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SUMMARY

Objective: To analyze data from Seizure Tracker, a large electronic seizure diary,

including comparison of seizure characteristics among different etiologies, temporal

patterns in seizure fluctuations, and specific triggers.

Methods: Zero-inflated negative binomial mixed-effects models were used to evaluate

temporal patterns of seizure events (during the day or week), as well as group differ-

ences in monthly seizure frequency between children and adults and between etiolo-

gies. The association of long seizures with seizure triggers was evaluated using a

mixed-effects logistic model with subject as the random effect. Incidence rate ratios

(IRRs) and odds ratios were reported for analyses involving zero-inflated negative

binomial and logistic mixed-effectsmodels, respectively.

Results: A total of 1,037,909 seizures were logged by 10,186 subjects (56.7% children)

from December 2007 to January 2016. Children had more frequent seizures than

adults did (medianmonthly seizure frequency 3.5 vs. 2.7, IRR 1.26; p < 0.001). Seizures

demonstrated a circadian pattern (higher frequency between 07:00 a.m. and 10:00

a.m. and lower overnight), and seizures were reported differentially across the week

(seizure rates higher Monday through Friday than Saturday or Sunday). Longer sei-

zures (>5 or >30 min) had a higher proportion of the following triggers when com-

pared with shorter seizures: “Overtired or irregular sleep,” “Bright or flashing lights,”

and “Emotional stress” (p < 0.004).

Significance: This study explored a large cohort of patients with self-reported seizures;

strengths and limitations of large seizure diary databases are discussed. The findings in

this study are consistent with those of prior work in smaller validated cohorts, suggest-

ing that patient-recorded databases are a valuable resource for epilepsy research, cap-

able of both replication of results and generation of novel hypotheses.

KEY WORDS: Big Data, Seizure, Electronic diary, Seizure trigger, Epilepsy fluctua-

tion.

Seizure Tracker (www.seizuretracker.com) is a web-
based and mobile app providing persons with epilepsy and
their families an electronic diary for recording seizures,
antiseizure drugs, and other important clinical data. The
software includes >20,000 registered users and >1 million
recorded seizures. Investigators in the International Seizure
Diary Consortium1 use exploratory techniques for Big Data2

to investigate questions that cannot be approached with con-
ventional designs. Data mining (data-driven hypothesis gen-
eration) can reveal insights about diseases that might be
otherwise undetectable, as some patterns are revealed only
when viewed in aggregate. Data-mining techniques have
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been applied to large databases for several neurologic con-
ditions, including epilepsy.3,4 The Seizure Tracker database
represents a rare opportunity to evaluate an extensive range
of ages and etiologies, including uncommon forms of epi-
lepsy.

A number of studies have been conducted using the
SeizureTracker.com database previously5–12; however,
none have explored the basic characteristics of the patient
population using the database. Some commentators have
previously considered the user base of this software to be
all children, or extreme cases only. Given the variety of
publications based on this database, it is important to pro-
vide a more in-depth characterization of the user base,
the seizure types represented, and any baseline patterns
noted.

In this study, we explored seizure characteristics for dif-
ferent etiologies among children and adults, fluctuation of
seizures, and specific triggers. Our data illustrate the
strengths and limitations of an online seizure diary. Studies
analyzing Big Data could offer alternatives and supplements
to standard clinical studies, with the potential to provide, in
addition to their clear advantages of scale, longer-term and
more widely population-based data.

Methods
Database structure and pre-processing

The Seizure Tracker database has been described.5 Data
were obtained in accordance with the National Institutes of
Health (NIH) Human Research Protection Program
(OHSR#12301). Briefly, data for subjects who agreed (opt-
out alternative) were de-identified and unlinked. Subjects
with no date of birth recorded and/or for whom only one
event was reported (typically a test entry) were removed. Sei-
zure times were treated as missing if the time of onset was
not consistent with database dates, if they were duplicates, if
a default time was recorded (01:00 a.m.), or if a nonpositive
seizure duration was recorded. For analyses involving longi-
tudinal measurements (seizure frequency, interseizure

interval, circadian rhythm and weekly fluctuations, seizure
clustering), diary spans of <30 days were excluded in order
to increase reliability.

Data analysis
Statistical analysis was performed using R version 3.1.3

(Vienna, Austria). To account for repeated measures, gener-
alized linear mixed-effects models with the subject as the
random effect were used, with canonical link names as spec-
ified below. Seizure count data have been found to be
empirically overdispersed relative to that expected under
Poisson models; furthermore, seizure diary data are often
zero-inflated, containing a larger number of zeros than
under traditional Poisson or negative-binomial models. The
zero-inflated negative binomial model provides a method
for capturing these characteristics, by accounting for zero-
inflation7,8,13 as well as including an additional parameter to
allow for overdispersion.7,10,14 Group differences in
monthly seizure frequency between children (<18) and
adults (18 and older) were therefore compared using a zero-
inflated negative binomial mixed-effects model with adult-
hood status during the month of the seizure as the fixed
effect and subject as the random effect. Adulthood status
during each month was assigned based on the patient’s age
at the start of the month; that is, for children who became
adults partway through the month, this was attributed as a
“childhood” seizure frequency. Etiologies with significantly
higher seizure frequency were similarly identified through a
zero-inflated negative binomial mixed-effects model, with
etiology as the fixed effect and subject as the random effect.

To evaluate the temporal pattern of seizure events, a his-
togram of the frequency of seizure events from all patients
against time was plotted for hours of the day. Midnight
(12:00 a.m.) to 12:59:59 a.m. was defined as hour 0. Signif-
icant changes in seizure counts across time were identified
through a zero-inflated negative binomial mixed-effects
model, with subject as the random effect and hour-of-day as
the fixed effect.15 To estimate the amount of bias induced
by treating default recorded times (01:00 a.m.) as missing,
cubic spline interpolation was used to compute the esti-
mated number of seizure events at 01:00 a.m. The hour with
the lowest seizure rate was used for the reference hour, as
suggested by Seneviratne et al. (2016). Temporal associa-
tions of seizure count with day-of-week were evaluated sim-
ilarly, with the day with the lowest seizure rate, Sunday,
used as the reference day.

Status epilepticus (long seizure) was defined using both
the prior definition of 30-minute time limit as well as a more
recent 5-minute time limit. The association of status epilep-
ticus with seizure triggers was evaluated using a mixed-
effects logistic model with subject as the random effect.
Failure to report any trigger was assumed to be data Missing
Completely at Random and were also excluded. Operational
definitions of seizure clusters vary. For the purpose of this
study we used the clustering definition of 3 or more

Key Points
• Data from large electronic seizure diary databases
have limitations but yield important insights into sei-
zure patterns

• The temporal distribution of seizures demonstrated a
circadian pattern and a larger number of seizures
reported Monday through Friday

• Children had more frequent seizures than adults did,
often even for the same epilepsy etiology

• Longer seizures (>5 or >30 min) were more likely to
have the following triggers: “Overtired or irregular
sleep,” “Bright or flashing lights,” or “Emotional
stress”
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consecutive seizures in any given 24 hours16 and analyzed
clustering for patients who had <1,000 seizures (who had
discrete seizures).

For all analyses, statistical significance was assigned at
the a = 0.05 level, with false discovery rate control through
the Benjamini–Hochberg procedure. Due to the large sam-
ple size, effect sizes are reported for all statistically signifi-
cant results through the incidence rate ratio (IRR) for
analyses involving zero-inflated negative binomial mixed-
effects models or the odds ratio (OR) for analyses involving
logistic mixed-effects models.

Results
Demographics

Data included all entries between December 2007 and
January 2016, comprising 22,806 subjects and 1,123,600
seizures. After pre-processing, 12,615 subjects were elimi-
nated (of whom 8,203 had no seizures recorded), resulting
in 10,186 subjects and a total of 1,037,909 seizures for anal-
ysis. Diary durations extended up to more than 8 years (me-
dian 82.7 days, interquartile range [IQR] 367.0 days). A
total of 3,493 subjects had diary durations <30 days and
were excluded from longitudinal analyses (seizure fre-
quency, interseizure interval, circadian rhythm, and weekly
fluctuations).

Fifty-two percent were female, with 45% male (gender
not listed for 2.7%). This included 43.3% adults (18 and
older) and 56.7% children (<18) at the time of initial diary
entry, with an additional 1.7% of patients becoming adults
by the time they had the most recent seizure recorded in the
database. Epilepsy “etiology” was listed for 42.5% of sub-
jects; some listed more than a single etiology. “Brain
Trauma” was the most frequent etiology overall at 8.7%.
The 6 most common etiologies reported for children were
“Genetic Abnormalities” (324 children; this represents
3.18% of the entire population studied and 7.1% of all chil-
dren), “Brain Malformations” (5.6% of all children),
“Tuberous Sclerosis” (5.2% of all children), “Brain
Trauma” (5.0% of all children), “Dravet Syndrome” (4.8%
of all children), and “Lack of oxygen during birth” (3.5% of
children). For adults, these were “Brain Trauma” (606
patients, this represents 5.95% of the entire population stud-
ied and 13.2% of all adults), “Infection” (6.3% of all adults),
“Brain Tumors” (4.3% of all adults), “Genetic Abnormali-
ties” (3.5% of all adults), “Brain Malformations” (3.8% of
all adults), and “Stroke” (2.7% of all adults). Detailed demo-
graphic data are presented in Table 1.

Seizure type, duration, frequency, and interseizure
intervals

Eighty-five percent of seizures were classified as one of
the seizure types listed in Table 1, and 14.6% were reported
as “Unknown” or “Other”. The most frequent seizure types
were the same for children and adults: Focal aware, Focal

impaired awareness, and [Unknown] onset tonic–clonic.
The seizure terminology used was adapted using the 2017
Operational classification of seizure types by the Interna-
tional League Against Epilepsy.17,18 Detailed seizure type
data, including distribution among children and adults and
median seizure durations, are presented in Table 1. The dis-
tribution of each seizure type is illustrated in Figure 1 for
each etiology.

Seizure duration ranged from 1 second to 1 day for the
751,625 seizures with recorded duration, with a median of
30 seconds (IQR, 95 s). More than 90% of the seizures
lasted 5 minutes or less; 1.5% were reported to have dura-
tion >30 minutes.

Overall, children had a higher seizure frequency than
adults (IRR 1.26, p < 0.001), with a mean (median) seizure
frequency of 16.1 (3.5) seizures per month among children
and 7.7 (2.7) seizures per month among adults, respectively
(Fig. S1). In adults, increased seizure frequency was
reported for patients with Lennox–Gastaut syndrome (IRR,
1.24; puncorrected = 0.01), although this difference did not
remain statistically significant after multiple testing correc-
tion. In children, significantly higher seizure frequency was
reported in patients with Aicardi syndrome (IRR, 3.98;
p < 0.001). Children with Lennox–Gastaut syndrome (IRR,
1.16; puncorrected = 0.037) and Tuberous Sclerosis Complex
(IRR, 1.14; puncorrected = 0.040) also reported significantly
increased seizure frequencies, although associations with
Lennox-Gastaut syndrome and tuberous sclerosis complex
did not remain statistically significant after multiple testing
correction.

For patients who had diary duration of 30 days or more,
the interseizure intervals (ISIs) >0 were analyzed. The med-
ian ISI was 4 hours (IQR 23 h) and the mean ISI was
77.4 hours (STD 662.7 h). Of the total ISIs, 40.2% were
2 hours or less, 9.4% were between 2–4 hours, 8.6% were
4–8 hours, 18.9%were 8–24 hours, 21.4% were 1–30 days,
and 1.6% were >30 days (Fig. S2). Of these patients, 62.5%
had at least one ISI of 4 hours or less and 9.7% had a median
ISI of 4 hours or less.

Circadian and weekly fluctuation of reported seizures
The temporal distribution of seizures demonstrated a cir-

cadian pattern. The estimated total number of seizure events
at 01:00 a.m. based on cubic spline interpolation was 2,871.
The lowest seizure rate occurred at hour 01:00 a.m.
to02:00 a.m., both before and after cubic spline interpola-
tion, with 13,063 observed seizure events when events
recorded as 01:00 a.m. were treated as missing, and 15,934
seizure events when the interpolated 2,871 seizure events
were included. The IRR, which estimates the association
between each hour of the day and the mean number of sei-
zures per hour per person, provides a measure of effect size
and is shown in Table S1. Seizure rates were highest early in
the day, peaking at hour 07:00 a.m., and lowest overnight
with a decline after hour 06:00 p.m. (Fig. 2A,B; Table S1).
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For example, the IRR of 5.36 at hour 07:00 a.m. indicates
that the number of reported seizures was expected to be 5.36
times higher than the seizure frequency at hour 01:00 a.m.
A mild increase in the number of reported events occurred
between hour 12:00 p.m. and 18:00 p.m., an effect which
was attenuated when hourly seizure clusters (defined as
multiple, i.e., t2 or more, seizures occurring within 1 hour)
were treated as single events (Fig. 2C,D). Seizure rates were
higher Monday through Friday than Saturday or Sunday
(Fig. 3; Table S2). This weekly pattern was present both
before and after daily seizure clusters (defined as 3 or more
seizures occurring within the same day)19–23 were treated as
single events (Fig. 3C,D).

Seizure triggers
Triggers were reported for 32.2% (334,601) of reported

seizures. The most frequent triggers reported were “Over-
tired or irregular sleep” (14.2%), followed by “Other”
(12.5%), “Changes in medication” (6.3%), “Hormonal fluc-
tuations “(5.5%) and “Emotional stress” (5.0%).

The relative proportion of triggers for seizures that lasted
5 minute or shorter in duration (233,611) was compared
with seizures longer than 5 minutes (28,134). Seizures were
more likely to last more than 5 minutes if triggered by being
“Overtired or irregular sleep” (OR 1.30, p < 0.001), “Diet”
(OR 1.17; p = 0.002), “Bright or flashing lights” (OR 1.21;
p = 0.002), “Emotional stress” (OR 1.25, p < 0.001), or

Table 1. Demographic data and seizure characteristics of patients in Seizure Tracker database

Value (median) (IQR)

Age in yearsa 15.8 (24.8)

Children Adults

Length of seizure diary in daysb,c 80 (359) 82 (386)

Number of total seizures recordedd 12 (52) 8 (28)

Seizure frequency per monthe 3.5 (10.1) 2.7 (5.7)

Seizure duration in seconds 30 (81) 30 (112)

Interseizure interval in hoursf 3.0 (18.5) 9.5 (43.5)

Value (% of total population)

Gender Female (52.3), Male (45), Unknown (2.7)

Age groups in yearsa 0–2 (5.1), 2–10 (29.4), 10–18 (20.5), 18–40 (29.7), 40–60 (13.7), 60–85 (1.6)
Epilepsy etiologya,g Children Adults

Aicardi syndromeh 0.34 0.08

Angelman’s syndrome 0.23 0.07

Down’s syndrome 0.25 0.17

Dravet syndrome 2.68 0.23

Lennox-Gastaut syndrome 1.63 0.72

Neurofibromatosis 0.11 0.09

Rett syndromeh 0.50 0.13

Sturge-Weber syndrome 0.20 0.05

Tuberous sclerosis 2.87 0.67

Brain tumors 1.15 1.93

Brain trauma 2.80 5.95

Infection 1.84 2.84

Stroke 1.51 1.22

Lack of oxygen during birth 1.96 1.16

Maternal drug or alcohol abuse 0.27 0.23

Alcohol or drug abuse 0.07 0.45

High fever 1.01 1.05

Genetic abnormalities 3.18 1.59

Brain malformations 3.05 1.73

Otheri 2.40 3.49

Value (% of all seizures) Duration in seconds (median) (IQR)

Seizure typej,k Children Adults

Focal aware (former “Simple partial”) 11.2 6.5 20 (52)

Focal impaired awareness 9.9 5.5 50 (100)

[Unknown] onset tonic–clonic 10 4.5 60 (97)

[Focal/generalized] tonic 8 3.6 10 (29)

[Focal/generalized] myoclonicl 7 1 10 (117)

Absence and absence, atypical 5.5 1.9 15 (55)

[Focal/generalized] atonic 3.5 0.3 10 (34)

Continued
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having “Fever or overheated” (OR 1.35; p < 0.001). Sei-
zures lasting 30 minutes or shorter in duration (256,323)
were also compared with seizures lasting longer than
30 minutes (5,422). Seizures were more likely to last more
than 30 minutes if triggered by “Change in medications”
(OR 1.19; p = 0.003), “Overtired or irregular sleep” (OR
1.17, p = 0.003), “Bright or flashing lights” (OR 1.42,
p = 0.003), or “Emotional stress” (OR 1.249, p = 0.0009).

Seizure clusters
For patients who had diary duration of 30 days or more,

the seizure-clustering patterns were analyzed: 54.6% of sei-
zures were part of a cluster and 55.7% of the patients had at
least one seizure cluster (44.3% of patients did not have any
seizure cluster). Seizure clustering pattern for each etiology
is displayed in Figure 4.

Discussion
Online seizure diary as a tool

In this study we examined seizure patterns and sei-
zure characteristics from a large online database. This
study provides insight into how exploratory analysis of
self-reported Big Data can help elucidate phenomena
such as seizure fluctuations and better characterize epi-
lepsy variables. Although a number of epilepsy studies

have reported on the temporal distribution of seizures
from prospective diaries,24,25 a Big Data approach pro-
vides access to larger sample sizes and prolonged
reporting periods.

The primary observational findings of this study are listed
below:
Circadian variations emerged clearly from the data—more
seizures were reported during morning hours as compared
to overnight (peak of reported seizures at 07:00 a.m.),
which replicate several previous epilepsy studies.26 Using
intracranial electroencephalography (EEG) data captured
with a Responsive Neurostimulator System (RNS), Duch-
row reports a bimodal daily variation of seizures distribu-
tion, with relative maxima at 06:00 and 15:00 hours.27 In a
different study of ambulatory intracranial monitoring
(RNS), Spencer analyzes circadian and ultradian patterns of
epileptiform discharges and how they differ by seizure-
onset location and demonstrates that cyclic occurrence of
epileptiform discharges and seizures are influenced by the
cumulative effects of various circadian rhythms that vary in
influence by the pathophysiology of the underlying epilepsy
syndrome.28 In our study population, we found a novel pat-
tern, with fewer seizures reported at the end of the week
(Saturday and Sunday). This interesting finding may reflect
the proposed association between stress and seizure occur-
rence.29

Table 1. Continued.

Value (median) (IQR)

[Focal/generalized/unknown] onset epileptic spasmsl 2.3 0.06m 240 (391)

Focal to bilateral (tonic–clonic) 1.5 0.7 60 (100)

Focal aware (former “Aura only) 0.4 1.2 10 (40)

[Focal/generalized] clonic 0.4 0.3 25 (110)

Focal [aware or impaired awareness] emotional 0.07 0.03 50 (106)

aAge at most recent seizure diary recording.
bAdditional data: 2.3% of patients reported catamenial data, 50.5% reported at least twice, data regarding medication use (dose, duration), 1.2% reported medi-

cation blood levels, 23.3% reported their weight.
cRange <1 day to 8.1 years (median of 82.7 days, IQR 367 days); 64.8% of seizure diaries were >1 month and 26.1% >1 year.
dRange 2–33,033 seizures (median 10 seizures, IQR 41 seizures).
eMean (standard deviation) 16.1 (46.5) in children, 7.7 (20.0) in adults.
fMean (standard deviation) 62.0 (577.9) in children, 111.0 (808.3) in adults.
gResults reported here as % of total population. A total of 42.5% of all subjects listed an “etiology” for epilepsy; some listed more than a single etiology. Most fre-

quent etiologies overall: “Brain Trauma” (8.75%), “Tuberous Sclerosis” (3.54%).
hAlmost all patients in this category were female.
iEtiologies not presented here were vague or had very few patients. The majority were listed as “Other.” The additional etiologies listed were: “hypothalamic

hamartoma” (with a total 5 patients), “Phelan-McDermid syndrome”(4 patients), “Alzheimer’s” (9 patients), “heart attack” (19 patients), “brain surgery” (274
patients), “metabolic disorder” (80 patients), “electrolyte disturbances” (49 patients), “brain injury during fetal development” (221 patients), “lead exposure” (18
patients), “carbon monoxide exposure” (10 patients).

jSeizure types were adapted according to 2017 Operational classification of seizure types by the International League Against Epilepsy: “Simple partial” to Focal
aware, “Complex partial” to Focal impaired awareness, “Tonic Clonic” to [Unknown] onset tonic–clonic, “Tonic” to [Focal/generalized] tonic, “Myoclonic & Myo-
clonic cluster” to [Focal/generalized] myoclonic, “Absence and Atypical Absence” to Absence and Absence, atypical, “Atonic” to [Focal/generalized] atonic, “Infan-
tile spasms (cluster)” to [Focal/generalized/unknown] onset epileptic spasms, “Secondarily Generalized” to Focal to bilateral (tonic–clonic), “Aura Only” to Focal
aware, “Clonic” to [Focal/generalized] clonic, “Gelastic” to Focal [aware or impaired awareness] emotional.

k14.6% of total seizures were reported as “Unknown” (e.g., Unclassified) or “Other.” In addition, other seizure characteristics were reported. A total of 9.7%
(100,650) seizures had auras. Clinical manifestations were documented for 78.3% of total seizures (20% reported change in awareness, 17.9% reported loss of abil-
ity to communicate, and 69.1% reported motor manifestations such as muscle stiffness, muscle twitching). Postictal phase was reported in 32.2%, comprising either
“Unable to communicate” (8.2%), “Muscle weakness,” (7.9%) or “Sleepy” (23.3%).

lThese were listed either as clusters or as duplicates.
m[Focal/generalized/unknown] onset epileptic spasms in adults analyzed as error.
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2 Children had more frequent seizures than adults did,
often even for the same epilepsy etiology. This suggests
that the natural history of epilepsy related to certain eti-
ologies may change with aging.

3 The most frequently reported triggers were similar to pre-
vious cross-sectional30 and prospective diary studies,31

including sleep-related issues, medication changes, and
emotional stress. Of interest, triggers varied by seizure
duration, such as “Overtired or irregular sleep,” “Bright
or flashing lights,” or “Emotional stress” were associated
with long seizures/status epilepticus. The role of seizure
triggers or precipitants remains an increasing area of
interest in predicting seizures and understanding the con-
sequences of prolonged seizures.32 These are also impor-
tant in the emerging field of epilepsy self-management.33

4 Many inter-seizure intervals (or ISIs) were brief, likely
related to the large number of epilepsy etiologies with
tendency to cluster as shown in Figure 4. Previous studies
have reported variable prevalence of seizure clustering 7–

76%, often with higher prevalence of seizure clusters in
relation to inpatient monitoring data, when medications
are being decreased or stopped to capture seizures.34

Limitations of large patient-reported seizure diary
databases

The use of an electronic patient-reported database pre-
sents challenges and limitations. The most important one is
the reliability of the data. Epilepsy diaries are not electro-
graphically verified. Recorded seizures may be nonepilep-
tic, misclassified, or over- or underreported. In addition,
perceived event durations may be inaccurate.25 This chal-
lenge is currently present in nearly all studies that rely on
prospective epilepsy diaries, including formal clinical tri-
als.35,36 We observed a small percentage (0.06% overall) of
Focal/generalized/unknown onset epileptic spasms reported
as coming from adults. Although this certainly represents an
error, it is difficult to decide whether the error was attributa-
ble to an incorrect input regarding the date of birth,

Figure 1.

Distribution of seizure types across reported epilepsy etiologies.1,2

1On the x axis, the numbers represent the overall number of seizures reported; on the y axis each etiology is listed (proportions in paren-

thesis represent % of total population). 2Note for example, that for patients with “Brain Trauma” or “Brain Tumor,” the most frequent

seizure types were Focal impaired awareness and Focal aware. This was the same for patients with “Tuberous Sclerosis,” who additionally

had frequent [Focal/generalized/unknown] infantile spasms. For the 238 patients with “Lennox–Gastaut syndrome,” the most frequent

seizure type reported was [Focal/generalized] tonic (33.3%), with several other seizure types being common: [Unknown] onset tonic clo-

nic (17.7%), [Focal/generalized] atonic (11.3%), and [Focal/generalized] myoclonic (9.7%). The most frequent seizure type for patient with

“Aicardi syndrome” were [Focal/generalized/unknown] onset epileptic spasms (37% of all their seizures) and for patients with “Angelman

syndrome,” these were the [Focal/generalized] myoclonic seizures (74%).
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misclassification of seizure type by patients/families, or
simply a recording mistake when pressing the app button
for making a choice. Other sources of error from patient-
reported data may stem from lack of physician verifica-
tion, including seizure miscounting, difficulty of care-
givers distinguishing between generalized and focal to
bilateral seizure evolution, or inclusion or psychogenic
nonepileptic seizures in the database. Even data self-
reported by well-trained observers must be considered
imperfect in accuracy, but the advantage of large data-
bases is that these errors are generally likely to have a rel-
atively modest impact.

Another example of the limitations of patient-recorded
databases involves the preprocessing of seizure events
with a default recorded time of 01:00 a.m. illustrated
above. By default, Seizure Tracker records a seizure event
time of 01:00 a.m., and it is not possible to distinguish

missing event times from true occurrences at 01:00 a.m.
Therefore, we treated 01:00 event times as missing and
used cubic spline interpolation to estimate the number of
events occurring at 01:00 a.m. In our case, the total num-
ber of seizure events occurring at 01:00 a.m. based on
cubic spline interpolation was 2,871. Although in this par-
ticular dataset, the difference of 14.3% (corresponding to
the difference between 13,063 and 15,934 seizures) did
not affect the use of the 01:00 a.m.–02:00 a.m. hour as
the reference hour in circadian analysis, slight upward
bias is likely in the incidence rate ratios shown in Fig-
ure 2. Although statistical significance of these results is
unlikely to be affected due to the large sample size of the
dataset, the clinical significance of circadian fluctuations
from midnight to 01:00 a.m. and from 02:00 a.m. should
be considered. It is possible that seizure underreporting is
not a uniformly random process, but that a systematic bias

Figure 2.

(A) Histogram of the total number of seizures from all patients against time of day. (B) Comparison of seizure events for circadian hours

with the reference hour (hour 01:00 a.m.) in mixed-effects negative binomial model of 9,849 patients. Incidence rate ratios (or IRRs) are

calculated as the exponentiated coefficients. For example, an IRR of 5.457 during hour 08:00 a.m. means that the number of reported sei-

zures is 5.457 times higher than at hour 01:00 a.m. An IRR at hour 01:00 a.m. is not provided as this is the reference hour. Midnight (12:00

a.m.) to 12:59:59 a.m. is defined as hour 0. (C) Histogram of the total number of seizures from all patients against time of day, with hourly

seizure clusters (defined as 2 or more seizures occurring within the same hour) treated as single events. (D) Incidence rate ratios for sei-

zure events across circadian hours, with hourly seizure clusters (defined as in C) treated as single events. IRR, incidence rate ratio; SE,

standard error. **p < 0.001
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exists. In that circumstance our results would reflect that
implicit bias. We have no reason to consider the system-
atic bias in these data to be fundamentally different from
the underreporting of seizures in clinic patients or in ran-
domized controlled trials.

Another key issue in the interpretation of results produced
from analyses of Big Data involves the difference between
statistical and clinical significance. Due to the asymptotic
behavior of p-values under the null hypothesis, the large
sample sizes employed in Big Data result in increased
power, so that even miniscule differences become clinically
significant. In such cases, it is important to consider not only
statistical significance, but also clinical significance. In
these cases, the reporting of effect sizes through measures
such as Cohen’s D, IRRs, or ORs may be more useful for
interpretation. It is important to note that the patterns
reported based on fixed effects represent population-based
effects, which masks patient-specific variation. There may
be individual clusters of patients who exhibit patterns that
differ from the overall population-based effect. As an exam-
ple, the estimated across-subject standard deviation in esti-
mating circadian and weekly seizure fluctuation patterns
was quite large relative to the magnitude of the largest fixed

effect, indicating that the subjects varied widely relative to
the magnitude of the circadian and weekly fixed effects
(Tables S1 and S2).

Seizure Tracker also appears to be highly utilized by
patients with severe epilepsy and frequent seizures, which
may limit generalizability. For example, patients were
noted to report high monthly seizure frequencies and short
interseizure intervals. In addition, a large proportion of
patients reported Aicardi syndrome (approximately 1% of
all patients who reported an etiology in the database).
Although this is a limitation, it is also a strength in that
previously underrepresented populations in epilepsy
research are now more available for study through these
databases.

Despite their limitations, there is clearly much to learn
from exploration of patient-reported databases in epilepsy.
They provide access to much larger datasets, across longer
time frames and wider populations than are available
through standard clinical studies. Some of the findings here
mirror those of smaller studies with high reliability, under-
scoring that patient-recorded databases still can make valid
population level observations. Seizure Tracker is an impor-
tant research and clinical tool for neurologists and

Figure 3.

(A) Histogram of the total number of seizures from all patients against day of week. (B) Comparison of seizure events for days of the

week with the reference day (Sunday) in mixed-effects zero-inflated negative binomial model of 9,849 patients. Incidence rate ratios

(IRRs) are calculated as the exponentiated coefficients. For example, an IRR of 1.074 on Monday means that the number of reported sei-

zures is expected to be 7.4% higher than on Sunday. An IRR on Sunday is not provided as this is the reference day. (C) Histogram of the

total number of seizures from all patients against day of week, with seizure clusters (defined as three or more seizures occurring within

the same day) treated as single events. (D) Incidence rate ratios for seizure events against day of week, with seizure clusters (defined as in

C) treated as single events. IRR, incidence rate ratio; SE, standard error. **p < 0.001, *p < 0.01
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neuroscientists and provides a framework that can be
employed to follow other neurologic conditions in the out-
patient setting. The novel results presented here begin to
expand our understanding of variation of seizures rates
(e.g., during the day and week, in relation to certain trig-
gers), which could ultimately lead to better planning of clin-
ical trials and personalized patient treatments.9
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Supporting Information
Additional supporting information may be found online

in the Supporting Information section at the end of the
article:

Table S1. Comparison of seizure events for circadian
hours with the reference hour (hour 01:00 a.m.) in a mixed-
effects negative binomial model of 9,849 patients.
Table S2. Comparison of seizure events for days of the

week with the reference day (Sunday) in a mixed-effects
zero-inflated negative binomial model of 9,849 patients.
Figure S1. Comparison of distribution of patient-reported

monthly seizure frequencies in adults (red) and children
(blue) with epilepsy.
Figure S2. (A) Histograms of the log interseizure interval

(ISI) distribution. The distributions are highly symmetric,
with the skewness of the distribution of log interseizure
intervals being �0.26 (slightly skewed left) for adults and
0.08 (slightly skewed right) for children. (B) Histogram of
all interseizure intervals distribution. (C) Histogram of med-
ian interseizure interval (for each patient) distribution.
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