C and 55–65%

humidity) with a 12-h light/dark cycle and free access to standard laboratory mouse chow. The

animals were randomly divided into four groups, namely SHAM, TAC, TAC+EGCG, and

SHAM +EGCG, with 8–10 mice in each. TAC+EGCG- and SHAM+EGCG-group mice were

treated with a single dose (50 mg/kg/day) of EGCG (Selleck, USA) via intraperitoneal injection

after surgery once per day for 12 weeks.

EGCG prevents heart failure by up-regulating SERCA2a

PLOS ONE | https://doi.org/10.1371/journal.pone.0205123 October 4, 2018 2 / 14

https://doi.org/10.1371/journal.pone.0205123


2.2. Minimally invasive transverse aortic constriction (TAC)

A minimally invasive TAC method [25] was used in our study. The mice were anesthetized via

inhalation of 1.5–2.5% isoflurane, and their body temperature was maintained between 36 and

37˚C throughout the procedure using a heating pad. A horizontal skin incision of 7–10 mm in

length was made at the level of the suprasternal notch. Then, the thyroid was retracted and the

sternum was exposed. A 5-mm longitudinal cut was made down the sternum and the thymus

was retracted to allow visualization of the aortic arch under low-power magnification. A 6–0

silk suture was passed through the aortic arch between the origin of the innominate and left

common carotid arteries, guided by a curved 27-gauge needle. Another 27-gauge needle was

placed next to the aortic arch, and the suture was tied neatly around the needle and aorta.

After ligation, the needle was removed. The skin was closed with a 4–0 nylon suture, and the

mice were allowed to recover fully in a clean cage on a heating pad (S1 Text). Buprenorphine

was administered subcutaneously once per day for 3 days for post-operative analgesia. The ani-

mal’s post-operative health and surgical site were observed and recorded twice per day for 7

days until the sutures was removed, then once per day for 3 months.

2.3. Echocardiography

Echocardiography studies were performed with a Vevo 2100 high-resolution imaging system

(VisualSonics, Toronto, Canada). All measurements were performed by the same examiner. The

mice were anesthetized with 1–1.5% isoflurane and placed on a heating pad to maintain body

temperature at 36.5–37.5˚C. Hair on the precordial region was removed with depilatory cream. B-

mode images were taken to measure the ventricular and aortic structure and M-mode images

were taken to measure the ventricular function. P-mode images were taken to measure the veloc-

ity of blood flow (S2 Text). All data were analyzed to evaluate the effects of TAC treatment.

The efficacy of TAC was tested by transthoracic Doppler echocardiography 3 days after the

procedure. The mice were sacrificed with isoflurane and the hearts were harvested after trans-

thoracic echocardiography was performed 12 weeks after the operation.

2.4. Hematoxylin and eosin (HE) staining

Heart tissues were fixed with 4% paraformaldehyde, dehydrated with alcohol, embedded in

paraffin, sectioned into 5-mm slices, and then stained with hematoxylin and eosin. Photo-

graphs of the ventricular sections from the four groups of mice were taken at 400× magnifica-

tion (Nikon, Tokyo, Japan)

2.5. Quantitative real-time PCR (qPCR)

Total RNA was extracted using the RNA extract kit (Bioteck, Beijing, China). Single-strand

cDNA was reverse transcribed from 500–1,000 ng of RNA using oligo dT-adaptor primers and

the AMV reverse transcriptase kit (TaKaRa, Otsu, Japan). cDNA was detected by performing a

quantitative real-time polymerase chain reaction (RT-PCR) assay with the SYBR Green

RealMasterMix kit (Tiangen, Beijing, China). The mRNA expression levels of SERCA2a were

quantified and GAPDH was used as an endogenous ‘housekeeping’ gene to normalize RNA

levels across samples. The procedures were performed in accordance with the manufacturer’s

instructions. The primer sequences were 50-TCGACCAGTCAATTCTTACAGG-30 and 50-
CAGGGACAGGGTCAGTATGC-30 for SERCA2a, and 50-AAGAAGGTGGTGAAGCAGGCATC-30

and 50- CGGCATCGAAGGTGGAAGAGTG-30 for GAPDH.
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2.6. Western blot analysis

In brief, total protein was extracted from the cardiac tissue using a protein extraction kit (Key-

GEN Bio-TECH, China) and then quantified using a BCA assay (BioTeke Biotechnology,

China). Total protein (50 μg per lane) was separated on a 12% SDS-PAGE gel and transferred

to a PDVF membrane. Proteins bound to the PDVF membrane were analyzed by western blot-

ting using primary antibodies specific for SERCA2a (Abcam, USA) and GAPDH (Arigo, Tai-

wan). The band intensity was analyzed and quantified using a G-BOX imaging system

(Syngene, UK).

2.7. Chromatin immunoprecipitation (ChIP) assay

ChIP experiments were conducted using a ChIP assay kit (ChIP Kit-one step, Abcam, USA).

After the homogenization of cardiac tissues, 1% formaldehyde (SigmaAldrich, St. Louis, MO,

USA) was added to the samples to cross-link proteins to DNA. The cross-linked DNA was

then fragmented into small fragments (500–1000 bp) using an ultrasound (Bioruptor UCD-

200). Next, the protein–DNA complexes were precipitated using monoclonal antibodies spe-

cific for acetylated histone 3 (AcH3), lysine 4 in H3 (AcH3K4), lysine 9 in H3 (AcH3K9),

HDAC1, GATA4, and Mef2c (Abcam, Cambridge, USA). Anti-RNA polymerase antibodies

were used as a positive control and anti-mouse IgG was used as a negative control. The total

column input also served as a positive control. Next, cross-linked protein–DNA complexes

were removed and the DNA was extracted. Specific quantitative real-time PCR (qPCR) prim-

ers were designed to determine levels of AcH3, AcH3K4, and AcH3K9 near the proximal pro-

moter regions of Atp2a2. The qPCR primer sequences used to amplify the SERCA2a promoter

were as follows: 50-AGCCAAGGACACCAGTGC-30 and 50-GGGATAGAGCGCGGAGTT- 30.

2.8. HDAC1 activity assay

HDAC1 activity was determined using a HDAC1 Activity Assay kit (BioVision, 10Mountain

View, CA, USA) according to the manufacturer’s instruction. Briefly, after protein extraction

and protein concentration measurement, 6 microliters of HDAC1 antibody or control anti-

body were added to each 500 microliter reaction, and the reaction was incubated overnight at

4˚C. Protein-A/G (25 microliters) was added to each reaction prior to incubation for 1 h at

4˚C. Each reaction was then centrifuged at 14,000 × g for 10 s at 4˚C, and the supernatant was

discarded. The reaction compound containing HDAC Assay Buffer and HDAC1 substrate was

subsequently added to each reaction and incubated for 2 h at 37˚C. Then, 20 microliters of the

Developer was added to each tube, which was incubated for 30 min 37˚C. The AFC (7-amino-

4-trifluoromethy coumarin) Standard was diluted as described by the manufacturer’s instruc-

tions, and for 100 microliters of each reaction, the fluorescence at Ex/Em = 380/500 nm (SYN-

ERGY/H1 micropalte reader, BioTek) was read. The AFC standard curve was plotted and the

sample reading was applied to the AFC Standard Curve to obtain B pmol of AFC in the sample

wells. The calculation of sample HDAC1 activity is shown as follows:

HDAC1 activity = 2 × B / TS (pmol/min/mg = mU), where B = AFC amount from the Stan-

dard Curve, T = reaction time = 120 min, and S = protein amount.

2.9. Data analysis

Quantitative data are shown as the means ± SE. Statistical significance associated with differ-

ences between mean values was analyzed by performing two-way or three-way ANOVA with a

post hoc Bonferroni-Dunn test for multiple comparisons. P< 0.05 was considered significant.
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3. Results

3.1. Evaluation of the TAC operation in mice

Echocardiograph images clearly showed reduced aortic diameter at the transverse constriction

site between the innominate and left carotid arteries after TAC (Fig 1A). The constriction was

further confirmed by anatomical dissection images of the aorta in TAC mice (Fig 1B). The

reduced transverse aorta diameter achieved the same level after TAC between the TAC and

EGCG+TAC groups (Fig 1D), resulting in the same increase in transverse aorta blood flow

between these groups (Fig 1E).

3.2. EGCG prevents heart failure in TAC mice

A non-invasive echocardiograph measurement was used to assess changes in heart wall thick-

ness before and 12 weeks after the operation. Compared to that before the operation, the thick-

ness of the left ventricular anterior wall (LVAW) and left ventricular posterior wall (LVPW)

increased in TAC group hearts, but did not differ significantly in the other groups (Table 1,

Fig 2A, S2 Table). Heart weight normalized to body weight (HW/BW) is an index to evaluate

cardiac hypertrophy. Consistent with the changes in wall thickness, HW/BW increased at 12

Fig 1. Efficacy of transverse aortic constriction (TAC) operation in mice. A) Representative B-mode ultrasound image of the SHAM and

TAC groups. B) Representative anatomical image of the TAC model. C) Representative pulse Doppler ultrasound image of the transverse aorta

blood flow in the SHAM and TAC groups. D) The transverse aorta diameter decreased significantly after the TAC operation with or without

epigallocatechin-3-gallate (EGCG) treatment (S1 Table). E) The velocity of the transverse aorta blood flow (P-mode ultrasound image)

increased significantly after TAC with or without EGCG (S1 Table). Values are presented as the mean ± SE. �, P< 0.05 by two-way ANOVA;

n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g001
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weeks after TAC in the TAC only group, indicating a response to increased afterload; however,

in the TAC+EGCG group, only a marginal insignificant increase in HW/BW was observed,

indicating a compensatory effect of EGCG in response to long-term high afterload stress (Fig

2B). This was confirmed by HE staining of heart sections (Fig 3A and 3B). Before TAC, the

non-invasive echocardiograph did not detect any functional differences among the groups.

The left ventricular chamber was dilated, and the ejection fraction (EF) and fraction shorten-

ing (FS) were decreased in the TAC group but not in TAC+EGCG group, suggesting that

EGCG preserved heart function (Table 1, Fig 2A, S2 Table).

3.3. EGCG prevents the TAC-induced decrease in SERCA2a expression

As shown in Fig 4A, SERCA2a mRNA expression was decreased in the TAC group com-

pared to that in the SHAM group. However, this effect was almost completely reversed

with EGCG treatment, as SERCA2a mRNA levels returned to those observed in the SHAM

group. The expression of SERCA2a in the SHAM+EGCG group was not significantly

changed as compared to that in the SHAM group. Western blot assays showed similar

results (Fig 4B). These results indicate that EGCG can prevent the downregulation of SER-

CA2a induced by TAC.

3.4. Histone acetylation near the promoter region of Atp2a2 (encoding

SERCA-2a)

Modification of histone acetylation or deacetylation is a reversible dynamic process, and it is a

crucial component of epigenetic regulation. To explore the potential mechanism underlying

the reduced SERCA2a expression in TAC mice, we assessed the acetylation levels of H3,

H3K4, and H3K9 near the promoter region of Atp2a2 using ChIP-qPCR assays. As shown in

Fig 5A, AcH3 levels near the promoter elements of SERCA2a were decreased in the TAC

group compared to those in the SHAM group. In the TAC+EGCG group, levels were

enhanced and reached those observed in the SHAM group. The pattern of AcH3K9 was simi-

lar to that of AcH3 among the groups, indicating that reduced SERCA2a expression was medi-

ated by modified histone acetylation (Fig 5B). However, the levels of AcH3K4 were not

significantly different among the groups (Fig 5C).

Table 1. Echocardiographic parameters before and 12 weeks after operation.

Groups SHAM (n = 8) TAC (n = 8) TAC+EGCG (n = 8) SHAM+EGCG (n = 8)

Before

operation

12 W after

operation

Before

operation

12 W after

operation

Before

operation

12 W after

operation

Before

operation

12 W after

operation

LVAWd,

mm

0.85 ± 0.02 0.91 ± 0.03 0.92 ± 0.03 1.32 ± 0.23� 0.91 ± 0.13 1.03 ± 0.06 0.90 ± 0.04 0.92 ± 0.05

LVPWd,

mm

0.91 ± 0.06 0.97 ± 0.06 0.94 ± 0.05 1.31 ± 0.08� 0.93 ± 0.04 0.99 ± 0.07 0.91 ± 0.04 0.92 ± 0.04

LVIDd, mm 3.73 ± 0.08 3.76 ± 0.06 3.73 ± 0.09 4.04 ± 0.05� 3.73 ± 0.09 3.80 ± 0.13 3.74 ± 0.12 3.72 ± 0.14

EF, % 63.48 ± 1.12 63.29 ± 1.05 62.99 ± 1.81 41.37 ± 7.79� 63.01 ± 1.79 62.24 ± 3.07 62.25 ± 5.34 61.35 ± 3.73

FS, % 37.80 ± 3.15 35.71 ± 1.90 38.93 ± 1.22 21.34 ± 1.02� 38.80 ± 2.77 36.01 ± 1.71 38.25 ± 2.08 36.03 ± 1.19

VAW, left ventricular anterior wall; LVID, left ventricular internal diameter; LVPW, left ventricular posterior wall; d, diastole; LVEF, left ventricular ejection fraction;

LVFS = left ventricular fraction shortening; W, weeks. LVAW, LVID, and LVPW were increased significantly in the TAC group; LVEF and LVFS were decreased

significantly in the TAC group. Values are presented as the mean ± SE.

�, P < 0.05 compared with before and 12W after operation in the TAC group based on three-way ANOVA.

https://doi.org/10.1371/journal.pone.0205123.t001
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3.5. HDAC1 enzyme activity and binding level of HDAC1 near the Atp2a2
promoter

We next determined HDAC1 activity in each group. Fig 6A shows that HDAC1 activity in the

TAC groups was enhanced compared to that in the SHAM group, and decreased after EGCG

treatment. Thus our data indicates that EGCG can suppress TAC-induced HDAC1 activation.

Fig 2. Epigallocatechin-3-gallate (EGCG) prevents heart failure induced by pressure overload. A) Representative M-mode ultrasound

image of each group. Left ventricular anterior wall (LVAW), left ventricular internal diameter (LVID), and left ventricular posterior wall

(LVPW) were increased significantly in the transverse aortic constriction (TAC) group. B) The heart weight to body weight ratio (HW/BW)

was also higher in the TAC group than in the other groups at 12 weeks post-operation. Values are presented as the mean ± SE. �, P< 0.05 by

two-way ANOVA; n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g002

Fig 3. Epigallocatechin-3-gallate (EGCG) prevents myocardial hypertrophy induced by pressure overload. A) HE staining of left ventricle

section showing that the cardiomyocyte size was larger in the transverse aortic constriction (TAC) group, and B) quantification of the

cardiomyocyte diameter showing larger cardiomyocytes in the TAC group Values are presented as the mean ± SE. �, P< 0.05 by two-way

ANOVA; n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g003
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Fig 4. Epigallocatechin-3-gallate (EGCG) treatment increases the expression of SERCA2a upon heart failure. A)

SERCA2a mRNA expression was lower in the transverse aortic constriction (TAC) group than in the other groups. B)

SERCA2a protein expression was also lower in the TAC group than in the other groups. Values are presented as the

mean ± SE. �, P< 0.05 by two-way ANOVA; n = 8 per group.

Fig 5. Epigallocatechin-3-gallate (EGCG) reverses the hypoacetylation of AcH3 and AcH3K9 and inhibits HDAC1

binding near the Atp2a2 promoter region in mouse cardiac tissue after heart failure. A) AcH3 binding near the

Atp2a2 promoter region was significantly decreased in the transverse aortic constriction (TAC) compared to that in

the other groups, as assessed by ChIP-qPCR. B) AcH3K9 binding near the Atp2a2 promoter region was also

significantly decreased in the TAC group compared to that in the other groups. C) AcH3K4 binding near the Atp2a2
promoter region was not obviously different among the four groups. Values are presented as the mean ± SE. �,

P< 0.05 by two-way ANOVA; n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g005
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However, this effect was incomplete in TAC mice. EGCG was previously reported to inhibit

the binding of HDAC1 to promoters that activate gene expression [26]. Therefore, we detected

HDAC1 binding near the promoter region of Atp2a2 in the four groups. As shown in Fig 6B,

these levels were increased in the TAC group, which might correlate with the observed down-

regulation of AcH3 and AcH3K9. However, binding levels were found to decrease significantly

in the TAC+EGCG group.

3.6 Binding of transcription factors near the Atp2a2 promoter

Cardiac core transcription factors, GATA4 and Mef2c, were shown to play roles in the regula-

tion of Atp2a2 transcription [27]. Thus, the binding levels of these transcription factors near

the Atp2a2 promoter were determined by ChIP assays. As shown in Fig 7A and 7B, binding

levels of GATA4 and Mef2c near the Atp2a2 promoter region were reduced in heart tissue of

the TAC group, which might have been caused by hypoacetylation of histones. This was

Fig 6. Epigallocatechin-3-gallate (EGCG) inhibits HDAC1 activity and binding near the Atp2a2 promoter region

in mouse cardiac tissue after heart failure. A) HDAC1 activity was determined in the hearts of mice with or without

EGCG intervention. B) Binding levels of HDAC1 near the Atp2a2 promoter region were higher in the transverse aortic

constriction (TAC) group than in the other groups. Values are presented as the mean ± SE. �, P< 0.05 by two-way

ANOVA; n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g006

Fig 7. Epigallocatechin-3-gallate (EGCG) upregulates the binding of GATA4 and Mef2c near the Atp2a2
promoter region in cardiac tissues of mice after heart failure. A) Binding levels of GATA4 near the Atp2a2
promoter region were reduced in hearts of the transverse aortic constriction (TAC) group, which was reversed by

EGCG, as assessed by ChIP assays. B) Binding levels of Mef2c near the Atp2a2 promoter region were reduced in hearts

of the TAC group, which was reversed by EGCG. Values are presented as the mean ± SE. �, P< 0.05 by two-way

ANOVA; n = 8 per group.

https://doi.org/10.1371/journal.pone.0205123.g007
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reversed by the effect of EGCG on the acetylation of histones associated with Atp2a2, as the

binding of GATA4 and Mef2c was increased significantly after EGCG treatment.

4. Discussion

Heart failure continues to be a leading cause of mortality and morbidity worldwide. Condi-

tions that damage or overwork the heart muscle such as hypertension, coronary heart disease,

and diabetes can result in heart failure. Hypertension is one of the most important causes of

heart failure, as pressure overload exposes cardiac myocytes to elevated mechanical stress and

neurohormones, which increases myocardial mass and results in left ventricular hypertrophy.

These cardiac changes can further progress to heart failure [28]. Although several types of

drugs have been developed over many years, gaps in the treatment of this disease remain.

Recently, epigenetic disorders have been reported to play a role in heart failure [18]. Therefore,

a better understanding of associated epigenetic mechanisms is required to uncover novel phar-

macological agents. Our data indicate that increased HDAC1 activity and binding to the pro-

moter of the gene encoding SERCA2a (Atp2a2), which might result in the hypoacetylation of

histone 3 lysine 9, in addition to chromatin regulation, result in decreased transcription factor

binding to this promoter region. Further investigation showed that EGCG could inhibit the

activity and binding of HDAC1 to the Atp2a2 proximal promoter region to rescue the low

expression of SERCA2a and improve cardiac function.

SERCA2a plays a critical role in regulating cardiac function; accordingly, several studies

have demonstrated low expression of this protein in heart failure [4–10]. Similar to previous

reports, we found that the protein and mRNA levels of SERCA2a were decreased after heart

failure induced by TAC. However, the underlying epigenetic mechanism of this downregula-

tion of SERCA2a remained unclear. Recently, a study demonstrated that histone modification

underlies the reprogramming of SERCA2a promoters in adult murine left ventricles under

conditions of chronic pressure overload [18], indicating a role for the histone-associated epige-

netic regulation of SERCA2a and epigenetics in the etiology of heart failure. Histone epigenetic

modifications include acetylation, methylation, phosphorylation, ubiquitination, and sumoyla-

tion [29]. Acetylation is one of the most important histone modifications that can result in

chromatin remodeling and the activation of gene expression; moreover, hypoacetylation near

the proximal promoter of the gene results in the compaction of chromatin and might affect the

binding affinities of transcription factors with the key cis-elements of the proximal promoter

[30]. In the present study, our results showed that the binding of total AcH3, as well as the sub-

type AcH3K9, was reduced, and that the binding of active transcription factors GATA4 and

Mef2c was decreased near the Atp2a2 promoter region after heart failure. However, this pat-

tern was not observed with the AcH3K4 subtype, indicating the selective control of H3 acety-

lated lysine sites during the regulation of SERCA2a after heart failure. The assessment of other

acetylated lysine sites should be performed in future studies.

HDACs are a class of enzymes that remove acetyl groups from ε-N-acetyl lysine amino

acids on histones, allowing histones to wrap the DNA more tightly. HDACs can be classified

into four classes depending on sequence homology to the original yeast enzymes and domain

organization. HDAC1 is one of the most important class I HDACs that regulate histone acety-

lation; it can enhance electrostatic attraction between DNA and histones and increase chroma-

tin compaction, leading to reduced gene expression. The inhibition of class I HDACs has been

reported to suppress pressure overload-induced ventricular hypertrophy and improve systolic

function significantly [31, 32], indicating that class I HDACs perform a crucial function during

heart failure. Our results showed increased activity and binding of HDAC1 to the Atp2a2 pro-

moter region, indicating that it might be a causal factor of SERCA2a downregulation mediated
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by hypoacetylation during TAC-induced heart failure in mice. With respect to the regulation

of SERCA2a expression, other subtypes of HDACs should also be assessed in future studies.

Tea polyphenols are the main chemical components of green tea, which contains many

types of catechins such as epicatechin, epicatechin-3-gallate, epigallocatechin, and EGCG [33].

EGCG, which has been approved as a health-promoting product for sale, is an ester that forms

from the reaction between epigallocatechin and gallic acid, and this compound is associated

with important health benefits [34]. EGCG has been reported to exert lipid-lowering effects, in

addition to effects on angiogenesis and osteogenesis; it also affects many abnormal pathophysi-

ological changes, as it has been demonstrated to have anti-cancer, anti-inflammatory, anti-col-

lagenase, autoxidative, and anti-fibrotic effects [35–44], and possess therapeutic activity for a

number of diseases such as cancer, oral disease, diabetes, and especially cardiovascular diseases

[19, 20]. Previously, several mechanisms were suggested for EGCG with respect to heart fail-

ure, such as alleviating cardiac fibrosis [45], reducing desensitization of the β1 adrenoceptor

[46], modulating the Nrf2/ARE antioxidant system [47], and altering myofilament Ca2+-sensi-

tivity [26, 48]. Recently, studies have demonstrated that EGCG exerts a tremendous effect on

events associated with epigenetic regulation, including histone acetylation, methylation, and

DNA methylation [22–24]. Pan [26] found that EGCG could inhibit HDAC1 to up-regulate

cTnI in aging mice and improve cardiac function, highlighting the detailed mechanisms

through which EGCG contributes to epigenetic modifications. Since EGCG is a major epige-

netic controller, whether epigenetic regulation by this compound contributes to the prevention

of heart failure is not clear. In the present study, we found EGCE could reverse the low expres-

sion of SERCA2a observed after TAC; meanwhile, acetylated H3 and H3K9 were upregulated

after EGCG treatment. We further found that HDAC1 activity and binding were decreased

with EGCG treatment. All of these findings indicate that EGCG could inhibit HDAC1 activity

and binding to the promoter of the gene encoding SERCA2a, resulting in increased expression

through the enhanced binding of AcH3 and AcH3K9 to the proximal promoter of this gene.

In conclusion, upregulation of SERCA2a via the modification of histone acetylation plays a

role in the EGCG-mediated prevention of pressure overload-induced heart failure, and thus

might represent a novel pharmacological agent for the treatment of heart failure.

Supporting information

S1 Text. Protocol for TAC. Detailed procedure of Transverse Aortic Constriction (TAC).

(DOCX)

S2 Text. Protocol for Echocardiography. Detailed procedure of echocardiography in mice.

(DOCX)

S1 Table. The diameter and blood flow velocity of the transverse aorta. The transverse aorta

diameter decreased significantly after the TAC operation. The velocity of the transverse aorta

blood flow increased significantly after TAC.

(XLSX)

S2 Table. Echocardiographic parameters before and 12 weeks after operation. Compared

to that before the operation, the thickness of the left ventricular anterior wall (LVAW) and left

ventricular posterior wall (LVPW) increased in TAC group hearts. The left ventricular cham-

ber was dilated, and the ejection fraction (EF) and fraction shortening (FS) were decreased in

the TAC group but not in TAC+EGCG group hearts.

(XLSX)

EGCG prevents heart failure by up-regulating SERCA2a

PLOS ONE | https://doi.org/10.1371/journal.pone.0205123 October 4, 2018 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205123.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205123.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205123.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205123.s004
https://doi.org/10.1371/journal.pone.0205123


Author Contributions

Conceptualization: Lifei Liu, Jie Tian.

Data curation: Jianxia Liu.

Funding acquisition: Jie Tian.

Investigation: Lifei Liu, Weian Zhao, Yi Gan, Lingjuan Liu.

Project administration: Jie Tian.

Supervision: Jie Tian.

Writing – original draft: Lifei Liu, Weian Zhao.

Writing – review & editing: Jie Tian.

References
1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016; 13(6):368–

78. https://doi.org/10.1038/nrcardio.2016.25 PMID: 26935038

2. Krum H, Abraham WT. Heart failure. Lancet. 2009; 373(9667):941–55. https://doi.org/10.1016/S0140-

6736(09)60236-1 PMID: 19286093

3. Frank KF, Bolck B, Erdmann E, Schwinger RH. Sarcoplasmic reticulum Ca2+-ATPase modulates car-

diac contraction and relaxation. Cardiovasc Res. 2003; 57(1):20–7. PMID: 12504810

4. Feldman AM, Weinberg EO, Ray PE, Lorell BH. Selective changes in cardiac gene expression during

compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic band-

ing. Circ Res. 1993; 73(1):184–92. PMID: 8508529

5. Kiss E, Ball NA, Kranias EG, Walsh RA. Differential changes in cardiac phospholamban and sarcoplas-

mic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated

pressure-overload hypertrophy and congestive heart failure. Circ Res. 1995; 77(4):759–64. PMID:

7554123

6. Matsui H, MacLennan DH, Alpert NR, Periasamy M. Sarcoplasmic reticulum gene expression in pres-

sure overload-induced cardiac hypertrophy in rabbit. Am J Physiol. 1995; 268(1 Pt 1):C252–8. https://

doi.org/10.1152/ajpcell.1995.268.1.C252 PMID: 7840154

7. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene

expression in human heart failure. A possible mechanism for alterations in systolic and diastolic proper-

ties of the failing myocardium. Circ Res. 1993; 72(2):463–9. PMID: 8418995

8. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, et al. Relation between myocardial

function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myo-

cardium. Circ Res. 1994; 75(3):434–42. PMID: 8062417

9. Bavendiek U, Brixius K, Munch G, Zobel C, Muller-Ehmsen J, Schwinger RH. Effect of inotropic inter-

ventions on the force-frequency relation in the human heart. Basic Res Cardiol. 1998; 93 Suppl 1:76–

85.

10. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, et al. Altered sarcoplasmic

reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin

Invest. 1990; 85(1):305–9. https://doi.org/10.1172/JCI114429 PMID: 2136864

11. Hayward C, Banner NR, Morley-Smith A, Lyon AR, Harding SE. The Current and Future Landscape of

SERCA Gene Therapy for Heart Failure: A Clinical Perspective. Hum Gene Ther. 2015; 26(5):293–304.

https://doi.org/10.1089/hum.2015.018 PMID: 25914929

12. Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: therapeutic targets for heart failure. Eur J Phar-

macol. 2014; 724:1–8. https://doi.org/10.1016/j.ejphar.2013.12.018 PMID: 24361307

13. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiological effects of adenoviral gene transfer of

sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation. 1997; 95(2):423–9.

PMID: 9008460

14. Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A. Adenoviral gene transfer of phospholamban

in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum

Ca(2+)-ATPase. Circ Res. 1997; 81(2):145–53. PMID: 9242175

EGCG prevents heart failure by up-regulating SERCA2a

PLOS ONE | https://doi.org/10.1371/journal.pone.0205123 October 4, 2018 12 / 14

https://doi.org/10.1038/nrcardio.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/26935038
https://doi.org/10.1016/S0140-6736(09)60236-1
https://doi.org/10.1016/S0140-6736(09)60236-1
http://www.ncbi.nlm.nih.gov/pubmed/19286093
http://www.ncbi.nlm.nih.gov/pubmed/12504810
http://www.ncbi.nlm.nih.gov/pubmed/8508529
http://www.ncbi.nlm.nih.gov/pubmed/7554123
https://doi.org/10.1152/ajpcell.1995.268.1.C252
https://doi.org/10.1152/ajpcell.1995.268.1.C252
http://www.ncbi.nlm.nih.gov/pubmed/7840154
http://www.ncbi.nlm.nih.gov/pubmed/8418995
http://www.ncbi.nlm.nih.gov/pubmed/8062417
https://doi.org/10.1172/JCI114429
http://www.ncbi.nlm.nih.gov/pubmed/2136864
https://doi.org/10.1089/hum.2015.018
http://www.ncbi.nlm.nih.gov/pubmed/25914929
https://doi.org/10.1016/j.ejphar.2013.12.018
http://www.ncbi.nlm.nih.gov/pubmed/24361307
http://www.ncbi.nlm.nih.gov/pubmed/9008460
http://www.ncbi.nlm.nih.gov/pubmed/9242175
https://doi.org/10.1371/journal.pone.0205123


15. Muller OJ, Lange M, Rattunde H, Lorenzen HP, Muller M, Frey N, et al. Transgenic rat hearts overex-

pressing SERCA2a show improved contractility under baseline conditions and pressure overload. Car-

diovasc Res. 2003; 59(2):380–9. PMID: 12909321

16. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF, et al. Restoration of mechanical and

energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol

Cell Cardiol. 2007; 42(4):852–61. https://doi.org/10.1016/j.yjmcc.2007.01.003 PMID: 17300800

17. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, et al. Adenoviral gene transfer

of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc

Natl Acad Sci U S A. 2000; 97(2):793–8. PMID: 10639159

18. Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, et al. Epigenetic switch at

atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One. 2014; 9(9):

e106024. https://doi.org/10.1371/journal.pone.0106024 PMID: 25181347

19. Chu C, Deng J, Man Y, Qu Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments.

Biomed Res Int. 2017; 2017:5615647. https://doi.org/10.1155/2017/5615647 PMID: 28884125

20. Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate

(EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol. 2018; 210:296–310. https://doi.

org/10.1016/j.jep.2017.08.035 PMID: 28864169

21. Feng W, Hwang HS, Kryshtal DO, Yang T, Padilla IT, Tiwary AK, et al. Coordinated regulation of murine

cardiomyocyte contractility by nanomolar (-)-epigallocatechin-3-gallate, the major green tea catechin.

Mol Pharmacol. 2012; 82(5):993–1000. https://doi.org/10.1124/mol.112.079707 PMID: 22918967

22. Thakur VS, Gupta K, Gupta S. Green tea polyphenols increase p53 transcriptional activity and acetyla-

tion by suppressing class I histone deacetylases. Int J Oncol. 2012; 41(1):353–61. https://doi.org/10.

3892/ijo.2012.1449 PMID: 22552582

23. Nandakumar V, Vaid M, Katiyar SK. (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppres-

sor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation

in human skin cancer cells. Carcinogenesis. 2011; 32(4):537–44. https://doi.org/10.1093/carcin/bgq285

PMID: 21209038

24. Li Y, Yuan YY, Meeran SM, Tollefsbol TO. Synergistic epigenetic reactivation of estrogen receptor-

alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-nega-

tive breast cancer cells. Mol Cancer. 2010; 9:274. https://doi.org/10.1186/1476-4598-9-274 PMID:

20946668

25. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in

mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart

Circ Physiol. 2003; 285(3):H1261–9. https://doi.org/10.1152/ajpheart.00108.2003 PMID: 12738623

26. Pan B, Quan J, Liu L, Xu Z, Zhu J, Huang X, et al. Epigallocatechin gallate reverses cTnI-low expres-

sion-induced age-related heart diastolic dysfunction through histone acetylation modification. J Cell Mol

Med. 2017; 21(10):2481–90. https://doi.org/10.1111/jcmm.13169 PMID: 28382690

27. Quan J, Pan B, Jia Z, Liu L, Tian J. EGCG is involved in regulation of SERCA2a in aging mice hearts. J

Third Mil Med Univ. 2017; 39(5):436–41. https://doi.org/10.16016/j.1000-5404.201609074

28. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011; 123(3):327–34. https://

doi.org/10.1161/CIRCULATIONAHA.108.845792 PMID: 21263005

29. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic

therapy. Nature. 2004; 429(6990):457–63. https://doi.org/10.1038/nature02625 PMID: 15164071

30. Jenuwein T, Allis CD. Translating the histone code. Science. 2001; 293(5532):1074–80. https://doi.org/

10.1126/science.1063127 PMID: 11498575

31. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, et al. Inhibition of histone deacetylation blocks car-

diac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006; 113(1):51–9.

https://doi.org/10.1161/CIRCULATIONAHA.105.559724 PMID: 16380549

32. Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, et al. Suppression of class I and II his-

tone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006; 113(22):2579–88.

https://doi.org/10.1161/CIRCULATIONAHA.106.625467 PMID: 16735673

33. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chin

Med. 2010; 5:13. https://doi.org/10.1186/1749-8546-5-13 PMID: 20370896

34. Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applica-

tions. Life Sci. 2006; 78(18):2073–80. https://doi.org/10.1016/j.lfs.2005.12.006 PMID: 16445946

35. Ikeda I. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome. Asia

Pac J Clin Nutr. 2008; 17 Suppl 1:273–4.

EGCG prevents heart failure by up-regulating SERCA2a

PLOS ONE | https://doi.org/10.1371/journal.pone.0205123 October 4, 2018 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/12909321
https://doi.org/10.1016/j.yjmcc.2007.01.003
http://www.ncbi.nlm.nih.gov/pubmed/17300800
http://www.ncbi.nlm.nih.gov/pubmed/10639159
https://doi.org/10.1371/journal.pone.0106024
http://www.ncbi.nlm.nih.gov/pubmed/25181347
https://doi.org/10.1155/2017/5615647
http://www.ncbi.nlm.nih.gov/pubmed/28884125
https://doi.org/10.1016/j.jep.2017.08.035
https://doi.org/10.1016/j.jep.2017.08.035
http://www.ncbi.nlm.nih.gov/pubmed/28864169
https://doi.org/10.1124/mol.112.079707
http://www.ncbi.nlm.nih.gov/pubmed/22918967
https://doi.org/10.3892/ijo.2012.1449
https://doi.org/10.3892/ijo.2012.1449
http://www.ncbi.nlm.nih.gov/pubmed/22552582
https://doi.org/10.1093/carcin/bgq285
http://www.ncbi.nlm.nih.gov/pubmed/21209038
https://doi.org/10.1186/1476-4598-9-274
http://www.ncbi.nlm.nih.gov/pubmed/20946668
https://doi.org/10.1152/ajpheart.00108.2003
http://www.ncbi.nlm.nih.gov/pubmed/12738623
https://doi.org/10.1111/jcmm.13169
http://www.ncbi.nlm.nih.gov/pubmed/28382690
https://doi.org/10.16016/j.1000-5404.201609074
https://doi.org/10.1161/CIRCULATIONAHA.108.845792
https://doi.org/10.1161/CIRCULATIONAHA.108.845792
http://www.ncbi.nlm.nih.gov/pubmed/21263005
https://doi.org/10.1038/nature02625
http://www.ncbi.nlm.nih.gov/pubmed/15164071
https://doi.org/10.1126/science.1063127
https://doi.org/10.1126/science.1063127
http://www.ncbi.nlm.nih.gov/pubmed/11498575
https://doi.org/10.1161/CIRCULATIONAHA.105.559724
http://www.ncbi.nlm.nih.gov/pubmed/16380549
https://doi.org/10.1161/CIRCULATIONAHA.106.625467
http://www.ncbi.nlm.nih.gov/pubmed/16735673
https://doi.org/10.1186/1749-8546-5-13
http://www.ncbi.nlm.nih.gov/pubmed/20370896
https://doi.org/10.1016/j.lfs.2005.12.006
http://www.ncbi.nlm.nih.gov/pubmed/16445946
https://doi.org/10.1371/journal.pone.0205123


36. Kondo T, Ohta T, Igura K, Hara Y, Kaji K. Tea catechins inhibit angiogenesis in vitro, measured by

human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor bind-

ing. Cancer Lett. 2002; 180(2):139–44. PMID: 12175544

37. Jin P, Wu H, Xu G, Zheng L, Zhao J. Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to

enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro

study. Cell Tissue Res. 2014; 356(2):381–90. https://doi.org/10.1007/s00441-014-1797-9 PMID:

24682582

38. Roychoudhury S, Agarwal A, Virk G, Cho CL. Potential role of green tea catechins in the management

of oxidative stress-associated infertility. Reprod Biomed Online. 2017; 34(5):487–98. https://doi.org/10.

1016/j.rbmo.2017.02.006 PMID: 28285951

39. Koh YW, Choi EC, Kang SU, Hwang HS, Lee MH, Pyun J, et al. Green tea (-)-epigallocatechin-3-gallate

inhibits HGF-induced progression in oral cavity cancer through suppression of HGF/c-Met. J Nutr Bio-

chem. 2011; 22(11):1074–83. https://doi.org/10.1016/j.jnutbio.2010.09.005 PMID: 21292466

40. Lim YC, Park HY, Hwang HS, Kang SU, Pyun JH, Lee MH, et al. (-)-Epigallocatechin-3-gallate (EGCG)

inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Lett. 2008;

271(1):140–52. https://doi.org/10.1016/j.canlet.2008.05.048 PMID: 18632202

41. Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the inhibition of col-

lagenolytic activity by collagenase. Int J Biol Macromol. 2007; 41(1):16–22. https://doi.org/10.1016/j.

ijbiomac.2006.11.013 PMID: 17207851

42. Liu Z, Nakashima S, Nakamura T, Munemasa S, Murata Y, Nakamura Y. (-)-Epigallocatechin-3-gallate

inhibits human angiotensin-converting enzyme activity through an autoxidation-dependent mechanism.

J Biochem Mol Toxicol. 2017; 31(9). https://doi.org/10.1002/jbt.21932 PMID: 28544013

43. Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M. Green tea polyphenol epigallocate-

chin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell

line LI90. J Hepatol. 2004; 40(1):52–9. PMID: 14672614

44. Cai Y, Yu SS, Chen TT, Gao S, Geng B, Yu Y, et al. EGCG inhibits CTGF expression via blocking NF-

kappaB activation in cardiac fibroblast. Phytomedicine. 2013; 20(2):106–13. https://doi.org/10.1016/j.

phymed.2012.10.002 PMID: 23141425

45. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY. EGCG inhibits proliferation of cardiac fibroblasts in rats

with cardiac hypertrophy. Planta Med. 2009; 75(2):113–20. https://doi.org/10.1055/s-0028-1088387

PMID: 19096994

46. Zhang Q, Hu L, Chen L, Li H, Wu J, Liu W, et al. (-)-Epigallocatechin-3-gallate, the major green tea cate-

chin, regulates the desensitization of β1 adrenoceptor via GRK2 in experimental heart failure. Inflammo-

pharmacology. 2017:1–11. https://doi.org/10.1007/s10787-017-0429-x PMID: 29247373

47. Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K. The Role of the Nrf2/ARE Antioxidant

System in Preventing Cardiovascular Diseases. Diseases. 2016; 4(4). https://doi.org/10.3390/

diseases4040034 PMID: 28933413

48. Sheehan A, Messer AE, Papadaki M, Choudhry A, Kren V, Biedermann D, et al. Molecular Defects in

Cardiac Myofilament Ca(2+)-Regulation Due to Cardiomyopathy-Linked Mutations Can Be Reversed

by Small Molecules Binding to Troponin. Front Physiol. 2018; 9:243. https://doi.org/10.3389/fphys.

2018.00243 PMID: 29636697

EGCG prevents heart failure by up-regulating SERCA2a

PLOS ONE | https://doi.org/10.1371/journal.pone.0205123 October 4, 2018 14 / 14

http://www.ncbi.nlm.nih.gov/pubmed/12175544
https://doi.org/10.1007/s00441-014-1797-9
http://www.ncbi.nlm.nih.gov/pubmed/24682582
https://doi.org/10.1016/j.rbmo.2017.02.006
https://doi.org/10.1016/j.rbmo.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28285951
https://doi.org/10.1016/j.jnutbio.2010.09.005
http://www.ncbi.nlm.nih.gov/pubmed/21292466
https://doi.org/10.1016/j.canlet.2008.05.048
http://www.ncbi.nlm.nih.gov/pubmed/18632202
https://doi.org/10.1016/j.ijbiomac.2006.11.013
https://doi.org/10.1016/j.ijbiomac.2006.11.013
http://www.ncbi.nlm.nih.gov/pubmed/17207851
https://doi.org/10.1002/jbt.21932
http://www.ncbi.nlm.nih.gov/pubmed/28544013
http://www.ncbi.nlm.nih.gov/pubmed/14672614
https://doi.org/10.1016/j.phymed.2012.10.002
https://doi.org/10.1016/j.phymed.2012.10.002
http://www.ncbi.nlm.nih.gov/pubmed/23141425
https://doi.org/10.1055/s-0028-1088387
http://www.ncbi.nlm.nih.gov/pubmed/19096994
https://doi.org/10.1007/s10787-017-0429-x
http://www.ncbi.nlm.nih.gov/pubmed/29247373
https://doi.org/10.3390/diseases4040034
https://doi.org/10.3390/diseases4040034
http://www.ncbi.nlm.nih.gov/pubmed/28933413
https://doi.org/10.3389/fphys.2018.00243
https://doi.org/10.3389/fphys.2018.00243
http://www.ncbi.nlm.nih.gov/pubmed/29636697
https://doi.org/10.1371/journal.pone.0205123

