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ABSTRACT Associations between leguminous plants and symbiotic nitrogen-fixing
rhizobia are a classic example of mutualism between a eukaryotic host and a specific
group of prokaryotic microbes. Although this symbiosis is in part species specific, differ-
ent rhizobial strains may colonize the same nodule. Some rhizobial strains are com-
monly known as better competitors than others, but detailed analyses that aim to pre-
dict rhizobial competitive abilities based on genomes are still scarce. Here, we
performed a bacterial genome-wide association (GWAS) analysis to define the genomic
determinants related to the competitive capabilities in the model rhizobial species
Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP)
tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor
strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test.
Competition data and strain genomic sequences were employed to build a model for
GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped
on the genomes of four strains showing the highest competition phenotypes (.60%
single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-
mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically
on genes coding for transporters, proteins involved in the biosynthesis of cofactors,
and proteins related to metabolism (e.g., fatty acids). The same analysis was performed
considering the sum of single and mixed nodules obtained in the competition assays
versus BL225C, retrieving k-mers mapped on the genes previously found and on vir
genes. Therefore, the competition abilities seem to be linked to multiple genetic deter-
minants and comprise several cellular components.

IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is
challenging in the study of bacterial social interaction strategies. To date, the single-
gene approach has mainly been used to uncover the bases of nodulation, but there
is still a knowledge gap regarding the main features that a priori characterize rhizo-
bial strains able to outcompete indigenous rhizobia. Therefore, tracking down which
traits make different rhizobial strains able to win the competition for plant infection
over other indigenous rhizobia will improve the strain selection process and, conse-
quently, plant yield in sustainable agricultural production systems. We proved that a
k-mer-based GWAS approach can efficiently identify the competition determinants of
a panel of strains previously analyzed for their plant tissue occupancy using double
fluorescent labeling. The reported strategy will be useful for detailed studies on the
genomic aspects of the evolution of bacterial symbiosis and for an extensive evalua-
tion of rhizobial inoculants.
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The nitrogen-fixing symbiotic interaction between rhizobia and legumes (mostly
Fabaceae) is a classic example of a mutualistic association (1). It starts with the mu-

tual recognition of molecular signals, specifically flavonoids released from the plant roots
and Nod factors produced by rhizobia (2). Nod factors induce a molecular response in
plant root cells, which ultimately leads to rhizobium entry in the radical tissue and intra-
cellular colonization (3). Molecular signaling also drives the development of new struc-
tures on plant roots, called nodules, where intracellular rhizobia differentiate into bacte-
roids, the form responsible for dinitrogen fixation (4–6). In a single nodule (a mass of a
few hundreds of milligrams), up to 106 bacterial cells can be recovered, whereas in the
soil, free-living rhizobia do generally not exceed 103 to 104/g of soil (7, 8).

As in a trade framework, the benefit for the rhizobium is obtaining a protected envi-
ronment where it can reproduce (under control) and receive carbon and energy sup-
plies from the plant, whereas the reward for the plant is the availability of fixed nitro-
gen (7, 9). Since rhizobial transmission is horizontal, plants may also be colonized by
poorly effective (low-nitrogen-fixing) strains. However, host plants could control the
colonization by inefficient strains via sanctioning root nodules and limiting their
growth (10–13). Moreover, the presence of multiple strains within a nodule (mixed
nodule) may occur (14, 15). Under these circumstances, inefficient rhizobia can behave
as cheaters, decreasing the overall nitrogen-fixing performance (7, 14). Consequently,
understanding the mechanisms underlying strain competition has great importance
for fully understanding the evolution of symbiosis (16, 17) and predicting rhizobial
inoculant efficiency (18). The genetic bases of competitiveness among rhizobial strains
are still elusive. To date, most of the studies have identified symbiotic genetic determi-
nants from experiments carried out with mutants of a few different natural strains (7).

The link between a phenotype and its genetic basis, hence predicting phenotypes
from the sole genomic information, is one of the challenges of biology (19). Genome-
wide association studies (GWASs) are commonly used for identifying the putative func-
tional role of a set of allelic variations in groups of individuals. In bacteria, GWASs have
been applied to several species for predicting complex (i.e., multigenic) phenotypes,
such as antibiotic tolerance and host interaction (20–22). However, most of the studies
investigated phenotypes under strong selective pressure, whereas it is still challenging
to determine the genetic basis of phenotypes under mild selection (23). The identifica-
tion of the genetic determinants in host-bacterium interactions is essential for the
improvement of sustainable agriculture: GWASs on plant holobionts (the ensemble of
the plant and the other organisms living in or around it) have been proposed (73–74),
aiming to provide the basis for future breeding programs, which includes, among the
plant traits, the recruitment of the “good” microbiome.

Recent studies have reported the feasibility of experimental setups combining symbi-
otic assays with genome sequencing approaches and GWASs in rhizobia to define the
genetic determinants of symbiotic performances (24–27). In the model rhizobium
Sinorhizobium meliloti, association analyses have been employed to explore the genetic
basis of various phenotypic traits, including antibiotic resistance and symbiotic and meta-
bolic traits (24). A select-and-resequence approach has successfully been applied to mea-
sure the fitness of a set of 101 S. meliloti strains with two genotypes of the host plant
Medicago truncatula (25). However, the predictive value of single rhizobial genotypes (i.e.,
genomes) toward the expected fitness in terms of competitive capabilities to establish a
successful symbiosis is still unclear. To date, although many genetic details of the symbi-
otic interaction are known for single strain colonization (28), we still do not know which
rhizobial features increase the chances to win the competition for plant infection, out-
competing other indigenous rhizobia. Unearthing these genetic determinants can
advance our knowledge on the genomic aspects of the evolution of bacterial symbiosis
and may have a direct application in the screening and amelioration of rhizobial inocu-
lants for sustainable agricultural production systems.
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The main objective of this work was to identify a set of candidate genes which may
increase rhizobial competition capabilities. We chose as model rhizobial species Ensifer
(syn. Sinorhizobium) meliloti; abundant molecular genetics data and tools are available
for this bacterium (29), a good number of strains was sequenced, and preliminary data
on symbiotic performances and competition are available (14, 20, 21, 25, 30). The com-
petition phenotype was measured by performing a series of nodulation assays where
pairs of fluorescently labeled S. meliloti strains were used to infect alfalfa (Medicago sat-
iva) plants. The obtained data were then coupled with the genomic sequences of the
same strains to perform a genome-wide association analysis.

RESULTS
Construction of fluorescently tagged S. meliloti strains. To set up in vitro tests for

measuring competition capabilities, a panel of 16 S. meliloti strains was selected. Three
well-characterized strains for competition capabilities (S. meliloti BL225C, AK83, and
Rm1021) were chosen (14) and used as reference competitors versus 13 S. meliloti
strains (tester strains) whose genome sequences were available (see Table S1 in the
supplemental material). The phylogenetic relationships among the 13 S. meliloti strains
were evaluated (Fig. S1A), and their pangenome was analyzed (Fig. S1B to D). The pan-
genome was composed of 15,419 genes: 4,278 were shared by all strains (core ge-
nome) and 6,622 were strain specific (Fig. S1D). For all above-mentioned 13 tester
strains, green fluorescent protein (GFP) derivatives were constructed by cloning the
pHC60 plasmid, which constitutively expresses the GFP. Strains S. meliloti Rm1021,
BL225C, and AK83 were tagged with red fluorescent protein (RFP) by using the pBHR
mRFP plasmid. Preliminary single inoculation assays were performed, showing that all
strains were able to form nodules on the roots of alfalfa plants (Fig. S2). For all but two
strains (M270 and T073), nitrogenase activity inside the nodules was detected
(Fig. S2D), in agreement with previous results that showed low nitrogen fixation abil-
ities in symbiotic interaction with M. truncatula (31). Differences in nodulation, plant
growth, and nitrogenase activity among strains were observed. Strains S. meliloti AK58,
RU11/001, SM11, USDA1157, GR4, and CCMM B554 showed the highest values of nitro-
genase activity and plant growth promotion (Fig. S2).

Competition capabilities for nodule colonization differ in relation to competitor
counterparts. Tagged S. meliloti strains were used in a set of competition experiments:
each with a GFP-tagged strain (13 strains in total) versus an RFP-tagged competitor strain
(S. meliloti BL225C, AK83, or Rm1021; 13� 3, total of 39). A large variability in nodule colo-
nization was observed among and within the three sets of competition experiments (ver-
sus Rm1021, versus AK83, and versus BL225C). The three competition tests showed differ-
ences in the number of total nodules produced per plant (P value, 0.001, Fig. S3A); in
the competition experiments with AK83, the highest number of nodules was observed
(Fig. S3A).

Competition capabilities were evaluated as single nodule occupancy (nodules
colonized by a single strain) of the tested strain in respect to a reference strain; good
competitors were characterized by a single nodule occupancy higher than 60%, me-
dium competitors between 20 and 60%, and weak competitors below 20%. In competi-
tion with Rm1021, most of the strains outperformed (Fig. 1A). This competition test
was characterized by a high average value of nodule occupancy of the tested strains,
equal to 65.12%. Most of the strains showed a single nodule occupancy higher than
60%, with the highest value (93.4%) observed for GR4. Three strains (HM006, Rm41,
and M270) exhibited medium competition capabilities, and two strains (T073 and
USDA1157) poorly performed (Fig. 1A and Table S2). Among the three strains with me-
dium competition capabilities, HM006 and Rm41 displayed values close to those of
high-performing strains (58.6 and 50.5%, respectively), whereas M270 nodule occu-
pancy was 37%. Medium-low performance of strains M270 and T073 (T073 competition
was characterized by the presence of mixed nodules or nodules with strain Rm1021
only) may be related to nodule sanctioning (plant limiting nutrients to inefficient nod-
ules), as T073 and M270 were unable to fix nitrogen (Fig. S2D).

GWAS on Competitiveness in Sinorhizobium meliloti

July/August 2021 Volume 6 Issue 4 e00550-21 msystems.asm.org 3

https://msystems.asm.org


FIG 1 Competition performances and epifluorescence stereomicroscope images. Bar plots showing the percentages of nodule
occupancy of 13 Sinorhizobium meliloti strains in three sets of competition experiments: competition versus S. meliloti Rm1021
(A), competition versus S. meliloti AK83 (B), and competition versus S. meliloti BL225C (C). Green bars represent single nodule
occupancy of the strains tested whose ID is reported on the x axis; in yellow, the percentage of mixed nodules is shown
(nodules occupied by both strains), and in red, the single nodule occupancy of the competitor used in each set of
experiments is shown. Pictures show nodules of Medicago sativa inoculated with a mix of S. meliloti 1021 RFP-tagged and
KH46 GFP-tagged (D) or GR4 GFP-tagged (E), S. meliloti AK83 RFP-tagged and HM006 GFP-tagged (F and G), and S. meliloti
BL225C RFP-tagged and CCMM B554 GFP-tagged (H) or RU11/001 GFP-tagged (I).
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In the competition experiments with AK83, conversely to the pattern highlighted
with Rm1021, a general decrease in nodule occupancy of the 13 strains tested was
observed (Fig. 1B), resulting in a lower average value of nodule occupancy (21.99%;
Fig. 1B and Table S2). Except for GR4, showing the highest percentage of occupancy
(63.9%), all strains displayed weak-medium competitive capabilities (nodule occupancy
lower than 60%; Fig. 1B and Table S2). The lowest values of nodule occupancy were
detected for Rm41 and T073 (1.7 and 1.8%, respectively).

Lastly, in the competition with BL225C (Fig. 1C and Table S2), the average value of
nodule occupancy of the strains tested was equal to 39.45%. The most competitive
strains were GR4, KH35c, KH46, and SM11, showing nodule occupancies ranging from 63.4
to 68.9%. The lowest percentage of nodule occupancy, 0.4%, was detected for T073.

In both competition with AK83 and that with BL225C, a higher abundance of mixed
nodules (nodules infected by both S. meliloti strains) was observed compared to com-
petition with Rm1021 (Fig. S3B). Considering single nodule occupancy of the whole
data set (mean values), we may roughly divide the strains into two groups: one con-
taining highly competitive strains (formed by GR4, KH35c, AK58, KH46, SM11, RU11/
001, CCMM B554, and HM006) and one with low-performance strains (composed of
T073, USDA1157, Rm41, M270, and 2011) (Fig. S4A; permutational multivariate analysis of
variance [PERMANOVA], Bonferroni-corrected P value=0.0009). The same subdivision could
be observed also considering the sum of single occupied nodules and mixed nodules, with
the only exception of strain HM006, which moved from the highly competitive group to the
low one (Fig. S4B; PERMANOVA, Bonferroni-corrected P value=0.0005).

Putative genetic determinants associated with good competition capabilities
versus S. meliloti BL225C. Short DNA oligomers with constant length k, termed k-
mers, allow capture of a large set of genetic variants in a population, including single
nucleotide polymorphisms (SNPs) and insertions/deletions (indels) (20, 30). To pinpoint
genetic determinants that might be responsible for the competition capability varia-
tion among S. meliloti strains, we performed an association analysis for each competi-
tion assay using PhenotypeSeeker (32) (Table 1). Nested cross-validation analyses were
also performed to evaluate the competition phenotype predictabilities (see Text S1 in
the supplemental material). The genome sequences of the tested strains and a matrix
based on the competition phenotype, considered the single nodule occupancy
(Table S2), were used to identify specific k-mers significantly associated with competi-
tion phenotypes (P value, 0.05). Due to the greater extent of positive performances,
ranging from 50.5 to 93.4%, shown by most of the strains tested versus Rm1021
(Fig. 1A; Table S2), a large amount of total k-mers significantly associated with this
competition phenotype was obtained (Table 1). In contrast, the number of total k-mers
identified in tested strains related to the competition versus BL225C was smaller in
comparison with other data sets (Table 1). Moreover, the wider P value range for signif-
icantly associated k-mers was found in the analysis of competition versus BL225C,
which was also characterized by higher P values (Table 1). Therefore, for the subse-
quent steps, we selected the set of k-mers related to the competition versus BL225C.

TABLE 1 Identification of significant k-mers by association analysis with PhenotypeSeekera

Data set
Total k-mers
(P value< 0.05) P value range

vs Rm1021 Single nodule occupancy 4.39E105 4.99E202–4.31E203

(Single and mixed nodule occupancy) (4.36E105) (4.88E202–1.07E202)

vs BL225C Single nodule occupancy 1.82E105 4.98E202–1.35E205

(Single and mixed nodule occupancy) (3.60E105) (4.96E202–5.14E205)

vs AK83 Single nodule occupancy 2.92E105 4.97E202–1.05E203

(Single and mixed nodule occupancy) (1.70E105) (4.99E202–6.15E204)
aThe numbers of total k-mers associated with the competition phenotype (P value, 0.05) for the three
competition experiments and their range of P values are reported.
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This set was mapped on the genomes of the 13 tested strains to retrieve the genetic
determinants associated with the competition phenotype.

Among the top k-mers (P value threshold, 0.001, see supplemental File S2A at
https://doi.org/10.5061/dryad.x95x69pj5), 51 k-mers (P value = 1.31 � 1024) mapped in
genomes of the four strains that showed single nodule occupancy higher than 60% (S.
meliloti GR4, SM11, KH35c, and KH46) in the competition test versus BL225C (see sup-
plemental File S1 at https://doi.org/10.5061/dryad.x95x69pj5, highlighted in bold).
These best k-mers tagged 103 predicted protein-coding sequences (CDSs); one k-mer
may tag multiple genes (see supplemental File S2A at https://doi.org/10.5061/dryad
.x95x69pj5). Among the 103 CDSs, a set of orthologous genes was identified (see sup-
plemental File S2A at https://doi.org/10.5061/dryad.x95x69pj5). These orthologous
gene hits were mostly tracked in S. meliloti GR4, KH35c, and KH46 genomes (Fig. S5A)
and were predominantly located on the symbiosis-required megaplasmid pSymA (ranging
from 93.3% to 100%; Fig. S5B, C, and D), particularly in a specific region of 26 kb, present in
the genome of these three strains only (Fig. 2A). In contrast, 60% of the orthologous gene
hits in the SM11 genome were located on the chromid pSymB (Fig. S5E).

The distribution of the candidate function of gene hits within the most competitive
strain genomes was not uniform. Enrichment for COG categories E (amino acid trans-
port and metabolism), C (energy production and conversion), H (coenzyme transport
and metabolism), and I (lipid transport and metabolism) was found in S. meliloti GR4,
KH35c, and KH46. The most represented orthologous gene groups were related to the
coenzyme F420 biosynthesis process, transmembrane transport via ABC-type systems
for branched-chain amino acids, and pyrimidine nucleotide biosynthetic processes
(Fig. 2B). Further, a putative caffeine dehydrogenase engaged in the pathway of caf-
feine transformation via C-8 oxidation and for the two subunits (PntA and PntB) of a
presumptive proton-translocating NAD(P) transhydrogenase liable for NADPH balanc-
ing mechanisms (Table 2) was found. Other presumed functions common to the three
strains (GR4, KH35c, and KH46) were related to amino acid degradation, carbohydrate
metabolism, and oxidation-reduction, as well as transcriptional regulation by a GntR-
type regulator (Table 2). The number of orthologous gene groups with functional
annotation tagged by the 51 best k-mers was lower in SM11. Except for the ortholo-
gous group related to the fatty acid metabolic process, the candidate functions of
gene hits identified in SM11 were exclusive (Table 2).

Among the 103 CDSs tagged by the 51 best k-mers, predicted protein-coding
sequences (CDSs) with no assigned function were also identified (see supplemental
File S2A at https://doi.org/10.5061/dryad.x95x69pj5). A large part of these tagged CDSs
could be identified in the SM11 genome and was almost entirely located on the SM11
chromosome (Fig. S5F and J). In contrast, CDSs that were found in GR4, KH35c, and
KH46 genomes were located on homologs of the symbiosis-required megaplasmid
pSymA (Fig. S5G, H, and I).

Regulatory regions were also analyzed, and we considered bona fide promoter
sequence hit mapping within 600 nucleotides upstream of the CDS start (30). Ten of
the 51 best k-mers analyzed pinpointed 15 regulatory regions (see supplemental File
S3A at https://doi.org/10.5061/dryad.x95x69pj5). Seven regulatory region hits were
associated with CDSs with no assigned function (see supplemental File S3A at https://
doi.org/10.5061/dryad.x95x69pj5). These regulatory region hits were tracked exclu-
sively in GR4 and SM11 genomes (Fig. S5P) and were mainly located on the chromo-
somes of the two strains (Fig. S6Q and R). Eight regulatory region hits of putatively
orthologous gene targets were identified (see Fig. S5C and see supplemental File S3A
at https://doi.org/10.5061/dryad.x95x69pj5) and were entirely located on symbiosis-
required megaplasmid pSymA in S. meliloti GR4, KH35c, and KH46 (Fig. S5L, M, and N)
and on pSymB of S. meliloti SM11 (Fig. S5O). In GR4, KH35c, and KH46, the regulatory
region hits were associated with genes encoding proteins whose functions (COG1529
and COG2188) have previously been observed (Fig. 2B and C and Table 3). In SM11,
the regulatory region hits were associated with a LysR-type orthologous gene and with
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FIG 2 Genetic determinants associated with single nodule occupancy. (A) k-mers mapping in a
region of the symbiotic megaplasmid (pSymA or homolog plasmids) present exclusively in the
genomes of Sinorhizobium meliloti GR4, KH35c, and KH46. Genes containing one or more k-mers are

(Continued on next page)
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a gene belonging to COG2308, possibly involved in the biosynthesis of small peptides
(Table 3).

Most of the genes associated with the 51 best k-mers belonged to the accessory ge-
nome, and only a few (nine genes) were within the core genome of the strains tested,
suggesting a higher scoring of indel k-mers. All reported genes were also checked with
SYMbiMICS (https://iant.toulouse.inra.fr/symbimics/) to examine their levels of tran-
scription within nodules (33). As expected for most of the genes, we did not obtain
any match because they were not present in the genome of S. meliloti 2011. However,
the expression of all those genes that are shared with S. meliloti 2011 has been
observed in different zones of the nodule (33), and depending on the gene, FI, FIId,
and ZIII were the zones with higher levels of expression (see supplemental File S2A at
https://doi.org/10.5061/dryad.x95x69pj5).

Putative genetic determinants associated with increased competition and
coinfecting nodule capabilities in assays versus S. meliloti BL225C. Association
analysis was also performed applying the competition matrix with the sum of single
and mixed nodules (Table S2) as well as modeling analysis (see Text S1). Significantly
associated-phenotype k-mers (P value, 0.05) were identified for each competition
data set (see supplemental File S1B at https://doi.org/10.5061/dryad.x95x69pj5).
Similar to the previous analysis, the set of k-mers related to competition versus BL225C
showed the widest range of P values (Table 1). Among these, 51 top k-mers (P
value = 5.14 � 1025, Table S4b) were tracked down in the genomes of six strains that
showed competition capabilities higher than 80% (evaluated as the nodule occupancy
of single and mixed nodules; S. meliloti GR4, SM11, KH35c, KH46, AK58, and RU11/001;
see supplemental File S1B at https://doi.org/10.5061/dryad.x95x69pj5, highlighted in
bold). Fifty of the 51 top k-mers were mapped on 202 CDSs (see supplemental File S2B
at https://doi.org/10.5061/dryad.x95x69pj5). Among these 202 CDSs, 99 were ortholo-
gous gene hits. The presence of gene hits with annotated function was uniformly dis-
tributed in all six strains (Fig. S6A); they were mainly located on the symbiosis-required
megaplasmid pSymA (ranging from 52.6 to 84.4%; Fig. S6C, D, E, F, and G). Thirty-three
orthologous gene hits were identified in both association analyses performed (Table 4
and see supplemental File S2B at https://doi.org/10.5061/dryad.x95x69pj5, highlighted
in bold). In particular, these common genes were located on the specific region of the
symbiotic megaplasmid previously reported (Fig. 2A) and exclusively found in the
genomes of GR4, KH35c, and KH46 (Fig. 2A and see supplemental File S2B at https://
doi.org/10.5061/dryad.x95x69pj5). Consequently, “common” candidate functions were
outlined by both sets of k-mers as linked to the competition phenotype ascertained in
GR4, KH35c, and KH46 (Table 4). Moreover, additional genes located in the same
genomic region, which were not retrieved among the top k-mers in the single nodule
occupancy data set, were found (Fig. 2A).

Similar to previous results, the frequency of identified candidate functions was dis-
similar among the six strains (Fig. 3A). The most represented orthologous gene groups
were related to the type IV secretion system (T4SS) (specifically VirB10 and VirB11 pro-
teins) and the nucleoside phosphate metabolic process, which are common to all
strains except for KH46 (Fig. 3A and B; Table 4). The species S. meliloti is characterized
by the presence of different T4SSs. In particular, in S. meliloti KH35c, three T4SSs are
present: a, b, and f (31). The organization of vir genes in the operon, identified in this
work, was characterized by the presence of a homolog of virD4 (Fig. 3A) and the lack of
virG/virF genes (typical of T4SSb) and rctA (which is typical of T4SSa, which is common

FIG 2 Legend (Continued)
indicated with a colored arrow (black or shades of gray): black arrows indicate genes retrieved in
both single and single plus mixed nodule occupancy data sets, dark gray arrows indicate genes
retrieved in the single nodule occupancy data set only, and light gray arrows indicate genes retrieved
in the single plus mixed nodule occupancy data set only; gene annotation is referred to the Prokka
output. (B and C) Frequency of candidate functions of gene hits (B) and regulatory regions (C)
identified by 51 best k-mers in the most competitive strains. The frequency of candidate functions
reported as COG annotations (rows) in each strain (columns) is represented by grayscale shades.
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in all S. meliloti strains). Therefore, the vir genes identified were probably related to the
T4SSf family. Candidate functions related to putrescine transport were also observed in
all strains except for KH46. The k-mers related to type IV secretion system protein VirB4
were tracked only in AK58, RU11/001, and SM11 strains (Fig, A; Table 4). Besides, these
three strains (AK58, RU11/001, and SM11) showed similar distribution profiles of candi-
date functions (Fig. 3B), with the exclusive presence of orthologous genes related to
aminoacyl-tRNA biosynthesis and protein biosynthesis, as well as purine and lipid me-
tabolism (Fig. 3B; Table 4). Several other functions were exclusively detected in single
strains only (see Text S1).

Predicted protein-coding sequences (CDSs) with no assigned function, picked by the
50 top k-mers, were also identified (see supplemental File S2B at https://doi.org/10.5061/
dryad.x95x69pj5), mostly in the AK58, RU11/001, and SM11 genomes (Fig. S6H). The distri-
bution of these CDSs among strain replicons was different compared to the single nodule
occupancy results (Fig. S5 and S6). In strains SM11 and RU11/001, a large part of the CDS
with no assigned function was located on symbiosis-required megaplasmid pSymA (Fig.
S6M and N), whereas in GR4, KH46, and KH35c, most of the CDSs were also located on
the chromosome and other accessory replicons (Fig. S5J, K, and L).

Fourteen of the 51 top k-mers analyzed pinpointed 29 regulatory regions hit (Fig. 3C
and Table 5; see also supplemental File S3B at https://doi.org/10.5061/dryad.x95x69pj5).
Among these, 12 regulatory region hits on putatively orthologous gene targets were
identified, which were located on pSymA in all S. meliloti strains (Fig. S6Q to U). Six of

FIG 3 Genetic determinants associated with single and mixed nodule occupancy. (A) k-mers mapping in a region containing a vir operon on the genomes
of Sinorhizobium meliloti GR4, KH35c, AK58, RU11/001, and SM11. Genes containing one or more k-mers are indicated with a black arrow; gene annotation
is referred to the Prokka output. (B and C) Frequency of candidate functions of gene hits (B) and regulatory regions (C) identified by 51 top k-mers in the
most competitive strains. The frequency of candidate functions reported as COG annotations (rows) in each strain (columns) is represented by grayscale
shades.
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them were found in both association analyses performed in the genomes of GR4, KH35c,
and KH46 (see supplemental File S3B at https://doi.org/10.5061/dryad.x95x69pj5).
Seventeen regulatory regions were associated with CDS targets with no assigned function
(see supplemental File S3B at https://doi.org/10.5061/dryad.x95x69pj5) and tracked to a
greater extent in RU11/001, SM11, KH46, and AK58 (Fig. S6V). The distribution of these
regulatory regions among replicons was not similar among strains (Fig. S6). In strains GR4
and KH35c, all regulatory region hits were located on the chromosome (Fig. S6X and Z),
whereas in KH46, they were mainly found on pSymB (Fig. S6Y), and in RU11/001 and
SM11, they were found on pSymA (Fig. S6A1 and B1).

DISCUSSION

Rhizobium-legume symbiosis is a paradigmatic example of a bacterium-plant asso-
ciation. The ability to colonize plant tissue is under selective pressure, and rhizobial
strains which efficiently colonize host plants can more effectively promote plant
growth, giving rise to a partial “fitness alignment” between the host and the symbiont
(34, 35). However, in nature, several strains compete for forming symbiotic associations
with the host plant, and often, nodules are simultaneously colonized by different
strains, which in turn may have different efficiencies in promoting plant growth; some
of them also behave as “cheaters” (7, 14, 18, 36). In this sense, measuring the competi-
tiveness for plant and nodule colonization and predicting this phenotype from rhizo-
bial genome sequences are of paramount importance for understanding the evolution
of rhizobium-plant symbiosis and developing effective inoculant strains for increasing
agricultural yields of legume crops (7).

In a recent work, the first step of symbiotic colonization was elucidated by analyz-
ing gene expression patterns related to the response of root exudates among different
rhizobial strains and plant varieties (37). Here, we addressed the possibility of identify-
ing some of the genetic determinants involved in strain competitiveness for symbiotic
nodule formation (the functional-symbiotic structure). The host plant-rhizobial sym-
biont system of alfalfa and S. meliloti was employed, and direct measurements of com-
petitiveness were obtained through the analysis of nodule occupancy. This experimen-
tal design pointed out a wide variety of strain responses to the diverse competitive
conditions, identifying three different competition patterns and outlining a highly
complex phenotype that strongly depends on the engaged competitor. The strains
used in this work were originally isolated from different Medicago species. However,
they displayed good competition capabilities in nodulation of alfalfa, indicating that
nodulation competitiveness is not strictly bound to the host genotype.

An abundant presence of mixed nodules was also observed in all three sets of
experiments, confirming previous results (11, 13, 37) and suggesting that the possibil-
ity to coinfect nodules by different strains could be more widespread than expected.

Strains M270 and T073 were characterized by low nitrogen fixation rates and
showed low competition capabilities. Conversely, the differential responses of strains
with medium-high nitrogen-fixation efficiency advances the idea that a greater com-
petitive ability is not correlated with a high nitrogen fixation efficiency in alfalfa–S.
meliloti interaction, as previously suggested (38, 39). Concerning the competition ver-
sus BL225C, except for GR4 and SM11, this assumption seemed to be particularly true
for highly efficient N-fixer strains (USDA1157, CCMM B554, RU11/001, 2011, and AK58),
which turned out to be medium-weak competitors.

Subsequently, a method based on k-mers was used for the evaluation of the
genetic determinants responsible for an increased competition phenotype. The num-
ber of GWASs has progressively increased in recent years (20, 40, 41) because of the
flexibility in capturing different types of genetic variants and overcoming the align-
ment of sequences to a reference genome. Among the different pipelines adopted for
this kind of analysis, PhenotypeSeeker is one of the up-to-date tools that use machine
learning for predicting phenotypes from the sole genome sequences (32). The k-mers
related to the competition versus BL225C (single nodule occupancy) taken into

Bellabarba et al.

July/August 2021 Volume 6 Issue 4 e00550-21 msystems.asm.org 14

https://doi.org/10.5061/dryad.x95x69pj5
https://doi.org/10.5061/dryad.x95x69pj5
https://msystems.asm.org


account were significantly correlated with the phenotype of interest and mapped on
the genomes of the four most competitive strains (GR4, KH35c, KH46, and SM11).
Therefore, they may be considered the most informative k-mers for tagging the
genetic variants associated with remarkable competition capabilities. The same
approach was used considering the sum of single and mixed nodules. In this case, the
group formed by highly competitive strains was larger and included strains AK58 and
RU11/001. Moreover, 40% of the k-mers previously identified considering only single
nodules could also be retrieved in this second analysis.

The largest part of the genes putatively associated with competitiveness was har-
bored by the megaplasmid pSymA (or pSymA homologs depending on the strain),
which is the genomic element carrying all the genes necessary for symbiosis (e.g., nod,
fix, and nif genes) (42). According to a previous study, pSymA harbors the largest part
of genomic diversity in S. meliloti (43), largely contributing to the phenotypic diversity
among strains; considering the obtained results, it may also be linked to competition
capabilities.

Previous studies have highlighted the importance of exopolysaccharide production,
motility, and signaling for responses to root exudates, symbiosis establishment, and
competition (25, 27, 37). In the work of Burghardt et al., a variation in allele frequency
for genes whose function is related to cell motility, nitrogen fixation, and nodule for-
mation was observed (25). Conversely, the genes (with functional annotation) found in
this work, putatively associated with competitiveness (for single nodule occupancy),
were mostly related to biosynthesis and transport functions. Concerning the differen-
ces between our results and those from the study by Burghardt et al. (25), we should
point out that the experimental settings were different. In the work of Burghardt et al.
(25), a mix of 101 strains was used to inoculate plants, whereas we performed competi-
tion experiments with two strains at a time. Additionally, none of the strains used were
common in the two studies. Concerning the association analysis, Burghardt et al.
focused on single nucleotide polymorphisms (SNPs), identifying as responsible for vari-
ation in relative fitness those alleles showing the highest variation in frequency in
response to selection (25). In our approach, we observed a stronger signal related to
indels, with most of the genes retrieved belonging to the accessory genome. However,
one SNP associated with the gene htpG (one of the genes with the strongest signal
identified in the work of Burghardt et al. [25]) was also retrieved in our analysis by four
k-mers, albeit with a lower P value (3.09 � 10204). These four k-mers separate strains
into two groups: one formed by 10 strains and the other one composed of strains
T073, 2011, and USDA1157, which are the strains with the lowest competition capabil-
ities in the assay versus BL225C. In both experiments, a sterilized substrate was used,
and therefore, we need to consider that under soil conditions, the competition and the
advantage in nodule entry may differ depending on the soil physical/chemical features
and the presence of an indigenous microbiota.

Many k-mers were related to COG1060, which, together with COG0391, was linked
to the presence of the fbi operon in strains KH46, KH35c, and GR4. The fbi operon is
widely distributed in aerobic soil bacteria and is responsible for the synthesis of the
functional versatile redox factor F420 (44, 45). This cofactor is involved in the redox
modification of many organic compounds, facilitating low-potential two-electron re-
dox reactions (44, 45). Moreover, the presence of this cofactor is linked to several im-
portant processes such as persistence, antibiotic biosynthesis (tetracyclines, lincosa-
mides, and thiopeptides), and prodrug activation (46), possibly increasing the fitness of
these strains. However, the role of this function over symbiotic competition deserves
further attention.

Another group of COGs highly represented was related to ABC transporters. The S.
meliloti genome encodes a large number of ABC uptake and export systems (47, 48).
This feature is probably linked to the selective adaptation to oligotrophic soils (48, 49).
According to our association analysis, a group of k-mers tagged putative genes encod-
ing ATPase and permease subunits of branched-chain amino acid ABC transport
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complex Bra/Liv (50). In S. meliloti, a double mutant for the two main amino acid ABC
transport complexes (aap bra) showed no reduction in N2 fixation efficiency and no
influence on the plant phenotype, suggesting that in bacteroids, branched-chain
amino acid auxotrophy, called “symbiotic auxotrophy,” does not occur (51). However,
an attenuated competitive phenotype was found in S. meliloti mutated in the livM
gene, which encodes the permease subunit of the Bra/Liv complex (52). It is therefore
reasonable to suppose that this complex may provide a noteworthy benefit in the
competition dynamics, ensuring a higher supply of amino acids under free-living rhizo-
sphere conditions and increasing strain competitiveness (52, 53). Other COGs related
to the ABC transporter were COG1129 and COG1172. Proteins grouping in COG1129
are ATPase components of an ABC-type ribose import system. In Rhizobium legumino-
sarum, a putative ribose ABC transporter (RbsA, RL2720) was induced by the presence
of arabinogalactan, and it was specifically overexpressed in the alfalfa rhizosphere (50). The
COG1172, detected by both association analyses, contains a ribose/xylose/arabinose/galacto-
side ABC-type transport system permease component, highlighting the importance of effi-
cient carbon uptake in the rhizosphere to outcompete other bacteria. The COG1172 is also
related to the import of autoinducer signaling molecules in the quorum sensing process,
whose connection with S. meliloti competitive behavior has been reported (54).

The type IV secretion system was also found in our association analysis (T4SSf).
Interestingly, T4SSa (the type commonly found in S. meliloti) is not required for symbio-
sis (55), whereas T4SSb has been linked to competitive advantage in S. meliloti for nod-
ule occupancy in M. truncatula (56) and is associated with competition for rhizosphere
colonization (57). We cannot exclude a role of T4SS in the management of host
defenses, as suggested for Mesorhizobium loti (31, 58, 59). However, the role of T4SSf in
the competition should be further elucidated. Several COGs were related to the metab-
olism of different compounds: pyrimidine (COG0418; dihydroorotase), glutamate
(COG1788 and COG2057; glutaconate coenzyme A [CoA] transferase), amino acids
(COG1171; threonine dehydratase), fatty acids (COG1024; enoyl-CoA hydratase/carni-
tine racemase), and glycerol (COG1028; glycerol dehydrogenase), reinforcing the im-
portance of metabolic versatility for nodule colonization (60, 61). Testing those func-
tions through metabolic model reconstructions of the different strains may clarify the
importance of metabolism in the competition for nodule colonization (62).

One group of k-mers fell within transcriptional regulation genes, suggesting their
involvement in a fine-tuning bacterial response to the presence of other competitors
and/or a quick response to variations in the external conditions.

Other COGs retrieved had less-clear connections with competitiveness, and it will
require further studies to infer their possible role in this process.

A substantial part of k-mers mapped on hypothetical genes with unknown functions.
Although many genes required for rhizobial adaptation to the rhizosphere are not yet
characterized, transcriptomic analysis of rhizobia isolated from the rhizosphere revealed
the expression of many hypothetical genes (49). This finding suggests that in the pange-
nome of S. meliloti, several functions potentially important in the fitness associated with
the symbiotic interaction, and possibly in plant growth promotion, are yet to be discov-
ered. However, the list of candidate genes (hypothetical and not) identified in this work
needs to be experimentally validated to confirm their effectiveness in competition and to
understand how their function influences strain competitiveness.

Most of the identified k-mers mapped on genes belonging to the accessory ge-
nome, and only a few genes of these lists were common with S. meliloti 2011 genes.
This strain has been used for transcriptomic analysis within nodules, applying laser
capture microdissection coupled to transcriptome sequencing (RNAseq) (33). Thanks
to the SYMbiMICS website, we observed that these common genes were expressed
within all different zones of the nodule infected by S. meliloti 2011 (33), indicating that
they may play an active role in the symbiotic process.

Rhizobial competitiveness is a cornerstone for plant colonization, making the selection
of highly competitive rhizobia fundamental for sustainable agricultural production. Here,
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we report the feasibility and reliability of using a k-mer-based GWAS approach to detect
genes associated with this complex quantitative phenotype in the plant symbiont S. meli-
loti. Several functions possibly contribute to ameliorate competitiveness, indicating that
many different bricks, increasing rhizobial versatility, pave the way for success in competi-
tion. This approach may provide the basis for a large-scale screening of putative competi-
tiveness capabilities among pairs of strains, based on genome sequences. Interestingly,
the evidence that most of the genes putatively associated with competition reside on the
megaplasmid pSymA can offer the possibility to extend the creation of ad hoc hybrid
strains by mobilizing the pSymA megaplasmid from different hosts (63) to develop novel
ameliorated inoculants (7).

MATERIALS ANDMETHODS
Bacterial strains, plasmids, and growth conditions. The strains and plasmids used in this work are

listed in Table S3 in the supplemental material. Escherichia coli strains were grown in liquid or solid
Luria-Bertani (LB) medium (Sigma-Aldrich) at 37°C (64), supplemented with tetracycline (10mg/ml).
Sinorhizobium meliloti strains were cultured in broth or agar tryptone yeast (TY) medium with 0.2 g/liter
CaCO3 at 30°C (65), supplemented with streptomycin (500mg/ml in broth and agar media), rifampin
(50mg/ml), and tetracycline (1mg/ml in liquid broth medium, 2mg/ml in agar medium), when necessary.

Construction of S. meliloti fluorescently tagged strains. The S. meliloti strains were tagged with
green fluorescent protein (GFP) or red fluorescent protein (RFP). Donor E. coli S17-1 strains containing
plasmid pHC60 (harboring a constitutively expressed GFP [66]) or pBHR mRFP (harboring a constitutively
expressed RFP [67]) were used for biparental conjugations with rifampin-resistant derivative S. meliloti
strains. Spontaneous rifampin-derivative S. meliloti strains were isolated by plating aliquots of 100ml of
cell suspension of 109 cells on agar TY medium with rifampin (50mg/ml). Conjugal transfer was per-
formed as previously described (68), and GFP and RFP expression was verified for each single strain by
fluorescence microscopy with a Leica DM L (Leica, Germany) equipped with an N plan oil-immersion
objective (100�/1.25 oil).

Competition assay. Medicago sativa (cv. Maraviglia) plantlets were germinated and grown as
described in the nodulation assay section (Text S1). The S. meliloti strains were grown at 30°C to the late
exponential phase (optical density at 600 nm [OD600] = 0.6 to 0.8) in TY with opportune antibiotics.
Subsequently, each culture was washed twice in nitrogen-free solution (69) and diluted to a final con-
centration of approximately 5 � 104 CFU/ml. The inoculum mixtures were prepared with equal volumes
of cellular suspensions of two different fluorescently tagged strains. A total of 39 competition experi-
ments were set up (13 GFP-tagged strains � 3 RFP-tagged strains), and we assumed an equal amount of
fluorescence emission by all strains used. Six plants for each competition experiment were inoculated
with 1ml of inoculum mixtures per seedling. After 4weeks, nodule fluorescence was detected using a
fluorescence stereomicroscope, Stereo Discovery V12 (Zeiss, Oberkochen, Germany), equipped with a
charge-coupled-device (CCD) camera controlled by the AxioVision software for image acquisition. For
each plant, we determined the total number of nodules and the numbers of green (occupied by GFP-
tagged strain only), red (occupied by RFP-tagged strain only), and yellow (occupied by both strains) nod-
ules. For nodule color determination, each nodule of each single plant was imaged with filters for GFP
(Zeiss filter set 38HE; excitation 470/40, emission 525/50) and DsRed (Zeiss filter set 43HE; excitation
550/25 and emission 605/70). The obtained images were processed with the ImageJ software (70).
Nodule occupancy was expressed as the ratio of the number of nodules (green, red, or mixed) to the
total number of nodules present on the roots of each plant. For each competition, we calculated the
mean of the nodule occupancy for the six replicates.

Statistical analysis. Statistical data analysis was performed with the RStudio software (71). The
Shapiro test was applied to evaluate data distribution; analysis of variance (ANOVA) and Tukey’s post
hoc tests or nonparametric Kruskal-Wallis and post hoc Dunn tests were performed using the FSA and
rcompanion packages. The principal-component analysis (PCA) and PERMANOVA were performed using
the competition mean values with the PAST software (72).

PhenotypeSeeker analysis. The single nodule occupancy and the mean value of the sum of the sin-
gle occupied nodules and the mixed nodules of the strains, assessed in the three competition experi-
ments, were converted into continuous matrices of equivalent values between 0 and 1 for each data set.
The FASTA genome sequences of 13 strains and the obtained matrices were used as input to count all k-
mers for each set of competition; k-mer length was set to 13 nucleotides. In the first filtering step, the k-
mers that were present in or missing from fewer than two samples (“–min 2–max 2”; default) were
rejected. Clonal population structure correction was performed. The k-mers were tested for the analyses
of association with the phenotype according to the weighted Welch two-sample t test, and k-mers with
a P value higher than 0.05 were automatically discarded. Linear regression models were achieved using
1,000 top k-mers, with the lowest P value, for all three data sets. We applied 3-fold nested cross-valida-
tion, in which three different random combinations of training and test sets were used, and the model
evaluation metrics were averaged over 3-fold train/test splits. The 3-fold explicitly indicates that each
strain was included once into the test set and twice into the training set.

Nodulation and acetylene reduction assays and annotation and phylogenetic analyses, as well as
mapping procedures, are reported in Text S1.
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