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Questionable research
practices may have little effect
on replicability
Abstract This article examines why many studies fail to replicate statistically significant published

results. We address this issue within a general statistical framework that also allows us to include

various questionable research practices (QRPs) that are thought to reduce replicability. The analyses

indicate that the base rate of true effects is the major factor that determines the replication rate of

scientific results. Specifically, for purely statistical reasons, replicability is low in research domains

where true effects are rare (e.g., search for effective drugs in pharmacology). This point is under-

appreciated in current scientific and media discussions of replicability, which often attribute poor

replicability mainly to QRPs.
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Most sciences search for lawful data patterns or

regularities to serve as the building blocks of

theories (e.g., Bunge, 1967; Carnap, 1995;

Popper, 2002). Generally, such data patterns

must not be singular findings (i.e., chance find-

ings) but instead be replicable by other

researchers under similar conditions in order to

be scientifically meaningful (Popper, 2002, p.

23). With this fundamental scientific premise as

background, it is understandable that many

researchers have become concerned that a sur-

prisingly large number of published results can-

not be replicated in independent studies and

hence appear to represent chance findings or

so-called false positive results (Baker and

Penny, 2016; Ioannidis, 2005b; Pashler and

Harris, 2012; Simmons et al., 2011;

Zwaan et al., 2018). For example, only less than

30% of results in social psychology and about

50% in cognitive psychology appear to be repro-

ducible (Open Science Collaboration, 2015).

Similarly, the replication rate of 21 systematically

selected experimental studies in the social scien-

ces published between 2010 and 2015 in Nature

and Science was estimated to be only about

62% (Camerer et al., 2018). Low replication

rates have also been reported in medical

research (Begley and Ellis, 2012;

Ioannidis, 2005a; Prinz et al., 2011): for exam-

ple, researchers at the biotechnology firm

Amgen tried to confirm findings in 53 landmark

studies in preclinical cancer research, but were

able to do so for only six cases (Begley and

Ellis, 2012). The Reproducibility Project: Cancer

Biology was set up to further explore the repro-

ducibility of preclinical cancer research

(Errington et al., 2014).

Possible causes of low replication
rates
Understanding the causes of these shockingly

low replication rates has received much atten-

tion (e.g., Button and Munafò, 2017;

Pashler and Harris, 2012; Schmidt and Oh,

2016), and various possibilities have been dis-

cussed. First, scientists may fabricate data to

support their hypotheses. However, surveys indi-

cate that this is probably not a major cause

because the prevalence of scientific fraud is

low—probably smaller than 2% (see

Fanelli, 2009; Gross, 2016; Stroebe et al.,

2012).

Second, Benjamin et al., 2018 recently

argued that the traditional a level of 5% is too

*For correspondence: ulrich@uni-

tuebingen.de (RU); miller@psy.

otago.ac.nz (JM)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 19

Reviewing editor: Peter

Rodgers, eLife, United Kingdom

Copyright Ulrich and Miller.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Ulrich and Miller. eLife 2020;9:e58237. DOI: https://doi.org/10.7554/eLife.58237 1 of 29

FEATURE ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.58237
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


large and thus produces too many false posi-

tives. These authors suggested changing the

critical a level to 0.5%, because this “would

immediately improve the reproducibility of sci-

entific research in many fields” (p. 6). Although

this change would decrease the false positive

rate, it would also increase the proportion of

false negatives unless there were substantial

increases in sample size (Fiedler et al., 2012).

Third, another important factor seems to be

the typically low statistical power in psychologi-

cal research (Button and Munafò, 2017;

Stanley et al., 2018). Some have reported aver-

age power estimates as high as 50% to detect a

correlation of 0.2 (corresponding to Cohen’s

d ¼ 0:43) in the field of social-personality psy-

chology (Fraley and Vazire, 2014). In a large

survey of over 12,000 effect sizes, however,

Stanley et al., 2018 reported that median

power was about 36% and that only 8% of all

studies had a power of about 80%. Even lower

median power of about 21% has been reported

for studies in the neurosciences (Button et al.,

2013). Low power within a research area

reduces replicability for purely statistical rea-

sons, because it reduces the ratio of true posi-

tives to false positives.

Fourth, the percentage or “base rate” p of

true effects within a research area strongly influ-

ences the replication rate (Miller, 2009;

Miller and Ulrich, 2016; Wilson and Wixted,

2018). When p is small, the relative proportion

of false positives within a given research domain

will be high (Ioannidis, 2005b; Oberauer and

Lewandowsky, 2019), and thus the replication

rate will be low. This is easily seen: for p ¼ 0 the

relative proportion of false positives is 100%. In

contrast, for p ¼ 1, no false positives can occur

so this proportion is zero. Consequently, replica-

tion rates must be higher when the base rate is

relatively high than when it is low. For example,

Wilson and Wixted, 2018 have argued that the

fields of cognitive and social psychology differ in

the base rate of real effects that are investi-

gated, which they call the “prior odds.” On the

basis of the results obtained by the

Open Science Collaboration, 2015, they esti-

mated base rates of p ¼ 0:20 for cognitive psy-

chology and p ¼ 0:09 for social psychology, and

these estimates are consistent with the finding

that the replication rate is lower for social than

cognitive psychology. Alternative analyses of

replication rates and prediction markets also

suggest similarly low base rates of about 10%

(Dreber et al., 2015; Johnson et al., 2017;

Miller and Ulrich, 2016). More generally, it is

reasonable to assume that base rates differ

between discovery-oriented research and the-

ory-testing research (Lewandowsky and Obera-

uer, 2020; Oberauer and Lewandowsky,

2019).

Finally, a certain percentage of false positive

results is an unavoidable by-product of null

hypothesis testing, and, more generally, of any

uncertain dichotomous-choice situation in which

one is required to choose between two alterna-

tives, such as “accept” or “reject” a vaccine as

beneficial in the fight against a certain infectious

disease. In such situations, many have argued

that replication rates are low because question-

able research practices (QRPs) used by scientists

chasing after statistically significant results pro-

duce an excess of false positive results beyond

the usual nominal significance level of 5%

(Ioannidis and Trikalinos, 2007; John et al.,

2012; Simmons et al., 2011). Such practices vio-

late not only the basic assumptions of the null

hypothesis significance testing (NHST) frame-

work but also those underlying decision making

within the Bayesian framework, where research-

ers could analogously use QRPs to obtain large

Bayes factors (Simonsohn, 2014).

Hence, a bias toward publication of signifi-

cant results or large Bayes factors provides a

strong incentive to use QRPs (Bakker et al.,

2012), especially when competing for academic

promotion (Asendorpf et al., 2013) or grant

funding (Lilienfeld, 2017). A survey conducted

by John et al., 2012 identified several such

practices, and the most frequent ones can be

grouped into four categories (a) A researcher

may capitalize on chance by performing multiple

studies and using selective reporting of a signifi-

cant result. For example, the researcher may

conduct several similar experiments until one

finally yields the hoped-for significant result, and

then the researcher only reports the results of

the one study that ‘worked’, putting negative

results into the file drawer (Rosenthal, 1979).

There is convincing evidence that researchers

conduct several studies to examine a hypothesis

but only report those studies that yielded con-

firming results (Francis, 2014; Francis et al.,

2014). (b) A researcher may measure multiple

dependent measures and report only those that

yield significant results. For example, a
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neuroscientist could record brain activity in hun-

dreds of distinct brain areas and report the

results only for those that were sensitive to a

specific experimental manipulation (Vul et al.,

2009). With 10 moderately correlated depen-

dent measures (i.e., � ¼ 0:2) and one-tailed tests,

for example, this strategy of multiple testing

raises the rate of false positives from 5% to 34%.

(c) A researcher may monitor data collection,

repeatedly testing for significant results, and

stop data collection when a significant result is

attained. This strategy of data peeking can easily

raise the rate of false positives up to 20%

(Simmons et al., 2011). (d) Finally, selective out-

lier removal can also turn a nonsignificant result

into a significant one (Ulrich and Miller, 1994).

For example, if an initial analysis produces non-

significant results, a researcher may try different

criteria for excluding outliers in the hope of get-

ting significant results after the data have been

‘cleaned’.

With all four of these QRPs as well as other

ones, the researcher exploits the degrees of

freedom present in the research process to

achieve a statistically significant result—a prac-

tice that has been referred as “p-hacking”

(Simonsohn et al., 2014a). This clearly inflates

the rate of false positives, which would intuitively

be expected to decrease replicability. What has

received considerably less attention, however, is

that p-hacking also increases the statistical

power for detecting true effects, as noted

recently by Witt, 2019—a side-effect of p-hack-

ing that might be termed power inflation. Since

increasing power also increases replication rates,

the influence of QRPs on power tends to coun-

teract its influence on Type 1 error rate with

respect to overall replicability. A quantitative

model is therefore needed to assess the size of

p-hacking’s overall effect on replicability.

In this paper, we consider in detail the pre-

vailing claim that QRPs are a major cause of low

replicability. However, Francis, 2012a has noted

the converse problem that in some circumstan-

ces QRPs can artificially increase replication

rates. Specifically, this can happen when

researchers use QRPs to significantly replicate

their previous findings—usually with conceptual

replications—to strengthen their theoretical

position. Reanalyses of results from multi-experi-

ment papers suggest that this does happen,

because the rate of successful replication is unre-

alistically large in view of the studies’ power (e.

g., Francis et al., 2014; Francis, 2012b). For

example, when the power of a single experiment

is 0.36, the probability that a series of five

experiments would all result in positive out-

comes is 0.365 = 0.006, so such a series of pub-

lished findings would be too good to be true (i.

e., an excess of positive results). Such a pattern

would suggest the operation of one or more

QRPs; for example, negative results may have

been unreported, that is, put in the researcher’s

file drawer. This situation could be called “moti-

vated replication” and it is different from the sit-

uation in which an unbiased researcher tries to

replicate a significant result, as in the Open Sci-

ence Replication Project (Open Science Collabo-

ration, 2015), We shall focus on the situation

with unbiased replications and assess the extent

to which QRPs can reduce the rate of these.

In the present study, we develop a quantita-

tive model of replication rate that simultaneously

takes into account a, power, the base rate of

true effects, and p-hacking. This model allows us

to assess the relative contributions of these fac-

tors to the replication rate, with a focus on the

Hypotheses tested

Outcome of original study

Outcome of replication study

H1/H0

π

H1

1 − π

H0

1 −β1

‘H1’

β1 α1

‘H0’ ‘H1’

1 −α1

‘H0’

1 − β2

‘H1’

β2 α2

‘H0’ ‘H1’

1 −α2

‘H0’

R R R R

Figure 1. Probability tree of the replication scenario. The base rates of examining an

alternative hypothesis H1 or a null hypothesis H0 are p and 1� p, respectively. The statistical

power and the Type 1 error rate of the original study are 1� b1 and a1. There are four

possible outcomes of an original study, with the researcher deciding to reject the null

hypothesis (i.e., ‘H1’) in two outcomes and failing to reject it (i.e., ‘H0’) in the other two. If H1

is true, the outcomes associated with these decisions are called true positives and false

negatives. By contrast, if H0 holds, they are called false positives and true negatives.

Replication studies replicate original studies that reported a significant positive result. The

statistical power and the Type 1 error probability of the replication study are 1� b2 and a2,

respectively. The replication study may either reject H0 (which denotes a successful

replication of the original positive result, R) or fail to reject it (which denotes a failure to

replicate the original result, R).
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influence of QRPs. In contrast, the combined

effects of p-hacking on Type 1 error rate and

power have not previously been modelled at all,

and previous studies have generally considered

the effects of these factors on replicability one

at a time (e.g., a, power, base rate), making it

difficult to see their relative contributions.

Knowledge of the relative contributions of these

different factors would increase our understand-

ing of why the observed replication rate is so

low and thus be useful in guiding efforts to

improve the situation. Because the various differ-

ent p-hacking strategies reviewed above may

have different impacts on the replication rate,

we conducted separate analyses for each

strategy.

Statistical analysis of the
replication scenario
The analyses in this manuscript address replica-

tion scenarios in which researchers conduct

direct replications of studies that reported a sta-

tistically significant positive outcome. An exam-

ple is the Open Science Replication Project

(Open Science Collaboration, 2015), in which

many independent research teams conducted

high-powered studies attempting to directly

replicate published results. Figure 1 depicts

these scenarios together with all statistically rele-

vant parameters that must be taken into account

when computing the rate of replicating signifi-

cant results (Miller, 2009; Miller and Ulrich,

2016; Miller and Schwarz, 2011). First, each

original study tests either a true effect (i.e., H1 is

true) or a null effect (i.e., H0 is true), with base

rate probabilities p and 1� p, respectively, and

these probabilities—sometimes called “pre-

study probabilities” (Ioannidis, 2005b) or “prior

odds” (Wilson and Wixted, 2018)—may vary

across research fields (Wilson and Wixted,

2018). If the original study tests a true effect, its

statistical power is 1� b1 and the Type 2 error

probability is equal to b1. Thus, the compound

probability of examining a true effect and reject-

ing the null hypothesis is p � ð1� b1Þ; this out-

come is called a “true positive.” In contrast, if

the original study tests a null effect, its Type 1

error probability is a1. Thus, the probability of

testing a null effect and falsely rejecting H0 is

ð1� pÞ � a1; this outcome reflects a “false posi-

tive.” Note that, in keeping with accepted pro-

cedures for null hypothesis testing, we

categorize studies as rejecting the null hypothe-

sis or not based on an all-or-none comparison of

computed p-values relative to an a level cutoff.

Such a discrete categorization is, for example,

how most journals currently evaluate statistical

results in publication decisions and how replica-

tion success or failure has mainly been opera-

tionalized in empirical studies of replication rates

(Camerer et al., 2018; Open Science Collabo-

ration, 2015).

Only true positives and false positives enter

into replication projects. The statistical power

1� b2 and Type 1 error probability a2 of the

replication studies might differ from those of the

original study, especially because replication

studies are usually designed to have much

higher power than the original studies. Thus, the

compound probability of examining a true effect

that yields a significant effect in the original and

in the replication study is p � ð1� b1Þ � ð1� b2Þ,
whereas the compound probability of examining

a null effect and finding significance in both the

initial study and the replication study is

ð1� pÞ � a1 � a2. From the above compound

probabilities, the rate of replication of initially

significant results, RR, can be computed as

RR¼p � ð1�b1Þ � ð1�b2Þþ ð1�pÞ �a1 �a2

p � ð1�b1Þþ ð1�pÞ �a1

: (1)

Figure 2 illustrates this equation by showing

how RR depends on p, a1, and b1 when the

nominal alpha level and the statistical power of

the replication studies are a2 ¼ 0:05 and

1�b2 ¼ 0:90. It can be seen in this figure that RR

increases gradually with p from a minimum of

a2 ¼ 0:05 to a maximum of 1�b2 ¼ 0:90. For

p¼ 0, the proportion of significant results can

only represent false positives, so RR necessarily

equals a2. For p¼ 1, in contrast, RR merely

reflects the power of the replication study. As is

also illustrated in this figure, RR grows faster

when the power 1�b1 of the original studies is

relatively large and their nominal alpha level a1

is relatively small. Note that RR must gradually

increase with p from a2 to 1�b2 even if the

power in the original study were 100%. It is also

instructive to note that worst-case p-hacking

would imply a1 ! 1 and b1 ! 0. In this case it fol-

lows from Equation 1 that RR approaches the

line which runs from a2 at p¼ 0 to 1�b2 at

p¼ 1.

If p-hacking is performed in the original

study, this would increase the Type 1 error rate

above the nominal significance level a1 (usually

5%) to, for example, 10% or even higher. Thus,

when a researcher examines a null effect, p-

hacking increases the proportion of false posi-

tives. The extent of this increase depends on the
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details of the p-hacking strategy that is used, as

we examine in detail below for different strate-

gies. However, and crucially for the analyses that

will follow, when a true effect is present, p-hack-

ing also increases the nominal power 1� b1, for

example, from 0.20 to 0.40 (i.e., power inflation,

as mentioned above). With respect to the overall

replication rate RR, this increase in power tends

to compensate for the increased Type 1 error

probability, making it difficult to determine intui-

tively how p-hacking would affect the replication

rate RR. Fortunately, however, Equation 1 can

be used to assess this issue quantitatively.

Besides assessing the effect of these factors

on replicability, we will also report computations

of the rate of false positives FPR, which is the

proportion of false positive results among all sig-

nificant results within a research area (sometimes

also called false discovery rate or false positive

report probability)

FPR¼ ð1�pÞ �a1

ð1�pÞ �a1 þp � ð1�b1Þ
: (2)

In discussions about replicability—particularly

replicability of published research findings—

researchers often focus on this proportion

(Button et al., 2013; Pashler and Harris, 2012)

under the assumption that true positives are rep-

licable but false positives are not. Therefore, it

seems useful to include this rate in the analyses.

In the following, we model each of the four

common p-hacking strategies that were

described above. For each strategy, the inflated

Type 1 error probability and the statistical power

can be computed. These values are then inserted

into Equation 1, which allows one to evaluate the

effects of base rates and p-hacking on the replica-

tion rate, for both true and null effects. In addi-

tion, we examined the effects on RR of different

levels of a1 and statistical power, because—as

mentioned above—several researchers have

recently suggested lowering the a level or

increasing power in order to increase the replica-

bility of scientific results (Benjamin et al., 2018;

Button et al., 2013). This allows one to judge

how these suggested measures would combat

low replicability and to compare their effects with

those of p-hacking and base rate.

Selective reporting of significant
studies
It has been often suspected that researchers

tend to selectively report studies that yield posi-

tive results, that is, results that are in accordance

with the researcher’s hypothesis (e.g.,

John et al., 2012; Rosenthal, 1979;

Simmons et al., 2011; Zwaan et al., 2018). As

noted earlier, this tendency will increase the

number of reported false positives if researchers

publish only the significant outcomes. This sec-

tion models this p-hacking strategy and exam-

ines how it would influence the replication rate.

As a specific example, suppose that a

researcher runs a series of experiments, each of

which uses a slight variation of the same basic

paradigm. This researcher terminates the series

when a significant result emerges in support of

the researcher’s hypothesis, and in this case the

researcher tries to publish that result. However,

if no significant result is obtained after conduct-

ing k experiments, the researcher abandons the

project and concludes that the hypothesis is

false. Thus, this researcher has k studies provid-

ing opportunities to test the hypothesis, and it

would be misleading about the overall a level to

publish only the significant outcome but not

mention the non-significant attempts

(Francis, 2014).

To model this scenario more concretely,

assume that the researcher computes a z-value

for the outcome of each experiment and consid-

ers the outcome to be statistically significant if

any z-value exceeds a pre-specified criterion c

(e.g., the critical z value of 1.96). In general, the

probability of rejecting H0 can be computed for

k � 1 with
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Figure 2. Rate of replication RR as a function of base rate p. Each line represents a

different combination of the nominal alpha level a1 and the statistical power 1� b1 used by

the original studies. The nominal alpha level and the power of the replication studies were

always a2 ¼ 5% and 1� b2 ¼ 90%.
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PrðReject H0Þ ¼ 1�
Yk

i¼1

PrðZi � cÞ ; (3)

because the outcomes of the k experiments are

statistically independent if a new sample is

recruited each time.

Figure 3 and Figure 3—figure supplement 1

depict the probability of rejecting H0 for two-

and one-sample tests, respectively, as a function

of k 2 ð1; 2; 4; 6; 8Þ, a 2 ð5%; 0:5%Þ, and effect size

d 2 ð0:0; 0:2; 0:5; 0:8Þ. (Appendix 1 contains a

detailed description of both tests.) In these

examples, the group size is assumed to be

n ¼ 20 (i.e., total n ¼ 40 for a two-sample test), a

value that is typical for psychological research

(Marszalek et al., 2011, Table 3), though there

is evidence that sample sizes have increased

recently in the field of social-personality psychol-

ogy (Fraley and Vazire, 2014; Sassenberg and

Ditrich, 2019). The lines for d ¼ 0 depict the

effective Type 1 error probability. Of course, this

probability is equal to a for k ¼ 1, but it

increases with k because of the greater number

of opportunities for getting a significant result

by chance when more studies are conducted.

This increased Type 1 error probability is prob-

lematic because it tends to decrease replication

rates (Benjamin et al., 2018). In the worst of

these cases, the inflated Type 1 error rate attains

a value of about 0.34 with a ¼ 5% and k ¼ 8. As

one expects, decreasing the nominal a level

from 5% to 0.5% substantially diminishes the

Type 1 error probability and thus correspond-

ingly diminishes the probability of obtaining a

false positive (Benjamin et al., 2018). Even for

k ¼ 8 the Type 1 error rate would only be about

0.04 with this smaller nominal a level. It must be

stressed, however, that a larger sample would

be required for a ¼ 0:5% than for a ¼ 5% to

achieve the same level of statistical power in

both cases (Benjamin et al., 2018).

The lines for d>0 reveal the statistical power

to reject H0 when it is false. When researchers

follow good scientific practice, the statistical

power associated with each value of d can be

seen at k ¼ 1. As is well known, power generally

increases with d, and it is larger with a ¼ 5%
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Figure 3. Selective reporting of significant studies. Each panel depicts the probability of rejecting H0 in at least

one study as a function of the number of studies k, nominal a level, and effect size d for a two-sample test with

n ¼ 20 participants in each sample.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Selective reporting of significant studies.
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than with a ¼ 0:5%. For the present purposes,

however, the most important aspect of the d>0

lines is the strong increase of statistical power

with k, which can be seen in both panels, espe-

cially when the single-experiment power is well

below one. Since replication rates increase with

power (Button et al., 2013; Button and

Munafò, 2017), this power inflation will tend to

compensate for the increased Type 1 error rate

with respect to the overall influence of selective

reporting on replication rate. It is therefore nec-

essary to use a quantitative model to assess the

net effect of this practice on the replication rate.

Using the above probabilities of rejecting H0,

the proportion of false positives associated with

this p-hacking scenario can be computed from

Equation 2. Figure 4 and Figure 4—figure sup-

plement 1 highlight the false positive rate as a

function of d, a, and k. Dashed lines show the

rates for researchers engaged in p-hacking. For

comparison, the solid lines depict the rates for

researchers who follow good scientific practice

by just running a single experiment and reaching

a conclusion based on its outcome (i.e., k ¼ 1).

The rates for these researchers were also com-

puted with Equation 2 by inserting the nominal

value of a for a1 and the single-experiment

power for 1� b1.

Several effects can be observed in Figure 4

and Figure 4—figure supplement 1: (a) As one

expects, the false positive rate decreases from

one to zero with increasing p, because the pro-

portion of true effects among all significant

effects becomes larger when p increases (e.g.,

Ioannidis, 2005b; Wilson and Wixted, 2018).

(b) Not surprisingly, the false positive rate

becomes smaller when power increases due to

larger d (Ioannidis, 2005b). (c) Most interest-

ingly and surprisingly, the increase in false posi-

tives produced by p-hacking is more

pronounced with larger d, where statistical

power is higher. This is presumably because p-

hacking cannot increase statistical power much

when it is already high (i.e., when d is large), so

there is little power inflation to compensate for

the increased Type 1 error rate. Nevertheless,

the effect of p-hacking is far from dramatic for

k ¼ 2, although it can be quite prominent for

larger values of k, especially with small base

rates.

Figure 5 and Figure 5—figure supplement 2

depict replication rates computed using the

same parameters as in the previous figures. In

addition, Figure 5—figure supplement 1 and

Figure 5—figure supplement 3 augment these

figures and specifically focus on decrease in RR

(i.e., “shrinkage”) caused by p-hacking. Three

features of these computations are especially

noticeable. (a) Successful replication depends

strongly on the base rate. As one might expect,

all rates converge to the statistical power

1� b2 ¼ 0:90 of the replication study, because

when all significant effects are real, the replica-

tion rate simply reflects the statistical power of

the replication study, whether p-hacking was

involved in the first study or not. (b) The effect

of p-hacking is modest for high base rates, for

the smaller a level, and interestingly also for

smaller effect sizes and hence for low statistical

power. (c) As emphasized by Benjamin et al.,

2018, the replication rate is considerably larger

for a ¼ 0:5% than for a ¼ 5%, especially for small

base rates.

In summary, the above analysis casts doubt

on the idea that this p-hacking strategy is a

major contributor to low replicability, even

though it seems to be one of the most frequent

QRPs (e.g., John et al., 2012). Instead, it seems

that using this strategy would have little effect

on replicability except in research scenarios

where true effects were rare but there was high

power to detect them when they were present.

The strongest trends suggest that a low base

rate of true effects is the major cause of low rep-

licability (Wilson and Wixted, 2018), since

changes in base rate can cause replication rates

to range across nearly the full 0–1 range.

Failing to report all dependent
measures
Failing to report all of a study’s dependent

measures seems to be another common QRP

(Fiedler and Schwarz, 2016; John et al., 2012).

In this section, we analyze how this practice

would affect the rate of replicating statistically

significant results. In order to model this sce-

nario, we assume that a researcher conducts a

study to test a certain hypothesis using control

and experimental conditions. After data collec-

tion, however, the researcher only reports the

outcomes of those dependent measures whose

tests surpass the statistical significance threshold

and thereby confirm the proposed hypothesis.

As examples, multiple dependent measures are

usually measured and statistically evaluated in

neurosciences and medical research, raising con-

cerns about Type 1 error rates in those fields (e.

g., Hutton and Williamson, 2002; Vul et al.,

2009).

We again employed z-tests to model this sce-

nario. Let Z1; . . . ; Zk be the outcomes for all k
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dependent measures of a single study, with each

Z-value representing the result of the control/

experimental comparison for a single measure.

Therefore, the probability of obtaining at least

one significant result is equal to

PrðReject H0Þ ¼ 1�PðZ1 � c; . . . ;Zk � cÞ

with c being the critical cutoff value (see Appen-

dix 1 for computational details). Because such

measures are usually correlated across partici-

pants, our model incorporates correlations

among the Zi values.

Figure 6 illustrates the effects on Type 1

error probability (i.e., lines with d ¼ 0) and statis-

tical power (i.e., lines with d>0) associated with

this type of p-hacking. For this illustration, the

pair-wise correlations of the different dependent

measures were set to 0.2 and the sample size

(per group) was set to 20, which are seemingly

typical values in psychological research

(Bosco et al., 2015; Marszalek et al., 2011). As

expected, both the Type 1 error rate and power

increase with the number of dependent meas-

ures, approximately as was found with selective

reporting.

Figures 7 and 8, and Figure 8—figure sup-

plement 1 show the rate of false positives, rate

of replications, and the shrinkage of the replica-

tion rate, respectively, resulting from this type of

p-hacking. These results are quite similar to

those seen with the selective reporting scenario

(see Figures 4 and 5, and Figure 5—figure sup-

plement 1). In particular, both false positive

rates and replication rates show strong expected

effects of base rate and a level, as well as a clear

influence of effect size, d. The effects of p-hack-

ing are again rather modest, however, especially

when the effect size is small (i.e., d ¼ 0:2) so that

increased power is especially helpful.
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Figure 4. Selective reporting of significant studies. False positive rate (FPR) as a function of base rate p, number

of studies k, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the replication study

are a2 ¼ 5% and 1� b2 ¼ 90%. All results are based on n ¼ 20 per group. Dashed lines give the results for p-

hacking whereas solid lines depict the results of researchers who act in accord with good scientific practice. Note

that the solid lines are the same in all rows of a single column because these constant reference lines do not

depend on k.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Selective reporting of significant studies.
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It should be noted that the extent of both

Type 1 error rate inflation and power enhance-

ment depend on the correlations among the dif-

ferent dependent measures. A correlation of

zero would yield results identical to those of the

scenario with selective reporting in the previous

section, because in this case the outcomes for

multiple dependent measures are independent

just like the outcomes of multiple independent

studies. In contrast, larger correlations (e.g.,

larger than the 0.2 used in Figures 7 and 8 and

Figure 8—figure supplement 1) weaken the

effects of this p-hacking strategy, because the

measures become increasingly redundant as the

intercorrelations increase, and this lowers the

possibility of capitalizing on chance. In other

words, increasing the intercorrelations would

decrease the inflation of both Type 1 error rate

and power. Moreover, increased intercorrela-

tions would decrease the false positive rate and

increase the replication rate, that is, moving the

dashed lines in Figures 7 and 8 toward the solid

reference lines (see Figure 6—figure supple-

ment 1, Figure 7—figure supplement 1, Fig-

ure 8—figure supplement 2, and Figure 8—

figure supplement 3 for a parallel analysis with

intercorrelations of 0.8).

Data peeking
Another frequently-used QRP is data peeking

(Fiedler and Schwarz, 2016; John et al., 2012).

This practice occurs when a researcher collects

additional data after finding that the results of

initially collected data have not yielded statistical

significance. A researcher may even peek at the
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Figure 5. Selective reporting of significant studies. Replication rate (RR) as a function of base rate p, number of

studies k, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the replication study

are a2 ¼ 5% and 1� b2 ¼ 90%. All results are based on n ¼ 20 per group. Dashed lines give the results for p-

hacking whereas solid lines depict the results of researchers who act in accord with good scientific practice. Note

that the solid lines are the same in all rows of a single column because these constant reference lines do not

depend on k.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Selective reporting of significant studies.

Figure supplement 2. Selective reporting of significant studies.

Figure supplement 3. Selective reporting of significant studies.

Ulrich and Miller. eLife 2020;9:e58237. DOI: https://doi.org/10.7554/eLife.58237 9 of 29

Feature Article Meta-Research Questionable research practices may have little effect on replicability

https://doi.org/10.7554/eLife.58237


results several times and increase the sample

with additional observations each time a nonsig-

nificant result is obtained. Data collection is

finally terminated only if the study yields no sig-

nificant result after k peeks. It is known that this

practice increases the Type 1 error rate

(Armitage et al., 1969; Francis, 2012a;

McCarroll et al., 1992; Simmons et al., 2011;

Strube, 2006). For example, Monte-Carlo simu-

lations by Simmons et al., 2011 revealed that

this strategy can increase the error rate up to

14.3% with a first peek at n ¼ 10 and four subse-

quent peeks (each time increasing the sample by

10 observations). However, this practice

increases not only the Type 1 error rate but also

the effective statistical power to reject a false H0

(Strube, 2006), so a quantitative analysis is

needed to determine its effect on replication

rate.

An analysis similar to that of the preceding

sections was conducted to examine how data

peeking affects Type 1 error rates, power levels,

false positive rates, and replication rates.

Appendix 1 contains the computational details

of this analysis, which follows an extension of

Armitage’s procedure (Armitage et al., 1969).

In brief, the probability of rejecting H0 with a

maximum of k peeks at successive sample sizes

n1<n2< � � �<nk is again given by the multivariate

normal distribution for z-tests

PrðReject H0Þ ¼ 1�PðZ1 � c; . . . ;Zk � cÞ:

The correlations among the different Zi values

are determined by the amount of shared data

used in computing them (e.g., all observations

used in computing Z1 are also included in the

computation of Z2).

Figure 9 depicts the probability of rejecting

H0 for various effect sizes and two-sample tests.

The abscissa represents the maximal number of

peeks k at which a researcher would give up

recruiting additional participants. For this exam-

ple, it is assumed that data peeking occurs after

10, 15, 20, 25, 30, 35, 40, or 45 observations per

group. Thus, a researcher with a maximum of

k ¼ 2 peeks will check statistical significance the

first time at n1 ¼ 10 and if the first peek does not
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Figure 6. Failing to report all dependent measures. Each panel depicts the probability of rejecting H0 as a

function of the number of dependent measures k, nominal a level, and effect size d for a two-sample test with

n ¼ 20 participants per group and dependent measure intercorrelations of 0.2.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Failing to report all dependent measures.
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reveal a significant result, the data will be exam-

ined a second and final time at n2 ¼ 15. For

k ¼ 3, data will be examined a first time at

n1 ¼ 10 and—depending on the outcome of the

first peek—a second time at n2 ¼ 15; if the sec-

ond peek also does not reveal a significant

result, a final peek occurs at n3 ¼ 20.

Figure 9 shows quantitatively how the proba-

bility of rejecting H0 increases with the maximum

number of peeks. In particular, the increase can

be quite strong in situations with only moderate

power (e.g., a ¼ 0:5% and d ¼ 0:8) due to the

extra chances of detecting the true effect. In

contrast to the multiple dependent measures

with intercorrelations of 0.2 as discussed in the

previous section, the Type 1 error rate inflation

is smaller in the present case, because Z1; . . . ; Zk

are more strongly correlated under this scenario

(cf. the correlation matrix in Appendix 1).

Given the probabilities of rejecting H0, the

replication rate and false positive rate are again

computed using Equations 1 and 2, respec-

tively. The results with respect to the false posi-

tive rate (Figure 9—figure supplement 1) and

the replication rate (Figure 10 and Figure 10—

figure supplement 1) are quite similar to those

of the preceding scenarios. We compare this p-

hacking strategy with researchers who conform

to good scientific practice and thus examine the

data only once at a preplanned n. In order to

enable a conservative comparison with p-hack-

ers, we used a preplanned n corresponding to

the maximum number of observations a p-

hacker would try when using the indicated num-

ber of peeks (i.e., this preplanned group size

would be n ¼ 15 for the comparison with k ¼ 2,

n ¼ 20 for the comparison with k ¼ 3, etc.). As

can be seen, the pattern of results is quite com-

parable to the previous scenarios. Overall, the
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Figure 7. Failing to report all dependent measures. False positive rate (FPR) as a function of base rate p, number

of dependent measures k, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the

replication study are a2 ¼ 5% and 1� b2 ¼ 90%. All results are based on two-sample tests with n ¼ 20 per group

and dependent measure intercorrelations of 0.2. Dashed lines give the results for p-hacking whereas solid lines

depict the results of researchers who act in accord with good scientific practice. Note that the solid lines are the

same in all rows of a single column because these constant reference lines do not depend on k.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Failing to Report all Dependent Measures.
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data peeking strategy again seems to have little

effect on replication rate except in research sce-

narios where true effects are infrequent and

there is high power to detect them when they

do occur, just as with selective reporting.

Selective outlier removal
Another QRP identified by John et al., 2012 is

to analyze the same overall data set several

times, each time excluding “outlier” data points

identified by different criteria. The researcher

may be tempted to conclude that a real effect

has been found if any analysis yields a significant

result, but this practice inflates the Type 1 error

rate, because each of the analyses provides a

further opportunity to obtain a significant result

by chance. On the positive side, though, this

practice again increases power, because each of

the analyses also provides a further opportunity

for detecting a real effect.

Because the effects of this type of p-hacking

are not computable, we conducted Monte-Carlo

simulations to see how multiple attempts at out-

lier removal would affect the Type 1 error rate,

power, rate of false positives, and replication

rate. Specifically, we examined the common

practice of excluding scores more than a given

number of standard deviations from the sample

mean. We simulated researchers who carried out

a sequence of at most five separate analyses on

a single data set. The first three analyses

included only scores within 3, 2.5, and 2 stan-

dard deviations of the mean, respectively,

because these limits are most commonly

employed in psychological research (Bakker and
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Figure 8. Failing to report all dependent measures. Replication rate (RR) as a function of base rate p, number of

dependent measures k, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the

replication study are a2 ¼ 5% and 1� b2 ¼ 90%. All results are based on two-sample tests with n ¼ 20 per group

and dependent measure intercorrelations of 0.2. Dashed lines give the results for p-hacking whereas solid lines

depict the results of researchers who act in accord with good scientific practice. Note that the solid lines are the

same in all rows of a single column because these constant reference lines do not depend on k.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Failing to report all dependent measures.

Figure supplement 2. Failing to report all dependent measures.

Figure supplement 3. Failing to report all dependent measures.
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Wicherts, 2014). The fourth analysis used the

Tukey, 1977 “fences” method by including all

scores within the range

½l ¼ Q1 � 1:5 � ðQ3 � Q1Þ; u ¼ Q3 þ 1:5 � ðQ3 � Q1Þ�,
where Q1 and Q3 are the 25 and 75% percentile

points of the data set. The fifth analysis used a

nonparametric test, which could potentially be

used as an analysis in an attempt to minimize

the influence of outliers even further.

We simulated experiments for both one- and

two-sample tests, but only report the latter

because the two simulations produced

extremely similar results. There was a sample

size of n ¼ 20 per group using standard normally

distributed scores and true effect sizes of d ¼ 0,

0.2, 0.5, and 0.8. Researchers were modelled as

using either a ¼ 0:5% or 5%, one-tailed. The

nonparametric test was the Mann-Whitney U

test, and this test was used only if none of the

previous analyses had produced significant

results. We simulated 10,000 experiments with

outliers by adding a random noise value to 5%

of the data values, where these noise values

came from a normal distribution with � ¼ 0 and

s ¼ 10. This simulation method has often been

adopted to model contamination effects of out-

liers (e.g., Bakker and Wicherts, 2014;

Zimmerman, 1998).

Figure 11 shows the probabilities of rejecting

H0. As with the other p-hacking methods, this

probability increases with the number of analy-

ses conducted, increasing the probability of a

Type 1 error when d ¼ 0 and increasing power

when d>0. Figures 12 and 13 show the false

positive and replication rates; Figure 13—figure

supplement 1 depicts the shrinkage of the repli-

cation rate. Interestingly, in some cases these

measures even indicate slightly better results (i.

e., lower false positive rates and higher replica-

tion rates) when researchers perform multiple

analyses to remove the effects of possible out-

liers than when they do not. Most importantly,

however, the present scenario also reveals that

the major impact on the replication rate seems

to come from the base rate.

The present simulations assume that

researchers try to remove outliers (i.e., apply a

three-sigma rule) before they perform a t-test.

Alternatively, however, researchers might first

conduct a t-test on all data without excluding
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Figure 9. Data peeking. Each panel depicts the probability of rejecting H0 as a function of the number of maximal

peeks k, nominal a level, and effect size d for a two-sample test.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Data peeking.
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any extreme data points. If this test did not

reveal statistical significance, they would then

eliminate extreme data points before conduct-

ing one or more further t-tests. Under this alter-

native scenario, our simulations indicate that

multiple analyses can produce notably better

replication rates than the single analysis with all

data points, apparently because the exclusion of

outliers noticeably improves power relative to

the analysis without exclusions. Moreover, the

standard deviation of our outlier distribution was

small compared to simulations of similar outlier

scenarios (e.g., Bakker and Wicherts, 2014;

Zimmerman, 1998). Our conclusion, of course,

is that researchers should carefully examine their

data for possible outliers before conducting any

statistical tests, not that they should perform

multiple tests with different outlier screening cri-

teria—thereby inflating their Type 1 error

rates—in order to maximize power.

Naturally, the story is different when no out-

liers are present in the data set. Making multiple

attempts to remove outliers in this case would

actually always increase the false positive rate

and lower the replication rate (see Figure 11—

figure supplement 1, Figure 12—figure sup-

plement 1, Figure 13—figure supplement 2,

and , Figure 13—figure supplement 3 for a par-

allel simulation with no outliers). In fact, extreme

data points in data sets without outliers appear

to be especially diagnostic for testing the equal-

ity of locations between populations, as the

Tukey pocket test demonstrates (Tukey, 1959),

so throwing away extreme observations that are

not outliers reduces the information in the data

set.

General discussion
The ongoing reproducibility crisis concerns virtu-

ally all sciences and naturally prompts questions
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Figure 10. Data peeking. Replication Rate (RR) as a function of base rate p, number of maximal data peeks k,

and nominal a level (0.5% or 5%). The nominal a level and power of the replication study are a2 ¼ 0:05 and

1� b2 ¼ 0:90. Dashed lines give the results for p-hacking whereas solid lines depict the results of researchers who

act in accord with good scientific practice. Note that the solid lines are the same in all rows of a single column

because these constant reference lines do not depend on k.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Data peeking.
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about how replication rates can be improved.

Several measures have been advocated as ways

to raise reproducibility, such as (a) preregistra-

tion of studies (Nosek et al., 2018), (b) increas-

ing the transparency of research by making data

and research materials publicly available (e.g.,

Nosek et al., 2015), (c) reducing a

(Benjamin et al., 2018), (d) increasing statistical

power (Button and Munafò, 2017), (e) improv-

ing statistical training (Asendorpf et al., 2013),

(f) adopting Bayesian approaches (Etz and Van-

dekerckhove, 2016), and even (g) overhauling

standard scientific methodology (Barrett, 2020).

The variety of these proposed measures demon-

strates that replication failures can result from a

multitude of causes that may come into play at

various steps along the “entire analysis pipeline”

(Leek and Peng, 2015).

The present article focused on the statistical

consequences of QRPs with respect to replica-

tion rate. The impacts of the various statistical

factors affecting replication rate (i.e., a, power,

p, p-hacking) have typically been examined in

isolation, which does not allow a complete

assessment of their mutual influence and often

leads to suggestions that are difficult to imple-

ment simultaneously, such as lowering a and

increasing power. In order to develop a better

quantitative picture of the different influences

on replicability, we modelled several apparently-

frequent p-hacking strategies to examine their

impacts on replication rate.

Our quantitative analyses suggest that p-

hacking’s effects on replicability are unlikely to

be massive. As noted previously, p-hacking

inflates the effective Type 1 error rate (e.g.,

Simmons et al., 2011), which tends to reduce

replicability, but our analyses indicate that the

corresponding increase in power (i.e., power

inflation) substantially compensates for this infla-

tion. Compared to the strong effect of the base

rate on replicability, the reduction in replication

rate caused by p-hacking appears rather small.

Unsurprisingly, the impact is larger when p-hack-

ing is more extensive (i.e., k ¼ 8 rather than

k ¼ 2). Moreover, p-hacking affects the replica-

tion rate most when the base rate is small. This

makes sense, because p-hacking is harmful
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rejection methods attempted for various effect sizes d, and nominal a level (0.5% or 5%). Probability estimates

were based on 10,000 simulated experiments. Simulated data included 5% outliers.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Selective outlier removal.
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primarily when H0 is true, which is more common

with small base rates. The net influence of p-

hacking on replicability appears to be smallest

with small effect sizes, which is presumably the

situation where p-hacking is most likely to be

used. With small effects, the power increases

associated with p-hacking are especially helpful

for replicability. Finally and somewhat surpris-

ingly, p-hacking tends to have a smaller effect

on replicability when the nominal a level is 0.5%

rather than 5%.

Of course, these conclusions are restricted to

the limited extent of p-hacking (i.e., k ¼ 2; . . . ; 8)

that we examined, and more extensive p-hack-

ing—or combining multiple p-hacking strate-

gies—would presumably have larger effects on

replicability. Nonetheless, we think that eight is

a reasonable upper bound on the number of p-

hacking attempts. The extent of p-hacking

remains a controversial issue, with some arguing

and providing evidence that ambitious p-hacking

is too complicated and thus not plausible

(Simonsohn et al., 2015). Unfortunately, the

exact extent of p-hacking is difficult to deter-

mine and might strongly depend on the field of

research. For example, in areas with small effect

sizes, p-hacking might be more extensive than in

fields with medium or large effect sizes. But

even without knowing the true p-hacking rates,

our analyses are valuable because they clearly

show that evidence of massive p-hacking is

needed before one can conclude that it is a

major contributor to the replication crisis. In

addition, when estimating the actual effect of p-

hacking on observed replication rates (e.g.,

Open Science Collaboration, 2015), it is impor-

tant to note that the effects shown in our figures

are upper bounds that would only be

approached if nearly all researchers employed

these p-hacking methods. If only 10% of

researchers use these methods, then the overall

effects on empirical replication rates would be
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Figure 12. Selective outlier removal. False positive rate (FPR) as a function of the number k of outlier rejection

methods attempted, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the

replication study is a2 ¼ 0:05 and 1� b2 ¼ 0:90. Dashed lines gives the results for p-hacking whereas solid lines
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The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Selective outlier removal.
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only 10% as large as those suggested by our

model. Even the highest estimates of the preva-

lence of QRPs are only approximately 50%

(John et al., 2012), and these may be serious

overestimates (Fiedler and Schwarz, 2016).

Our quantitative analysis also assumed high-

powered replication studies, that is,

1� b2 ¼ 90%. This replication power was chosen

as the best-scenario value close to the average

replication power claimed by the Open Science

Collaboration, 2015. However, the power of

the replication studies might not have been as

high as they claimed. In particular, selective

reporting of significant studies tends to overesti-

mate true effect sizes, especially when these are

small (Hedges, 1984; Lane and Dunlap, 1978;

Ulrich et al., 2018), so the effect size estimates

used in the power computations of the

Open Science Collaboration, 2015 may have

been too large. As a consequence, their actual

power levels may have been lower than the esti-

mated 90%. To check whether our conclusions

would still be valid with lower replication power,

we reran our computations using a replication

power of 50%. These computations revealed

that p-hacking would even be slightly less harm-

ful to replication rates with 50% rather than 90%

replication power.

Our analyses were based on groups size of

n ¼ 20 (Marszalek et al., 2011). Recent meta-

analyses, however, have indicated an increase in

sample size especially in social-personality

research (Fraley and Vazire, 2014;

Sassenberg and Ditrich, 2019). Therefore, one

may ask whether our main conclusions still apply

for larger samples. First, as discussed in the

introduction, the replication rate increases grad-

ually with base rate whether the statistical power
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Figure 13. Selective outlier removal. Replication rate (RR) as a function of the number k of outlier rejection

methods attempted, effect size d, and nominal a level (0.5% or 5%). The nominal a level and power of the

replication study is a2 ¼ 0:05 and 1� b2 ¼ 0:90. Dashed lines gives the results for p-hacking whereas solid lines

depict the results for researchers who act according to good scientific practice. Simulated data included 5%

outliers.

The online version of this article includes the following figure supplement(s) for figure 13:

Figure supplement 1. Selective outlier removal.

Figure supplement 2. Selective outlier removal.

Figure supplement 3. Selective outlier removal.
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of the original study is low or even 100%. There-

fore, even large sample studies cannot avoid low

replication rates when the base rate is small.

Second, because the statistical power increases

with both sample size and effect size, increasing

the effect size mimics what would happen if one

increases the sample size. In fact, additional

computations with larger samples (i.e., group

size of 50) revealed no meaningful changes that

would alter our conclusions.

Another limitation concerning our conclusions

is that our list of p-hacking strategies was not

exhaustive. For example, we did not examine

the possibility that researchers might try several

covariates until a significant result is obtained (e.

g., Simonsohn et al., 2014b). As another exam-

ple, suppose a researcher conducts a multi-fac-

tor analysis of variance (ANOVA) that invites the

examination of multiple main effects and interac-

tions, any one of which might be cherry picked

as a “finding” in the absence of a specific a pri-

ori hypothesis. For instance, a three-factorial

ANOVA allows the examination of seven poten-

tial effects (i.e., three main effects and four inter-

actions). Assuming that all seven sources and

their error terms are independent, the probabil-

ity of at least one significant result when H0

holds in all cases is 1� ð1� aÞ7—about 30% with

a ¼ 0:05—which would simply emulate the multi-

ple studies scenario that we analysed in this arti-

cle. Thus, analyses similar to the present ones

would be needed to analyze the consequences

of these other strategies, but it would be surpris-

ing if the results were drastically different.

We supplemented the analyses reported in

this manuscript by two further analyses (see

Appendix 2), each of which approached the rep-

lication issue from a different angle.

One supplementary analysis assessed the effect

of p-hacking on power while controlling for the

overall Type 1 error rate. The outcome of this

analysis demonstrated that some p-hacking

strategies can actually produce higher statistical

power than good practice at each level of Type

1 error. This superiority can be explained by the

fact that p-hacking sometimes involves the col-

lection of additional data (e.g., as with data

peeking or measuring additional variables), and

in these cases the additional data can cause sta-

tistical power to increase faster than the Type 1

error rate. The other supplementary analysis

compared the overall research payoff associated

with good practice versus data peeking using

the payoff model of Miller and Ulrich, 2016.

This analysis showed that the expected total

payoff can actually be larger with data peeking

than with good practice, evidently because data

peeking tends to make more efficient use of lim-

ited sample sizes when true effects are common.

If p-hacking is not a major contributor to low

replicability, then what is? In keeping with previ-

ous analyses (Dreber et al., 2015;

Johnson et al., 2017; Miller, 2009; Miller and

Ulrich, 2016; Wilson and Wixted, 2018), our

results suggest that low base rates of true

effects—not too-large a levels, too-low power,

or p-hacking—are most likely to be the major

causes of poor replicability, so researchers con-

cerned about replicability should pay special

attention to the issue of base rates. Clearly, low

base rates can lead to disappointingly low repli-

cation rates even in the absence of p-hacking (e.

g., Figures 5, 8, 10 and 13, “good practice”). It

follows from our analyses that research fields

with inherently low base rates simply cannot

improve their replication rates much by focusing

exclusively on methodological issues. There are

multiple lines of evidence that base rates are

low in many fields (particularly those with low

replication rates; e.g., Dreber et al., 2015;

Johnson et al., 2017; Miller and Ulrich, 2016;

Miller and Ulrich, 2019; Wilson and Wixted,

2018), and it will be especially challenging to

increase replicability in those fields.

In principle, researchers can increase base

rates by testing hypotheses that are deduced

from plausible, evidence-based theories rather

than by looking for effects that would be partic-

ularly surprising and newsworthy. However,

practical constraints may often make it difficult

to increase base rates, especially in research

areas where a deeper theoretical understanding

is lacking (e.g., in the search for an effective vac-

cine against an infectious disease). In such areas,

a haphazard approach to hypothesis selection

may be the only option, which naturally implies a

low base rate. In combination with publication

bias and p-hacking, this low base rate may make

it particularly challenging to establish scientific

claims as facts (Nissen et al., 2016).

Looking beyond replication rates, meta-scien-

tists should consider exactly what measure of

research productivity they want to optimize. For

example, if the goal is to minimize false posi-

tives, they should use small a levels and elimi-

nate p-hacking. If the goal is to minimize false

negatives, however, they should do exactly the

opposite. The major problem in statistical deci-

sion making is that one cannot maximize all of

the desirable goals at the same time. Thus,

focusing on only one goal—even that of
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maximizing replicability—will not yield an opti-

mal research strategy. Identifying the optimal

strategy requires considering all of the goals

simultaneously and integrating them into a com-

posite measure of research productivity. One

way to do this is to analyze the probabilities and

payoffs for a set of possible research outcomes

and to identify research parameters maximizing

the expected research payoff (Miller and Ulrich,

2016). This analysis must also take into account

how limited research resources would be used

under different strategies. Other things being

equal, for example, fewer resources would be

needed for replication studies with a ¼ 0:005

than with a ¼ 0:05, simply because initial studies

would produce fewer significant outcomes as

candidates for replication.

Conclusion
We modelled different causes (alpha level,

power, base rate of true effects, QRPs) of low

replication rates within a general statistical

framework. Our analyses indicate that a low rate

of true effects—not p-hacking—is mainly respon-

sible for low replication rates—a point that is

often under-appreciated in current debates

about how to improve replicability. Of course,

we do not wish to transmit the message that p-

hacking is tolerable just because it might

increase power when a researcher examines a

true effect. As has often been discussed previ-

ously (Simmons et al., 2011), p-hacking should

always be avoided because it inflates Type 1

error rates above stated levels and thus under-

mines scientific progress. Rather, our message is

that scientists and others concerned about low

replication rates should look beyond p-hacking

for its primary causes. The current analyses sug-

gest that even massive campaigns against p-

hacking (e.g., researcher education, pre-registra-

tion initiatives) may produce only modest

improvements in replicability. To make large

changes in this important scientific measure, it

will likely be necessary to address other aspects

of the scientific culture. Unfortunately, that may

not happen if attention and blame are focused

too narrowly on p-hacking as a major cause of

the current problems in this area.
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Appendix 1

The analysis of p-hacking in the main article is based on one- and two-sample z-tests. Although

researchers usually employ one- and two-sample t-tests rather than z-tests, we studied the latter

tests because of their greater mathematical tractability. This should not have a big impact on the

results, because z-tests closely resemble the results of the corresponding t-tests for realistic sample

sizes.

One-sample z-Test

This test proceeds from a random sample of n observations D1; . . . ;Dn from Nð�;sÞ. Each observa-

tion Ds is a single measure taken from each of the s ¼ 1; . . . ; n subjects. Let D ¼Pn
s¼1

Ds. Thus

EðDÞ ¼ n � � and SDðDÞ ¼ s � ffiffiffi
n

p
. In order to test the null hypothesis H0 : � ¼ 0, one uses the test

statistic

Z ¼ D� 0

s � ffiffiffi
n

p ;

which follows a standard normal distribution under the null hypothesis. For example, with a one-

tailed test this hypothesis is rejected if Z exceeds the critical value ca that is associated with a pre-

specified a level. Moreover, the effect size of this test is

d¼ �� 0

s
:

There is an alternative application of the one-sample test that is worth mentioning. In this case

Ds ¼ Xs�Ys represents a difference score for the s-th subject, and the dependent measures X and Y

are most likely correlated across subjects. Consequently, the variance of D is given by

VarðDÞ ¼VarðXÞþVarðYÞ� 2 �CovðX;YÞ:

If we let VarðXÞ ¼VarðYÞ ¼ n �s2 and % be the correlation between X and Y, the preceding expres-

sion simplifies to

VarðDÞ ¼ 2 � n �s2 � ð1� %Þ:

Note that for a moderate correlation, i.e., %¼ 0:5, the standard deviation of D becomes SDðDÞ ¼
ffiffiffi
n

p �s and thus the test statistic under H0 of this alternative is

Z ¼ D� 0

s � ffiffiffi
n

p

with effect size equal to d¼ �=s. Therefore, this alternative view of the one-sample test is equivalent

to the aforementioned single-variable view.

Two-sample z-Test

The two-sample z-test proceeds from two independent samples X ¼ ðX1; . . . ;XnÞ and

Y ¼ ðY1; . . . ; YnÞ. To simplify matters, equal sample sizes are assumed. Without loss of generality, the

first sample X is a random draw from Nð�;sÞ and the second sample Y from Nð0;sÞ. Let Ds ¼ Xs � Ys

and D ¼Pn
s¼1

Ds; consequently, EðDÞ ¼ n � � and SDðDÞ ¼ s �
ffiffiffiffiffiffiffiffiffi
2 � n

p
. Thus the associated z-value of

the statistic D for testing H0 : � ¼ 0 is

Z ¼ D� 0

s �
ffiffiffiffiffiffiffiffi
2 � n

p :

In addition, the effect size of this test is

d¼ �� 0

s
:
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Multiple dependent measures

This section explains how to compute the probability of rejecting H0 when a researcher assesses k

dependent measures for statistical significance. Assume that each of these dependent measures

D1; . . . ;Dk is converted into a z-value, that is,

Zi ¼
Di

g � ffiffiffi
n

p i¼ 1; . . . ;k (1)

resulting in the random vector Z ¼ ðZ1; . . . ;ZkÞ; g is equal to s for a one-sample test and equal to s �
ffiffiffi
2

p
for a two-sample test. This vector has a multivariate distribution Nðm; SÞ. The mean of each z-

value is given by

EðZiÞ ¼
d

s�
�
ffiffiffi
n

p
i¼ 1; . . . ;k (2)

and the variance of each z-value must be one; s� equals 1 and
ffiffiffi
2

p
for one- and two-sample tests,

respectively.

The covariance matrix for the one-sample z-test can be derived as follows. Let the correlation

coefficient of Di and Dj be equal to %i;j ¼ %. Then the covariance of Zi and Zj is

CovðZi;ZjÞ ¼ Cov
Di
ffiffiffi
n

p �s ;
Dj
ffiffiffi
n

p �s

� �

¼ 1

n �s2
�Cov Di ;Dj

� �

¼ 1

n �s2
� % �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðDiÞ �VarðDjÞ
q

¼ 1

n �s2
� % � n �s2

¼ %:

Consequently, the off-diagonal elements in S are equal to % and those of the main diagonal are

equal to 1.

For the two-sample test, the derivation of S proceeds as follows

CovðZi;ZjÞ ¼ Cov
Di
ffiffiffiffiffi

2n
p

�s
;

Dj
ffiffiffiffiffi

2n
p

�s

� �

¼ 1

2n �s2
�CovðDi ;DjÞ

¼ 1

2n �s2
�CovðXi �Yi ;Xj �YjÞ

¼ 1

2n �s2
� CovðXi ;XjÞ�CovðXi ;YjÞ�CovðYi ;XjÞþCovðYi ;YjÞ
� �

¼ 1

2n �s2
� CovðXi ;XjÞþCovðYi ;YjÞ
� �

¼ 1

2n �s2
� % �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXiÞVarðXjÞ
q

þ % �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYiÞVarðYjÞ
qh i

¼ 1

2n �s2
� % � n �s2 þ % � n �s2
� �

¼ %:

As a result, S is identical to the covariance matrix of the one-sample test.

The rejection probability

PrðReject H0jm;SÞ ¼ 1�PrðZ1 � c; . . . ;Zk � cÞ (3)

can be evaluated using routine mvncdf of MATLAB 2019a or function pmvnorm of the R package

mvtnorm (Genz, 1992; Genz and Bretz, 1999; Genz and Bretz, 2002).
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Computing the probability of rejecting H0 with multiple peeks

This section shows how to compute the probability of rejecting H0 with a maximum of k peeks for

one- or two-sample z-tests. Our procedure extends the standard approach originally suggested by

Armitage et al., 1969; (see also Proschan et al., 2006, p. 78), which can be used to compute the

probability of rejecting H0 for a one-sided test of a true null hypothesis. The extension also allows

one to compute the probability of rejecting H0 when the null hypothesis is false (a somewhat similar

mathematical approach is provided in Proschan et al., 2006).

Assume that data are first checked for statistical significance (i.e., first “peek”) when n1 observa-

tions have been collected for a one-sample design or in each group for a two-sample design. If no

statistically significant result is observed, the per-group sample size will be increased to n2 and again

checked for statistical significance. This strategy is repeated until a significant result is obtained or

terminated after k peeks when there has been no significant result at any peek. Thus, the sequence

n1<n2< � � �<nk denotes the different sample sizes at which the researcher tests the null hypothesis. In

order to compute the probability of rejecting H0 with multiple peeks, we let Z1; . . . ; Zk be the z-values

associated with the various sample sizes n1; . . . ; nk. For a one-sided test the probability of rejecting

H0 with a maximum of k peeks is given by

PrðReject H0jn1; . . . ;nkÞ ¼ 1�PrðZ1 � c; . . . ;Zk � cÞ (4)

where PrðZ1 � c; . . . ;Zk � cÞ is the cumulative distribution function of the random vector Z ¼
ðZ1; . . . ;ZkÞ that follows a multivariate normal Nðm;SÞ with m¼ ½EðZ1Þ; . . . ;EðZkÞ� and covariance matrix

S. In addition, the cutoff c corresponds to the 100 � ð1�aÞ% percentile of the standard normal.

Under H0, the expected means of Zi are EðZiÞ ¼ 0 for i ¼ 1; . . . ; k. In contrast, under H1 these

means are

EðZiÞ ¼
d

s�
� ffiffiffiffi

ni
p

; i¼ 1; . . . ;k (5)

with s� ¼ 1 for a one-sample test and s� ¼
ffiffiffi
2

p
for a two-sample test.

The covariance matrix S is completely specified by the vector n ¼ ½n1; . . . ; nk�. It can be shown that

the ði; jÞ-th element for nj � ni of this matrix is given by

CovðZi;ZjÞ ¼
ffiffiffiffi
ni

nj

r

: (6)

In order to prove this equation, one makes use of the distributive property of covariances,

CovðZi;ZjÞ ¼ Cov
Di
ffiffiffiffi
ni

p �s�
;

Dj
ffiffiffiffi
nj

p �s�

 !

¼ 1

s2
� �

ffiffiffiffiffiffiffiffiffiffi
ni � njp �Cov

Xni

s¼1

Xs ;
Xnj

s¼1

Xs

 !

¼ 1

s2
� �

ffiffiffiffiffiffiffiffiffiffi
ni � njp �Cov

Xni

s¼1

Xs ;
Xni

s¼1

Xs þ
Xnj

s¼niþ1

Xs

 !

¼ 1

s2
� �

ffiffiffiffiffiffiffiffiffiffi
ni � njp � Cov

Xni

s¼1

Xs ;
Xni

s¼1

Xs

 !

þCov
Xni

s¼1

Xs ;
Xnj

s¼niþ1

Xs

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term¼0

2

6
6
6
6
4

3

7
7
7
7
5

¼ 1

s2
� �

ffiffiffiffiffiffiffiffiffiffi
ni � njp �Var

Xni

s¼1

Xs

 !

¼ 1

s2
� �

ffiffiffiffiffiffiffiffiffiffi
ni � njp � ni �s2

�

¼
ffiffiffiffi
ni

nj

r

:

For example, with peeks at n¼ ½20;25;30;35;40�, one obtains
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S¼

1:0000 0:8944 0:8165 0:7559 0:7071
0:8944 1:0000 0:9129 0:8452 0:7906
0:8165 0:9129 1:0000 0:9258 0:8660
0:7559 0:8452 0:9258 1:0000 0:9354
0:7071 0:7906 0:8660 0:9354 1:0000

2

6
6
6
6
4

3

7
7
7
7
5

:

Again with m and S, one can evaluate Equation 4 using routine mvncdf of MATLAB 2019a or

function pmvnorm of the R package mvtnorm (Genz, 1992; Genz and Bretz, 1999; Genz and Bretz,

2002).
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Appendix 2

A comparison of research payoffs

Using the quantitative models of p-hacking developed in the main article, good practice and p-hack-

ing can also be compared with respect to global measures of research effectiveness, in addition to

the comparisons of Type 1 error rates, false positives, and replication rates. As an illustration, this

section compares good practice versus the particular p-hacking strategy of data peeking based on

the overall research payoff model of Miller and Ulrich, 2016.

The payoff model assumes that a researcher tests a fixed total number of participants across a

large number of studies (e.g., nmax ¼ 1; 000), with each study testing either a true or a false null

hypothesis (i.e., d ¼ 0 or d>0). Each study produces one of four possible decision outcomes: a true

positive (TP) in which H0 is correctly rejected, a false positive (FP) in which H0 is incorrectly rejected

(i.e., Type 1 error), a true negative (TN) in which H0 is correctly retained, or a false negative (FN) in

which H0 is incorrectly retained (i.e., Type 2 error). According to the model, each outcome is associ-

ated with a given scientific payoff for the research area as a whole (i.e., Ptp, Pfp, Ptn, Pfn, in arbitrary

units). The expected net payoff for any given research strategy (e.g., data-peeking, good practice) is

the weighted sum of the individual outcome payoffs, with weights corresponding to the expected

number of studies within that strategy multiplied by the probabilities of the different outcomes [i.e.,

PrðTPÞ, PrðFPÞ, PrðTNÞ, PrðFNÞ]. The numbers of studies and outcome probabilities for researchers

using good practice can be computed using standard techniques (e.g., Miller and Ulrich, 2016),

and they can be computed for data-peeking researchers using the outcome probabilities computed

as described in the main article.

Appendix 2—figure 1 illustrates expected net payoffs for a simple scenario in which positive

results are either helpful or harmful to the scientific field (i.e., Ptp ¼ 1, Pfp ¼ �1), whereas negative

results are basically uninformative (i.e., Ptn ¼ Pfn ¼ 0), and several aspects are of interest. First, as

was noted by Miller and Ulrich, 2016, the expected net payoff increases strongly with the base rate

of true effects, simply because the higher base rate increases the likelihood of obtaining true posi-

tive results. With a low base rate of true effects, the expected payoff can even be negative if the

base rate is so low that FPs are more common than TPs. Second, as was emphasized by Miller and

Ulrich, 2019, payoffs can be larger for a ¼ 5% than for a ¼ 0:5%, especially when the base rate of

true effects is not too small. This happens because the greater power provided by the larger a level

outweighs the associated increase in Type 1 errors. Third, payoffs depend little on sample size, again

because of a trade-off: Although larger samples provide greater power, which tends to increase pay-

off, they also reduce the number of studies that can be conducted with the fixed total number of

participants, which tends to reduce payoff.
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Appendix 2—figure 1. Expected payoff as a function of base rate and sample size. The dashed

lines give the expected payoffs for researchers using data peeking at sample sizes of 10, 15, 20, 25,

and 30. The solid lines give the expected payoffs for researchers who act in accord with good

scientific practice and only check the data once, at the indicated sample size. The panels on the left

side reflect the results for one-sample tests, whereas those on the right for two-sample tests. The

upper and lower panels give the results for a nominal one-tailed a levels of 0.5 and 5%, respectively,

with different vertical scales used because of the different ranges of payoffs for the two a levels. All

results are based on an effect size of d ¼ 0:2, individual outcome payoffs of Ptp ¼ 1, Pfp ¼ �1,

Ptn ¼ 0, and Pfn ¼ 0, and a total sample size of nmax ¼ 1; 000. The results are similar for two-tailed

testing (not shown).

In the present context, however, the most interesting aspect of Appendix 2—figure 1 is that the

expected payoff can be larger with p-hacking by data peeking than with good practice. As was

noted earlier, data peeking inflates the Type 1 error rate but also increases power, and these two

consequences of peeking have counteracting effects on total payoff due to the opposite weighting

of TPs and FPs (i.e., Ptp ¼ 1, Pfp ¼ �1). When the base rate of true effects is large enough, the posi-

tive effects of increased power outweigh the negative effects of increased Type 1 errors. Moreover,

with relatively large base rates (e.g., p>0:8), this can be true even when the cost of an FP is much

larger than the gain associated with a TP (e.g., Ptp ¼ 1, Pfp ¼ �10). Thus, under certain circumstan-

ces, data peeking would arguably be more effective than using the good-practice approach of fixing

sample size in advance (e.g., Frick, 1998).

Type 1 error rate versus power

Because there is an inherent trade-off between Type 1 error rate and power (i.e., larger Type 1 error

rates tend to produce greater power), it is also useful to compare good practice and p-hacking pro-

cedures in a manner that takes both of these variables into account simultaneously. Similar compari-

sons are standard tools for determining the most powerful test (e.g., Mood et al., 1974), under the

assumption that a better procedure yields higher power for a given Type 1 error rate.

Appendix 2—figure 2 shows examples of such comparisons, plotting power versus Type 1 error

rate for good practice and for each of the p-hacking procedures. To trace out the each line in this

figure, the nominal a level of each procedure was varied between 0.001–0.2 in steps of 0.001. For

good practice, the Type 1 error rate is simply the nominal a level, and power is computed using

standard methods for that a, a given effect size d>0, a given sample size, and a one- or two-sample

design. The analogous Type 1 error rates and power values for each of the p-hacking procedures
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can be computed using the models described in the main article. For the p-hacking methods, the

Type 1 error rates are greater than the nominal 0.001–0.2 a levels (i.e., Type 1 error rate inflation),

and the curves for the different p-hacking methods are therefore stretched and shifted to the right.

For example, with a nominal a ¼ 0:2—the maximum used in these calculations—the actual Type 1

error rate for multiple studies p-hacking is nearly 0.7.

Perhaps surprisingly, Appendix 2—figure 2 shows that several of the p-hacking procedures have

greater power than good practice at each actual Type 1 error rate. As an example, consider multiple

studies p-hacking with k ¼ 5 as shown in the figure. Taking inflation into account, a nominal a level

of 0.01 produces a Type 1 error rate of approximately 0.05. For d ¼ 0:2 and one-sample testing, this

nominal a level yields power of 0.33. In contrast, using good practice with a nominal a level of 0.05,

which of course produces the same Type 1 error rate of 0.05, the power level is only 0.23. Thus, a

multiple studies researcher using the stricter nominal a level of 0.01 would have the same rate of

Type 1 errors as the good practice researcher and yet have higher power. As a consequence of its

higher power and equal Type 1 error rate, multiple studies would also produce a higher replication

rate than good practice for any fixed base rate of true effects. Thus, under certain circumstances,

the p-hacking procedures would arguably be more effective than the good-practice approach.
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Appendix 2—figure 2. Power as a function of Type 1 error rate. Power for one-tailed testing as a

function of Type 1 error rate for researchers using good practice or one of the four p-hacking

procedures considered in the main article: multiple studies (k ¼ 5), multiple DVs (k ¼ 5 with

intercorrelations of 0.2), data peeking after n ¼ 10, 15, 20, 25, and 30, or multiple analyses (k ¼ 5).

Computations were based on a sample size of n ¼ 20 (per group) for all procedures other than data-

peeking.

In retrospect, it seems obvious that some types of p-hacking would produce higher power than

good practice, because they involve collecting more data. In these examples good practice involved

testing 20 participants in the example one-sample design, whereas multiple studies p-hacking

allowed testing up to 100 participants. Data peeking also involved testing more participants—up to

a maximum of 30—when that was necessary to obtain significant results. Collecting multiple DVs

also provides more data because there are more scores per participant. Only multiple analysis p-

hacking involves collecting the same amount of data as good practice, and this type of p-hacking

yields less power than good practice at a given Type 1 error rate.
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