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Given the self-renewal, multi-differentiation, immunoregulatory, and tissue maintenance
properties, mesenchymal stem cells (MSCs) are promising candidates for stem
cell-based therapies. Breakthroughs have been made in uncovering MSCs as key
contributors to homeostasis and the regenerative repair of tissues and organs derived
from three germ layers. MSC differentiation into specialized cell types is sophisticatedly
regulated, and accumulating evidence suggests long non-coding RNAs (lncRNAs)
as the master regulators of various biological processes including the maintenance
of homeostasis and multi-differentiation functions through epigenetic, transcriptional,
and post-translational mechanisms. LncRNAs are ubiquitous and generally referred
to as non-coding transcripts longer than 200 bp. Most lncRNAs are evolutionary
conserved and species-specific; however, the weak conservation of their sequences
across species does not affect their diverse biological functions. Although numerous
lncRNAs have been annotated and studied, they are nevertheless only the tip of the
iceberg; the rest remain to be discovered. In this review, we characterize MSC functions
in homeostasis and highlight recent advances on the functions and mechanisms of
lncRNAs in regulating MSC homeostasis and differentiation. We also discuss the current
challenges and perspectives for understanding the roles of lncRNAs in MSC functions
in homeostasis, which could help develop promising targets for MSC-based therapies.

Keywords: mesenchymal stem cells, long non-coding RNAs, differentiation, homeostasis, exosomes

INTRODUCTION

Mesenchymal stem cells (MSCs) are heterogeneous, multipotent adult stem cells that originate in
the mesoderm and that have been isolated from diverse tissues such as adipose tissue, bone marrow,
and umbilical cord. Due to their self-renewal, multilineage differentiation potential, extensive
immunomodulatory effects, and tissue maintenance properties, MSCs have emerged as attractive
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tools for cell-based therapies and have been involved as treatment
options for hematological diseases, autoimmune diseases, and
peripheral nerve injuries (Chen et al., 2019; Yousefi et al., 2019;
Zoehler et al., 2020). Currently, there have been breakthroughs
in uncovering MSCs as key contributors to homeostasis and
the regenerative repair of tissues and organs derived from
three germ layers (mesoderm, ectoderm, and endoderm) (Sui
et al., 2020). Notably, the MSCs present in different embryonic
development stages, including postembryonic and postnatal
tissues, constitute a population of sub-totipotent stem cells
or progenitors, which were recently defined as MSC systems,
have been confirmed to have molecular heterogeneity at single-
cell transcriptomic level. MSCs maintain tissue homeostasis
in three main ways. First, the MSCs residing in the major
tissues, including adipose, bone, cartilage, muscles, divide and
differentiate into targeted cell types to support the expansion,
regeneration, and homeostasis of these tissues (Hilgendorf et al.,
2019). Second, MSCs residing in tissue perivascular niches
interact closely with their surroundings, which harbor varied cell
types and soluble factors that further influence MSC behavior
(Crisan et al., 2008; Sui et al., 2020). Third, MSCs themselves
also secrete abundant types of biofactors and extracellular
vesicles (EVs) to potentially affect their surroundings, including
supporting hematopoiesis and modulating immune responses
(Wang et al., 2014; Kfoury and Scadden, 2015; Sui et al., 2020).
These functional capabilities contribute to MSC modulation in
tissue homeostasis. However, the regulation of MSC function in
these processes is immensely complex and tightly controlled and
warrants extensive studies.

Long non-coding RNAs (lncRNAs) are transcripts with
an average length of >200 nucleotides, lack protein-coding
potential, and were previously considered transcriptional noise
(Djebali et al., 2012). Most lncRNAs are evolutionarily conserved
and species-specific, albeit less conserved across species, and
they have diverse biological functions (Jin et al., 2011).
According to genome-wide association studies (GWAS), non-
coding intervals cover over one-third of the phenotype-
associated locations. Nevertheless, lncRNAs largely remain to
be identified, and their association and their functions require
intensive studies (Jin et al., 2011). With the development of
high-throughput sequencing, microarrays, and bioinformatics,
an increasing number of lncRNAs has been identified, and
increasing evidence has confirmed their roles as master regulators
of various biological processes, including the maintenance of
MSC homeostasis and multi-differentiation functions through
diverse mechanisms at the epigenetic, transcriptional, and
translational level.

In this review, we provide an overview of the MSC
characteristics and their contributions to tissue homeostasis,
and highlight the role of lncRNAs in modulating MSC
homeostasis and differentiation. We also discuss the
challenges and perspectives underlying lncRNA usage in
preclinical research and clinical application. We aim to
elucidate the underlying mechanisms involved in this
process, which could help provide promising targets for
MSC-based therapies.

MSCS CONTRIBUTE TO TISSUE
HOMEOSTASIS

Mesenchymal stem cells were first identified from bone marrow
by Friedenstein et al. (1976) in the 1950s; thereafter, scientists
revealed that they are present in almost all connective tissues,
and can also reside in fetal or adult somatic tissues, including
the amniotic membrane (Parolini et al., 2008), umbilical cord
(Romanov et al., 2003), adipose tissue (Zuk et al., 2002), skin
(Orciani and Di Primio, 2013), peripheral blood (He et al.,
2007), dental pulp (Huang et al., 2009), fetal liver (Zhang et al.,
2005), and synovial membrane (De Bari et al., 2001). The
source tissue from which MSCs are derived determines their
differentiation potential (Xu et al., 2017). Bone marrow-derived
MSCs (BMSCs) and adipose-derived MSCs (ADSCs) share
similar morphological features and cell surface markers; however,
many studies have indicated that significant biological differences
exist, including differentiation potential. For example, BMSCs
exhibit higher osteogenic but lower adipogenic differentiation
capacity compared to ADSCs (Xu et al., 2017). ADSCs
produce more neurosphere-derived neuron-like cells compared
to BMSCs; therefore, ADSCs are a more suitable source for cell
transplantation for treating spinal cord injury (Chung et al.,
2013). Therefore, clarifying the intrinsic biological characteristic
of MSCs derived from different sources and choosing the
appropriate MSCs are important for their clinical application.
To create a standard criterion for univocally defining the
identity of MSCs used for scientific research and preclinical
studies, the International Society for Cellular Therapy established
the minimum criteria required for defining MSCs (Dominici
et al., 2006; Wang et al., 2019): (1) MSCs must be fibroblast-
like plastic-adherent cells when maintained in standard culture
conditions; (2) ≥ 95% of the MSC population must express
CD105, CD73, and CD90, and lack (≤2% positive) CD45,
CD34, CD14 or CD11b, CD79a or CD19, and HLA-class II
expression; (3) MSCs must have the capacity to differentiate
into adipocytes, osteoblasts, and chondroblasts in vitro. Later
studies have indicated that besides the capacity to differentiate
into mesenchymal lineages, MSCs also have the potential to trans-
differentiate into the unrelated germline ectodermal (neurocytes)
and endodermal lineages (hepatocytes).

Recently, a new concept of MSC system was proposed
by Wang et al. (2019), which was regarded as all MSCs
derived from different stages of embryonic development,
from postembryonic sub-totipotent stem cells to progenitors
(Zhao, 2013). The MSC system well defined the important
self-renewal and differentiation, immunomodulatory, and
tissue homeostasis properties of MSCs, which provides a
more comprehensive view of MSCs and better explains
the heterogeneity of MSCs in differentiation potential and
immunomodulatory functions. MSCs that reside in tissues
such as bone marrow, adipose, cartilage, and muscle primarily
form unique niches with a quiescent state. When exposed to
stimulus such as injury, inflammation, and medicine, MSCs
enter an active state to divide and differentiate into specialized
cell types to support the expansion and homeostasis of these
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tissues (Méndez-Ferrer et al., 2010; Hilgendorf et al., 2019;
Hu et al., 2020). Besides, MSCs interact closely with their
surroundings by secreting variable biofactors and EVs to
support hematopoiesis and modulate immune responses;
the surrounding niches in which MSCs reside also influence
their behavior (Crisan et al., 2008; Zhao et al., 2014). For
example, during wound healing, skin residential ADSCs divide
and migrate to injured sites and differentiate into skin cells
such as dermal fibroblasts (DFs) to replace and regenerate
damaged cells. On the other hand, ADSCs activate wound
healing via the autocrine and paracrine pathways. Together
with other skin cells such as DFs, ADSCs secrete factors to
form the extracellular matrix and interact with each other
to promote wound healing, maintain skin structure, and
modulate skin homeostasis (Mazini et al., 2020). Another
example is BMSCs, which express nestin, in the perivascular
stroma, can self-renew and differentiate into osteochondral
lineages that form a unique niche in the bone marrow to
maintain hematopoietic stem cell (HSC) homeostasis, such as
modulating HSC proliferation, differentiation, and recruitment
(Méndez-Ferrer et al., 2010). In the endosteal niche, these
BMSCs, together with osteoblasts, maintain HSCs in a quiescent
state. When subjected to injury, MSCs expressing LepR and
Gli1 divide and contribute to bone repair and regeneration
(Zhou et al., 2014; Shi et al., 2017). In lethally irradiated
mice, the injection of MSCs deficient in nestin expression
notably reduced HSC homing to the bone marrow (Méndez-
Ferrer et al., 2010). BMSC dysfunction, including aberrant
proliferation and differentiation, is the crucial pathogenesis of
bone degeneration and hematopoiesis suppression. Moreover,
MSCs are indispensable in maintaining the homeostasis of other
tissues, including intestinal (Stzepourginski et al., 2017) and
skeletal muscle (Wosczyna et al., 2019).

So far, there have been breakthroughs in understanding
the biological characteristics and potential therapeutic
values of MSCs. In general, MSCs have multi-directional
differentiation potential, can secrete bioactive molecules to
migrate and home to injured or inflamed sites, and have
powerful immunomodulating ability, thereby making them
important contributors in tissue repair and homeostasis
maintenance (Figure 1) (Vizoso et al., 2019; Wang et al., 2019;
Bulati et al., 2020).

MSCs and Their Multilineage
Differentiation Potential in Tissue Repair
and Homeostasis
Mesenchymal stem cells maintain tissue homeostasis based on
their differentiation potential by serving as a source of renewable
progenitor cells to repair injured tissues and replace cells in
routine cellular turnover throughout adult life (Spees et al., 2016;
Chen et al., 2017). MSCs are adult stem cells that present in
many tissues and can differentiate into multiple mesenchymal
lineage cell types such as adipocytes, osteoblasts, chondrocytes,
and myoblasts under specific culture conditions (Boeuf and
Richter, 2010; Scott et al., 2011; Westhrin et al., 2015; Chen et al.,
2018). Besides, when exposed to certain extracellular cues, MSCs

can also give rise to cross-lineage cell types like endodermal-
hepatocyte and ectodermal-neurons, which is also known as
trans-differentiate potential (Song and Tuan, 2004).

During bone tissue fracture, MSCs are recruited to the
injury site and differentiate into osteoblasts to aid the repair
and reconstitution of injured bone tissue (Freitas et al., 2019;
Moura et al., 2020). MSCs can differentiate into cardiac cells
under specific conditions in vitro; genetically manipulated MSCs
with Akt1 and Wnt11 overexpression exhibit enhanced cardiac
differentiation as verified by the elevated cardiac markers Nkx2.5,
GATA4, α-MHC, and BNP, indicating that the transplantation of
genetically engineered MSCs is a promising strategy for treating
acute myocardial infarction (Chen et al., 2018). Moreover, MSCs
also have the potential to trans-differentiate into endoderm
and ectoderm cells to help repair specific tissues and organs.
MSCs induced by chemically defined media containing specific
cytokines and growth factors in vitro can trans-differentiate
into hepatocyte-like cells with the functional properties of
albumin synthesis and secretion, cytochrome P450 enzyme
activity, glycogen storage, urea biosynthesis, and the expression
of hepatocyte-specific genes (He et al., 2013; Fu et al., 2016;
Maymó et al., 2018; Furuya et al., 2019), and can reconstitute
liver function in vivo in experimental hepatic injury murine
models (Xu et al., 2014; Fu et al., 2016). MSCs also have the
capacity to produce pancreas-like cells under stepwise induction
by cytokine cocktails (Yu et al., 2015; Mehrfarjam et al., 2016),
via pancreatic extract or coculture with pancreatic adult stem
cells (Lee et al., 2008; Hefei et al., 2015). MSC-derived insulin-
producing cells express pancreatic β cell-related genes, respond
to glucose challenge in vitro, and have the potential to improve
glucose tolerance in diabetic 90% pancreatectomy rats in vivo (Yu
et al., 2015). Further, MSCs can tans-differentiate into endothelial
cells with the endothelial phenotype and express endothelial
nitric oxide synthase, which contributed to improving endothelial
function in a vascular injury rat model (Jiang et al., 2006; Yue
et al., 2008).

Although the multi-differentiation capacity of MSCs ensures
their tissue repair and regeneration function, the increasing
application of MSCs clinically has reported that only a small
amount of MSCs undergo subsequent differentiation into the
targeted cell type after transplantation while still receiving
functional improvement (Ferrand et al., 2011; Lai et al., 2015;
Vizoso et al., 2019). Other mechanisms may confer MSCs efficacy
in damaged tissues and the maintenance of tissue homeostasis.

The MSC Secretome in Tissue
Homeostasis
Increasing evidence supports the idea that intravenously injected
MSCs can home specifically to sites of ischemia, damage, or
inflammation, while not requiring induction into a specific
functional cell type in advance (Price et al., 2006; Ye and Zhang,
2017; Ben Menachem-Zidon et al., 2019). Yet, other studies have
shown poor survival and transient retainment of transplanted
MSCs within the host tissue (Yeo et al., 2013; Miao et al., 2017),
indicating that MSCs may not exert their therapeutic effects
directly; rather, it occurs through the secretion of bioactive factors
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FIGURE 1 | Implications of MSCs in homeostasis. MSCs can be isolated from a variety of tissues, including the amniotic membrane, umbilical cord, placenta,
adipose tissue, skin, peripheral blood, dental pulp, and fetal liver. All MSCs derived from different stages of embryonic development, from postembryonic
sub-totipotent stem cells to progenitors, are defined as MSC systems. During in vitro culture, MSCs must: (1) be fibroblast-like and plastic-adherent; (2) express
CD105, CD73, and CD90, and lack CD45, CD34, CD14 or CD11b, CD79a or CD19, and HLA class II expression; (3) differentiate into adipocytes, osteoblasts, and
chondroblasts. MSCs have trilineage differentiation potential, can secrete bioactive molecules and EVs (microvesicles and exosomes) to help tissue repair and
maintain homeostasis. MSC dysfunction leads to disease-related MSC alterations that induce homeostasis disorder systemic disease.

to provide a conducive microenvironment to facilitate the repair
and regeneration of injured tissues.

Mesenchymal stem cells with the potential for synthesizing
and secreting a variety of bioactive factors (e.g., cytokines and

chemokines), and to affect nearby cells were first described
by Haynesworth et al. (1996). In 2009, Bruno et al. (2009)
reported that a new form of MSC secretion, termed microvesicles
(80 nm to 1 µm), was protective against acute tubular injury.
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FIGURE 2 | Classification and mechanism of lncRNAs. (A) Classification of lncRNAs according to the protein-coding genes as intergenic, intronic, sense, antisense,
and bidirectional. (B) LncRNAs acting as guides, scaffolds, decoys, and signals to perform their functions with DNAs and proteins. (C) LncRNAs interact with RNAs
to regulate RNA stability, and translation, and sponge miRNAs.

The next year, Lai et al. (2010) demonstrated a specific class
of extracellular vesicles (EVs) with a diameter of 40–100 nm,
defined as exosomes. The multiple bioactive factors, together
with the EVs (e.g., exosomes and microvesicles), are generally
referred to as MSC secretome. Subsequent studies reported
that the MSC secretome has important effects in promoting
angiogenesis, modulating immunity, and hematopoietic support
(Lai et al., 2015; Konala et al., 2016). The composition of the
soluble factors of MSCs derived from different tissues may
vary, but they often secrete cytokines (e.g., CCL2, CCL5, bFGF,
IL-6, TGF-β, and VEGF), contributing to tissue development,
cell differentiation, and tumor growth and metastasis (Wang
et al., 2019). Some factors (e.g., IL-6, IL-10, PGE2, HGF, nitric
oxide, and human HLA-G) account for the immunomodulatory
functions of MSCs (Wang et al., 2019). MSCs can also

secrete neurotrophic factors, such as brain- and glial-derived
neurotrophic factors (e.g., nerve growth factor), making them
attractive cellular sources for brain disorders (Lopatina et al.,
2019). Moreover, MSC-derived EVs also exhibit tissue repair and
immunomodulation functions. Our group demonstrated that
MSC-derived exosomes can promote the angiogenesis of human
brain microvascular endothelial cells and contribute to alleviating
Parkinson disease (PD) in a mouse model (Xue et al., 2021).
Further, MSC exosomes inhibited inflammatory responses and
reactive astrogliosis in vitro and in vivo, and repaired learning
and memory impairments induced by status epilepticus in a
mouse model (Xian et al., 2019). In an allogeneic hematopoietic
stem cell transplantation animal model, EVs derived from human
umbilical cord-derived MSCs prevented acute graft-versus-host
disease (GVHD) (Wang et al., 2016).
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OVERVIEW OF LncRNAs

Accumulating evidence supports the role of lncRNAs as
master regulators of various biological processes, including
the maintenance of MSC homeostasis and multi-differentiation
functions through diverse mechanisms. The recent development
of genome technology opened the door to understanding
their functional importance. Conventionally, lncRNAs are
transcribed by RNA polymerase II, containing multi-exons,
processed by alternative splicing, 3′ polyadenylated and 5′
capped, and present transcriptional activation activity like that
of mRNAs (Djebali et al., 2012; Ma et al., 2013; Lagarde et al.,
2017). Although lncRNAs are distributed widely across species,
they are poorly conserved and exhibit low expression levels,
making them species-specific features and easily regarded as
transcriptional noise (Ma et al., 2013). Moreover, lncRNAs
exhibit a spatiotemporal and cell-, tissue-, and development-
specific expression pattern (Shi et al., 2020), and their subcellular
location in the nucleus or the cytoplasm determines their
functions and working mechanisms (Chen, 2016). Nuclear
lncRNAs are usually involved in transcriptional regulation,
including interaction with chromatin regulation and RNA
processing. Cytoplasmic lncRNAs tend to affect translation, such
as modulating mRNA stability and cellular signaling cascades
(Schmitt and Chang, 2016).

Based on the genome location of protein-coding genes,
lncRNAs can be classified into five groups: intergenic, intronic,
sense, antisense, and bidirectional (Ma et al., 2013; Jarroux et al.,
2017; Fernandes et al., 2019), which are described in Figure 2A.
This classification is widely used by the GENCODE/Ensemble
database in the annotation of transcript biotypes, as well as newly
assembled lncRNA transcripts identified by laboratories. Initially,
lncRNA transcripts can be classified as either intergenic or
intragenic; the intragenic lncRNAs overlap with coding genes and
are further classified into antisense, bidirectional, intronic, and
overlapping sense lncRNAs. Additionally, lncRNAs commonly
perform their gene expression regulatory functions by acting as
signals, decoys, guides, and scaffolds through main mechanisms
by interacting with DNA, protein, and RNA (Wang and Chang,
2011; Schmitt and Chang, 2016), as illustrated in Figures 2B,C.
However, the mechanisms underlying lncRNA regulation of gene
expression and biological processes are complex and not simply
confined to one archetype as we have summarized, and await
more extensive discoveries.

Accumulating studies have implicated lncRNAs as vital
regulators of variable bioprocesses, including genomic
imprinting, chromosome modification, transcriptional
interference, cell cycle, proliferation, immunobiology, and
differentiation (Bartolomei et al., 1991; Quinn and Chang,
2016; Yang et al., 2018). In terms of the important biological
functions of lncRNAs, dysregulation such as overexpression,
deficiency, or mutation is suspected in the occurrence and
progression of many diseases, including autoimmune disease,
cardiovascular disease, and cancer (Batista and Chang, 2013;
Beermann et al., 2016; Atianand et al., 2017). Moreover,
emerging evidence has confirmed the contribution of lncRNAs
in MSC differentiation, homeostasis, and related diseases

(Tye et al., 2015); clarifying the roles and innate mechanisms
of MSC-related lncRNAs in homeostasis will help provide
promising targets for MSC-based therapies.

MSC-ASSOCIATED LncRNAs IN
DIFFERENTIATION AND HOMEOSTASIS

Mesenchymal stem cell differentiation is intricately regulated
by multiple factors, including transcriptional factors (Runx2,
PPARγ, MyoD, and GATA6), growth factors (VEGF, HGF,
and EGF), and epigenetic factors such as DNA methylation,
histone modification, RNA modification, and non-coding RNAs
(miRNAs and lncRNAs) (Almalki and Agrawal, 2016; Sui et al.,
2020). Recent studies have shown that lncRNAs are relatively
new differentiation regulators that exert their functions through
variable mechanisms, and await extensive studies. Herein, we
mainly focus on the MSC-associated lncRNAs in differentiation
and homeostasis.

LncRNAs in MSC-Derived Multilineage
Differentiation
Long non-coding RNAs involved in MSC-derived lineage
(adipocytes, osteoblasts and chondrocytes) differentiation have
been extensively studied while remaining relatively less well
studied in other directions such as endoderm and ectoderm
lineage commitment and differentiation. Herein, we provide an
overview of the essential lncRNAs involved in MSC lineage
commitment (Figure 3 and Table 1) and elaborate on the
representative lncRNAs below.

LncRNAs in Mesodermal Lineage Differentiation
Mesenchymal stem cells tend to differentiate toward osteogenic,
adipogenic, and chondrogenic lineages. Osteogenic and
adipogenic MSC differentiation is a theoretically opposite
process, during which the signaling pathways or transcription
factors induced in adipogenesis occur at the cost of osteogenesis,
and vice versa (Yuan et al., 2016). For example, peroxisome
proliferator-activated receptor γ (PPARγ), a master regulator
of MSC adipogenesis, and inhibits osteogenic differentiation.
Bone morphogenetic protein (BMP) and Wnt, crucial inducers
of MSC osteogenic differentiation, may hinder MSC adipogenic
commitment by inactivating PPARγ. Many lncRNAs such as H19
and MEG3 act in the same manner. H19 is a paternally imprinted
gene (Zhang and Tycko, 1992) that has been recently uncovered
as an inhibitor during BMSC adipogenic differentiation through
the epigenetic modulation of histone deacetylases (HDACs)
(Huang et al., 2016). H19 also has the potential to promote MSC
osteogenic differentiation by acting as a competing endogenous
RNA (ceRNA) through sponging and inhibiting the expression
of miR-22 and miR-141 (Liang et al., 2016). Similarly, H19
promotes tension-induced osteogenesis of BMSCs by sponging
miR-138 and activates the downstream FAK pathway (Wu et al.,
2018). Therefore, H19 is a key regulator in the multi-direction
commitment of MSCs.

MEG3 is also an essential multi-functional regulator during
MSC differentiation. During osteogenic differentiation, MSCs
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FIGURE 3 | Representative MSC differentiation- and exosome-associated lncRNAs. Endoderm: ANCR (DANCR), (differentiation) antagonizing non-protein coding
RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript 1. Ectoderm: H19. Mesoderm-cardiac: Braveheart. Mesoderm-adipogenic: PGC1β-OT1,
peroxisome proliferator-activated receptor γ coactivator-1β-OT1; lnc13728; H19; MEG3, maternally expressed 3. Mesoderm-osteogenic: H19; MEG3; MALAT1;
DANCR; PGC1β-OT1. Mesoderm-chondrogenic: DANCR. Mesoderm-endothelial: MEG3; MIAT, myocardial infarction-associated transcript; HULC, highly
upregulated in liver cancer. Exosomal lncRNAs: HIF3A-AS1, HIF3A antisense 1; MALAT1; UCA1, urothelial carcinoma-associated 1; NEAT1, nuclear paraspeckle
assembly transcript 1; H19; KLF3-AS1, KLF3 antisense 1.

from patients with multiple myeloma (MM) had lower MEG3
expression compared to that from normal donors (Zhuang et al.,
2015). MEG3 performs its function at multiple levels. At the
transcriptional level, it may act as a decoy to dissociate SOX2
binding at the BMP4 promoter, repressing BMP4 expression,
thereby transcriptionally activating BMP4 promotion of MSC
osteogenic differentiation (Zhuang et al., 2015). MEG3 can
also act as histone methylation mediators by binding to the
enhancer of zeste homolog 2 (EZH2), which can inhibit
the expression of Wnt pathway genes by inducing H3K27
trimethylation to inhibit the osteogenic differentiation of human
dental follicle stem cells (hDFSCs) (Deng et al., 2018). At
the post-transcriptional level, MEG3 may act as a ceRNA
to regulate osteogenic gene expression, and its expression
level is increased in postmenopausal osteoporosis (PMOP)
patients as compared to that in healthy donors (Wang et al.,
2017). During the osteogenic differentiation of BMSCs from
PMOP, MEG3 may target miR-133a-3p to inhibit this process
(Wang et al., 2017). In addition, MEG3 may control the
balance between MSC adipogenic and osteogenic differentiation;
its downregulation promotes adipogenic differentiation while
inhibiting the osteogenic differentiation of human ADSCs via
miR-140-5p (Li et al., 2017). Moreover, MEG3 is an inhibitor of
the development of many bone disorders, such as bone tumors,
osteoarthritis (OA), osteoporosis, RA, and ankylosing spondylitis
(AS). These findings indicate that MEG3 may act as a novel target
for diagnosing or treating such bone diseases (Sun et al., 2020).

DANCR was characterized as a differentiation-antagonizing
lncRNA of progenitor cells (Kretz et al., 2012). It functions
as a positive regulator of chondrogenesis of human synovium-
derived MSCs (through the miR-1305–Smad4 axis) (Zhang et al.,
2017) while acting as an inhibitor of periodontal ligament stem
cell osteogenesis (Wang et al., 2020). Another study revealed
that DANCR inhibited the osteogenic differentiation of human
BMSCs through the p38–MAPK pathway (Zhang et al., 2018).
The lncRNA MALAT1 is another well-known abundant and
conserved imprinted gene that acts as a master regulator
of osteogenic differentiation via the mechanism of sponging
miRNAs such as miR-143 (Gao et al., 2018) and miR-34c
(Yang et al., 2019). Another newly identified lncRNA, PGC1β-
OT1, reciprocally modulates MSC adipogenic and osteogenic
commitment by sponging miR-148a-3p and enhancing the effect
of KDM6B (Yuan et al., 2019); the lncRNA ROA inhibits MSC
adipogenic differentiation by destroying hnRNPA1 binding to
the PTX3 promoter, thereby transcriptionally downregulating
PTX3 and the ERK pathway (Pan et al., 2020). Moreover, our
lab discovered that lncRNA13728 promoted ADSC adipogenic
differentiation by upregulating ZBED3 and inhibiting the WNT–
β-catenin pathway (Xu et al., 2021).

The disruption of the balance between MSC osteogenesis and
adipogenesis leads to disorders such as osteoporosis (Hoshiba
et al., 2012). Notably, lncRNAs such as MEG3 and PGC1β-
OT1 reciprocally modulate MSC commitment to adipogenic
and osteogenic cells; therefore, understanding the roles and
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TABLE 1 | MSCs-associated lncRNAs in multi-lineage differentiation.

Name of lncRNA Function and MSC sources Working model Mechanism-effector and target References

lncRNAs modulating MSC mesodermal lineage differentiation

Osteogenesis, adipogenesis and chondrogenesis

H19 Inhibit adipogenesis and BMSC Epigenetic modulation CTCF/H19/miR-675/HDAC Huang et al., 2016

Promote osteogenesis and BMSC Sponging miR-141, miR-22/Wnt/β-catenin
pathway

Liang et al., 2016

miR-138/FAK pathway Wu et al., 2018

MEG3 Promote osteogenesis and BMSC
(MM patients)

Decoy SOX2/BMP4 Zhuang et al., 2015

Inhibit osteogenesis and DFSCs Unclassified EZH2/Wnt genes Deng et al., 2018

Inhibit osteogenesis and BMSCs
(PMOP patients)

Sponging miR-133a-3p Wang et al., 2017

Inhibit adipogenesis, promote
osteogenesis, and ADSC

Sponging miR-140-5p. Li et al., 2017

DANCR Promote chondrogenesis and
SMSC

Sponging miR-1305/Smad4 axis Zhang et al., 2017

Inhibit osteogenesis and BMSC Unclassified p38 MAPK pathway Zhang et al., 2018

MALAT1 Promote osteogenic and BMSC Sponging miR-34c/SATB2 Yang et al., 2019

miR-143/OSX Gao et al., 2018

PGC1β-OT1 Inhibit adipogenesis, promote
osteogenesis, and BMSC

Sponging miR-148a-3p/KDM6B Yuan et al., 2019

ROA Inhibit adipogenesis and BMSC Decoy hnRNP A1/PTX3/ERK Pan et al., 2020

13728 Promote adipogenesis and ADSC Unclassified ZBED3/Wnt/β-catenin pathway Xu et al., 2021

Endothelial and cardiac differentiation

MEG3 Inhibit endothelial differentiation and
BMSC

Post-transcriptional modulation FOXM1/VEGF Sun et al., 2018

MIAT Promote endothelial differentiation
and BMSC

Sponging miR-200a/VEGF Wang et al., 2018

HULC Promote epithelial and smooth
muscle-like cell differentiation and
ADSC

Unclassified BMP9/Wnt–β-catenin/Notch
pathway

Li Y. et al., 2018

Braveheart Promote cardiogenic differentiation Unclassified Mesp1 Hou et al., 2017

lncRNAs modulating MSC trans-differentiation into endoderm lineage

ANCR Inhibit DE commitment andADSC Scaffold ID2/PTK2B Li et al., 2019

MALAT1 Promote trans-differentiate into
hepatocyte and BMSC

Sponging β-catenin/miR-217/ZEB1 Tan et al., 2019

lncRNAs modulating MSC trans-differentiation into ectoderm lineage

H19 Inhibit trans-differentiate into
neural-like cells and BMSC

Sponging miR-675/IGFR Farzi-Molan et al., 2018

underlying mechanisms of these lncRNAs may provide insights
into improving the therapeutic method and effect of MSCs in
diseases such as osteosarcoma, obesity, and OA.

In addition, MSCs can differentiate into mesoderm
endotheliocytes and myocytes. The dysfunction of endothelial
cell and myocyte generation leads to defects in angiogenesis and
related cardiovascular disease. MEG3 inhibits BMSC endothelial
differentiation by accelerating FOXM1 protein degradation
via ubiquitination and decreasing VEGF expression (Sun
et al., 2018). Moreover, the lncRNA MIAT, identified as a key
contributor to development and disease, acts as a ceRNA of miR-
200a and thereby targets VEGF to promote MSC endothelial
differentiation (Wang et al., 2018). For MSC myogenesis, a
recent study revealed that the lncRNA HULC promotes ADSC
epithelial and smooth muscle-like cell differentiation by targeting
BMP9, activating the Wnt–β-catenin pathway while inhibiting

the Notch pathway (Li Y. et al., 2018). Another report showed
the lncRNA Braveheart efficiently facilitates MSC cardiogenic
differentiation by upregulating cardiac-specific transcription
factors and epithelial-mesenchymal transition (EMT)-associated
genes (Hou et al., 2017). Although MSCs have the potential to
differentiate into all kinds of myocytes, functional lncRNAs in
other types of myocyte commitment remain to be discovered.

LncRNAs in MSC Endodermal- and Ectodermal-
Lineage Trans-Differentiation
Mesenchymal stem cells have tri-lineage differentiation
potential; despite the mesodermal-lineage cells, MSCs can
also trans-differentiate into ectodermal and endodermal
lineages. Unlike the well-studied mesoderm lineage-associated
lncRNAs described above, studies on the detailed functions of
lncRNAs in MSC ectoderm and endoderm commitment are
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relatively rare (which are summarized in Table 1), and further
exploration is warranted.

Generating definitive endoderm (DE) and its lineage
hepatocytes is a prerequisite for cell replacement therapy for
liver and pancreatic diseases as well as for drug testing and
toxicology studies (Li et al., 2019). According to our findings,
the lncRNA ANCR (DANCR) is an inhibitor during ADSC
trans-differentiation toward DE, and the mechanism linked
involves it acting as a scaffold to recruit PTBP1 to ID2 mRNA,
enhancing the interaction between them and subsequently
stabilizing the ID2 mRNA (Li et al., 2019). This finding reveals
another function of ANCR in modulating MSC DE commitment
besides regulating chondrogenesis and osteogenesis. MALAT1
also performs a function in MSC trans-differentiation into
hepatocyte in addition to adipogenesis and osteogenesis. Tan
et al. (2019) successfully induced BMSCs into hepatocytes using
HGF in vitro and discovered that MALAT1 coordinated with
β-catenin, sponging miR-217, and upregulating ZEB1 to enhance
telomerase activity during MSC hepatic trans-differentiation.

Ectoderm lineage neural cells are the foundation of our
nervous system; they are relatively difficult to generate in vitro.
Generating abundant neural cells will help promote cell-
based therapy for treating neurological disorders and nerve
injuries. Many studies have demonstrated that MSCs have the
potential to trans-differentiate into neural-like cells under specific
stimulation, making them a novel therapy for treating nervous
system diseases. A study that profiled lncRNAs during BMSC
neural cell differentiation found that several lncRNAs were
differentially expressed, suggesting their key roles in this process
(Wu et al., 2015). A subsequent study confirmed that H19 has
a negative effect on BMSC neural-like differentiation through
the miR-675–IGFR axis (Farzi-Molan et al., 2018). In the future,
the identification of new lncRNAs in MSC neurogenesis and
studies of the extensive mechanisms involved, as well as in vivo
experiments, are needed, which will contribute to improving
MSC-based therapeutic effects in treating neurological disease.

These lncRNAs, i.e., DANCR, MALAT1 MEG3, and H19,
represent a subset of lncRNAs that exert various functions
through multiple mechanisms in specific cell types under specific
stimulations, which subsequently attach MSC unique capabilities
to meet the qualifications in vivo and for clinical usage in vitro.

MSC Exosome-Derived LncRNAs and
Their Implications in Clinical Usage
Increasing evidence suggests that the efficacy of MSC therapies is
largely attributed to their paracrine secretion function, especially
the exosomes (Dong et al., 2019). MSC-derived exosomes
can shuttle a variety of bioactive molecules such as proteins,
lipids, miRNA, lncRNAs, circular RNAs (circRNAs), and
DNA to influence various bioprocesses, including development,
immunity, and tissue homeostasis (Dong et al., 2019; Pegtel
and Gould, 2019). Due to the advantages of low tumorigenic
potential and low immunogenicity, exosomes are becoming
novel, promising cell-free tools for tissue repair and diseases
(Pegtel and Gould, 2019). Recently, functional lncRNAs derived
from MSC exosomes have drawn increased attention, and some

of these lncRNAs have been discovered. For example, the MSC
exosomal lncRNA HIF3A-AS1 exhibits increased capacity in
chondrocyte proliferation and cartilage repair in OA, which may
be achieved through the miR-206–GIT1 axis (Liu et al., 2018a,b).
Another study found that the exosomal lncRNA KLF3-AS1
alleviates cardiomyocyte pyroptosis and myocardial infarction
through the miR-138-5p–Sirt1 axis (Mao et al., 2019). MALAT1
also resides in MSC exosomes; functional studies have shown
that exosomal MALAT1 ameliorates osteoporotic by modulating
the miR-34c–SATB2 axis (Yang et al., 2019) and can sponge
miR-92a-3p and target ATG4a to fulfill its cardioprotective roles
in doxorubicin-induced cardiac senescence and damage (Xia
et al., 2020). Other exosomal lncRNAs such as UCA1 (Chen
H. et al., 2020) and NEAT1 (Chen H. et al., 2020) also have a
cardioprotective function by acting as ceRNAs.

The transfer of exosomes or microvesicles containing RNAs
or other molecules between MSCs and the target cell type is
one of the mechanisms by which MSCs perform their tissue
repair functions (Spees et al., 2016). For example, H19 derived
from MSC exosomes was transferred from MSCs to fibroblasts,
thereby inhibiting fibroblast apoptosis and inflammation and
activating the wound healing process in diabetic foot ulcers (Li
et al., 2020). H19 could also be transferred to trophoblast cells via
MSC-derived exosomes, enhancing trophoblast cell invasion and
migration while inhibiting their apoptosis in preeclampsia (Chen
Y. et al., 2020). Conversely, MSCs could also be the target cells
during exosomal lncRNA transfer. MSCs derived from patients
with MM had abundant exosomal lncRNA RUNX2-AS1; further
studies revealed that it could be transferred from MM cells to
MSCs and thereby prevent MSC osteogenesis by downregulating
RUNX2 (Li B. et al., 2018), which provides a novel pathological
mechanism of the bone lesion in patients with MM and could be
a potential therapeutic target in the future.

These findings suggest that MSC-derived exosomes
overexpressing lncRNAs such as H19 might be a novel direction
for developing cell-free therapeutic strategies. Moreover, these
exosomal lncRNAs are promising novel targets or biomarkers
for treating and diagnosing diseases such as cardiomyopathy.
In addition, understanding the tumor–stroma stem cell
interactions, molecular transfer, and communication is also
critical for developing novel and more effective strategies against
cancer and other diseases.

CONCLUDING REMARKS

Mesenchymal stem cells are key contributors in maintaining
tissue homeostasis (Figure 1). The regulatory mechanisms
underlying MSC functions are complicated, and are intricately
regulated by multiple factors, i.e., transcriptional factors, growth
factors, and epigenetic factors such as DNA methylation,
histone modification, RNA modification, and non-coding RNAs
(lncRNAs, miRNAs, and circRNAs). Recently, lncRNAs have
emerged as prominent modulators of MSC fate commitment and
functional homeostasis (Table 1) through variable mechanisms
(Figure 2). Understanding the roles of lncRNAs in MSC
functions in homeostasis will aid the development of promising
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targets for MSC-based therapies. However, issues and challenges
remain to be investigated, including the conditions of MSCs used
in basic research and clinical application, as well as the complex
characteristics and mechanisms underlying lncRNA function.

CHALLENGES

As MSCs play an important role in tissue repair, regeneration,
and homeostasis, their dysfunction may cause various systemic
diseases. Clinical observation of allogenic MSC treatment of
patients with autoimmune diseases, including systemic lupus
erythematosus (SLE), diabetes mellitus (DM), rheumatoid
arthritis (RA), and multiple sclerosis (MS) (Vizoso et al.,
2019) indicates that the transplantation of external MSCs in
good condition restores internal homeostasis. Further, MSC
dysfunction indicates the onset of many diseases, including
metabolic syndrome, DM, and RA, and aging syndromes such as
Werner syndrome and Hutchinson–Gilford progeria syndrome
(Liu et al., 2011; Zhang et al., 2015). Conversely, the continued
inflammatory environment in these diseases may hinder MSC
homing to the damage sites and probably result in MSC pool
reduction and exhaustion (Shi et al., 2010), which contributes
to the deterioration in MSC function and limits their use in
autologous therapy.

To date, significant progress has been made in utilizing
MSCs in basic preclinical research and clinical studies. However,
some challenges should be overcome before the final clinical
application (Wang et al., 2019). First, there is an urgent need
for standard and consensus production (e.g., sources, medium,
and culture conditions) to ensure the safety, reproducibility,
and efficiency of MSCs administered to patients, which is also
required in basic research. Second, MSCs derived from different
tissues may have varying characteristics and functions; therefore,
it is important to uncover the genetic background of different
MSC sources and understand the specific innate characteristics
of MSCs, which would aid the selection of the best seeds for
fulfilling the specific clinical usage. Third, there is an urgent need
to discover new genes or regulators such as the lncRNAs, as
well as outstanding technologies to be developed to genetically
modify MSCs and enhance their functions to boost their clinical
application. Besides, the signals and mechanisms that modulate
MSCs in tissue expansion, repair, and regeneration remain to
be clarified, including the program that determines the balance
between self-renewal and differentiation, the growth factors or
signals that destroy the balance and trigger MSC expansion
or differentiation, and how MSCs communicate with their
surrounding niches to support a functional environment.

Mesenchymal stem cells maintain tissue homeostasis based on
their differentiation potential to produce renewable progenitor
cells to repair tissues and to replace cells in routine cellular
turnover. MSCs tend to differentiate into mesenchymal lineage
cells, while their trans-differentiation into endodermal and
ectodermal lineage cells is limited. There are persistent challenges
to fully understanding the underlying mechanisms in MSC
differentiation, including identifying new signal and master
transcription factors, and crosstalk between the signaling

pathways involved in mediating and promoting MSC lineage
differentiation and trans-differentiation rate. Manipulating MSCs
with the overexpression of transcriptional factors increases
their potential to differentiate into an intended cell type
(Chen et al., 2018). However, a long journey remains before
these genetically manipulated MSCs enter clinical application
for treating diseases, unless safer methods are developed for
manipulating MSCs with forced gene expression and to avoid
activating the innate tendency of MSCs to differentiate into other
unintended cell types.

Numerous lncRNAs participate in MSC lineage commitment,
and lncRNAs derived from MSC exosomes exhibit enhanced
tissue-protective and repair function. However, some challenges
remain. On one hand, lncRNAs have multiple and varied
functions and mechanisms of action, and lncRNAs largely remain
unknown. e.g., H19 contributes to adipogenesis and osteogenesis,
and resides in MSC exosomes to accelerate wound healing
through different mechanisms. Moreover, lncRNAs may have an
opposite effect on the same biological process, such as MEG3,
which promotes and inhibits MSC osteogenic differentiation.
First, the source of MSCs may confer the bidirectional effect on
the lncRNA. lncRNAs usually display tissue- and spatiotemporal-
specific expression patterns, and their aberrant expression is
highly associated with disease and cancer occurrence. Therefore,
lncRNAs may be differentially expressed at different stages of
development, which confers their variable roles. Second, the
MSC culture conditions in vitro may influence their stemness
and functions, and the passage of MSCs used also matters.
Therefore, as discussed above, there is an urgent need to
establish a gold-standard approach for MSC basic research
and clinical application. Taken together, extensive functional
studies on one particular lncRNA can be performed in the
future, and accompanying advanced molecular biotechnologies
are being developed to better clarify and identify lncRNA targets
and pathways and to screen for unknown lncRNA-interacting
proteins. In addition, lncRNAs comprise a large proportion of the
genome, and myriad functional lncRNAs remain to be discovered
and studied. Moreover, most mechanisms of the existing studies
on lncRNAs are focused on the downstream targets and
pathways; the upstream stimulators and regulators that modulate
lncRNA expression should be discovered. On the other hand,
lncRNAs are poorly conserved among different species (Mirza
et al., 2014), rendering it difficult or complicated to generate
conditional knockout animal models to study the full function
of lncRNAs, and complicating the development of lncRNAs as
drug targets (Matsui and Corey, 2017). Despite these challenges,
MSC-associated lncRNAs are promising targets and biomarkers
for treating and diagnosing diseases. Nevertheless, opportunities
coexist with challenges. There are emerging studies on lncRNA-
based or -targeted drugs are emerging (Matsui and Corey, 2017),
making them attractive therapeutic interventions in the future.

PERSPECTIVES

Mesenchymal stem cell exosome-derived lncRNAs such as H19
shuttle between MSCs and fibroblasts to perform their function
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in facilitating wound healing in diabetic foot ulcers (Li et al.,
2020), which indicates that MSC-derived exosomes with lncRNA
overexpression might be a novel direction for developing cell-
free therapeutic strategies and will improve MSC efficacy. With
continued research in the future, genetically modified MSCs
with improved tissue repair and regeneration functions will
be achieved soon.

Over the last decade, non-coding RNAs (e.g., miRNAs
and lncRNAs) have emerged as significant new therapeutic
targets; many efforts have been dedicated to developing
new oligonucleotide-based therapies aimed at promoting or
antagonizing them. To date, over 100 antisense oligonucleotide
(ASO)-based therapies have been developed and tested in clinical
trials. The US Food and Drug Administration (FDA) has
approved fomivirsen for treating cytomegalovirus retinitis and
mipomersen for treating familial hypercholesterolemia (Adams
et al., 2017). Unlike miRNAs, which are small and advantageous
for delivering their mimics or inhibitors through synthetically
modified oligoribonucleotides, lncRNAs are relatively large and
usually are of a structured nature that makes it difficult to
design effective mimics or inhibitors (Scacalossi et al., 2019).
Although no clinical advances have been made with lncRNAs,
they remain striking targets for clinical therapeutic intervention
in the future. In addition, lncRNAs are relatively large and
therefore more stable, rendering them suitable diagnostic and
prognostic biomarkers for cancer. In recent years, it has

been confirmed that circulating lncRNAs are valuable for
detecting cancer types, as they are quite easily detected by
common methods such as qRT-PCR, RNA sequencing (RNA-
seq), and microarray in whole blood, plasma, serum, urine,
saliva, and gastric juice samples; some circulating lncRNAs
have been proven as sensitive biomarkers. More lncRNAs
are being identified as diagnostic and prognostic biomarkers
for varied diseases, especially for those caused by aberrant
MSC dysfunction.
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