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Abstract

Whether gill area constrains fish metabolism through oxygen limitation is a debated

topic. Here, the authors provide insights into this question by analysing mass-specific

metabolic rates across 44 teleost fishes extracted from FishBase. They explore

whether species deviations from metabolic rates predicted by body mass can be

explained by species gill area. They show that the gill area explains c. 26%–28% of

species-level deviations from mass-specific metabolic rates. Their findings suggest

that gill area might indeed be one of the factors limiting metabolic rate in fishes.
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Body size is a well-established proxy of an organism's metabolic rate

across taxa (e.g., Makarieva et al., 2008). In fishes the gill surface area

(GSA) has been suggested as an additional correlate as it regulates the

amount of oxygen intake and may ultimately constrain the fish meta-

bolic rate (Pauly, 1981). Whether such a constraint ultimately deter-

mines fish body size has been intensively discussed over recent years

(e.g., Marshall & White, 2019; Pauly, 2021; Pauly & Cheung, 2018).

Therefore, the role of GSA on fish metabolic rate is intriguing, but

analysing this is difficult due to many confounding morphological and

behavioural properties (Killen et al., 2016). If GSA had no constraining

role in fish metabolism, one would hypothesize that metabolic rates

standardized by body size do not systematically differ among species

with differing GSAs. To test this, and to provide data-driven insights

into the ongoing discussion about the role of GSA in fish metabolism,

here the authors review data on metabolic rate (approximated

through oxygen consumption; Verberk et al., 2011), body size and gill

area of teleost fishes. The focal question is whether species-level

deviations from the body size–metabolic rate relationship can be

explained by differences in species gill area with respect to body size.

In the analyses, the authors focused on teleost fishes for which

observations on oxygen consumption, gill area and body mass were avail-

able in FishBase (www.fishbase.org; Froese & Pauly, 2008). For these spe-

cies, they extracted pairs of observations on body mass and hourly

oxygen consumption standardized by body mass. In total, they analysed

2645 observations from 44 fish species, representing 30 different families

(for species list, see Supporting Information Table TABLE S1). The species

covered 11 marine species, 25 freshwater species and 11 species that

use both marine and freshwater habitats; species environments ranged

from polar (1) to temperate (14), subtropical (16) and tropical

(13) (Supporting Information Table TABLE S1). A scatterplot of this data

is shown in Figure 1a. Next, they similarly extracted pairs of observations

for GSA and body mass for each fish species, i.e., 167 observations. Given

that larger fish tend to have larger gills, they standardized GSA by body

mass by calculating GSA/(M0.8) as suggested by Pauly and Cheung (2017).
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Then, they calculated an average of this “GSA standardized by body

mass” index for each species.

As metabolic rate x is known to scale with body mass

M exponentially, i.e., x / MA (e.g., Brose et al., 2006), authors' analyses

focused on log-transformed oxygen consumption and log-transformed

body mass to linearize the relationship. The analyses were conducted in

two steps. First, they modelled log-transformed oxygen consumption as a

function of log-transformed body mass, temperature, activity and salinity

as fixed effects (to control for potential variation in metabolism caused by

these available covariates) and species as a random intercept. All the

covariates turned significant (P-values <0.01), and therefore, no model

reductions were needed. Normality and homogeneity of the model resid-

uals were inspected. Model fitting was performed using the lmer function

within the lme4 library in R (R Development Core Team, 2021). Variation

in oxygen consumption associated among observations within species

was 56.8%, whereas variation among species was 43.2%. The key prod-

uct of this first set of analyses was the random intercepts, i.e., species-

level deviations from average metabolic rates based on body size and

other covariates. The values of the random intercepts are given in

Supporting Information Table TABLE S1.

In the second step of the analyses, the species-level random

effects were extracted and plotted against species-specific “GSA stan-

dardized by body mass” indices (Figure 1b). Correlation among the

two variables was estimated and found to be positive with a Pearson's

correlation coefficient of 0.526 (t = 4.00, df = 42, P < 0.01). Finally,

a linear model describing the correlation between these variables was

fitted (multiple R2 = 0.277; adjusted R2 = 0.259) to illustrate the pat-

tern in the data (Figure 1b). Residuals of the regression model were

inspected for normality and homogeneity.

The robustness of these results was explored in two ways. (a) In addi-

tion to species-level random intercepts, species-level random slopes were

considered. Nonetheless, the results were analogous as the variation

associated to species-level random slopes was negligible (0.02%). (b) In

the correlation analyses, the authors considered log-transformed averages

of GSA standardized by body mass, which resulted in higher Pearson's

correlation coefficient of 0.606 (t = 4.94, df = 42, P < 0.01). Regression

results were similar but with higher R2 values (0.352–0.367). The applied

data and the analyses codes can be found in the Supporting Information.

In summary, authors' analyses illustrate that once body mass–

related variation in oxygen consumption (Figure 1a) is controlled for,

variation in oxygen consumption that remains among species can be

to some extent (c. 26%–28%) explained by the species-specific varia-

tion in GSA standardized by body mass (Figure 1b). In practice, this

observation implies that even though body mass is a well-established

predictor of oxygen consumption (e.g., Clarke & Johnston, 1999) and a

predictor of the metabolic rate (Brose et al., 2006), the prediction can

be improved by accounting for GSA. Naturally, many other abiotic and

biotic variables than those included in authors' data set, such as stress,
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F IGURE 1 (a) Log-transformed
body masses and log-transformed
hourly oxygen consumption of 2770
observations reported in FishBase
(www.fishbase.org; Froese &
Pauly, 2008) for 44 teleost fish
species. (b) Species random effects
(Supporting Information, TABLE S1)
plotted against species-specific

averages of gill area divided by body
mass to the power of 0.8 (see main
text for details) and a linear regression
line illustrating the relationship among
the variables. The regression suggests
that about 26%–28% of among-
species variation in oxygen
consumption can be explained by
species-specific variation in gill area
standardized by body mass
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affect oxygen consumption as well (Clarke & Johnston, 1999; Killen

et al., 2010). The authors included available covariates in the present

analyses to control for the variation that might affect the item of focal

interest here: the body size–metabolic rate relationship. Nonetheless,

the data used in their meta-analyses included a large amount of ran-

dom noise, as they were gathered in numerous experiments con-

ducted with varying methods. As a result, their finding about the GSA

effect is conservative, and its emergence, despite residual variation

and limited amount of GSA data available, is an interesting outcome

of authors' meta-analyses. Given that the correlation between species

deviations from mass-specific metabolic rates and the GSA is positive,

the results also suggest that GSA might indeed be one of the pro-

cesses constraining metabolism in teleost fishes, particularly in larger

active fish in warmer waters (Rubalcaba et al., 2020). While in their

meta-analyses, Killen et al. (2016) reported ambiguous evidence on

the direct effect of GSA on metabolic rates, they detected across a

continuum of teleost fish types (in terms of their life history, behav-

iour and physiology) that large GSA are generally associated with high

metabolic rates. Thus, their findings are in line with the results of the

present study.

It should be noted that the correlation detected in the present

study is purely empirical (i.e., it provides no information on the causal

mechanisms) and stems from the data available in FishBase (www.

fishbase.org; Froese & Pauly, 2008), which may be biased towards

species of most commercial interest. Furthermore, the analyses are

limited to 44 species for which the required data was available, thus

covering merely c. 0.13% of all teleost fishes. Thus, authors' analyses

do not provide very strong nor conclusive evidence across teleost

fishes. Nonetheless, one can speculate the practical consequences of

such a correlation. Global warming is predicted to reduce the amounts

of dissolved oxygen in marine and freshwater habitats (e.g., Breitburg

et al., 2018). Assuming that fish with large GSA relative to their body

size require a greater oxygen consumption, reductions in oxygen level

might reduce species feeding activity and metabolism and thereby

reduce growth and body condition (Cheung et al., 2012; Pauly &

Cheung, 2017). In addition, some previously occupied habitats might

become unsuitable for such species. On a broad scale, this might lead

to changes in fish community structure and altered conservational sta-

tus on species with certain morphologies. Correlations, such as the

one detected in the present meta-analyses, can be useful in directing

future research and conservation efforts towards species that might

be particularly vulnerable to projected changes in abiotic environmen-

tal conditions.
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