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High endothelial venules (HEVs) are blood vessels
especially adapted for lymphocyte trafficking which are
normally found in secondary lymphoid organs such as lymph
nodes (LN) and Peyer’s patches. It has long been known that
HEVs develop in non-lymphoid organs during chronic
inflammation driven by autoimmunity, infection or allografts.
More recently, HEVs have been observed in solid, vascularized
tumors and their presence correlated with reduced tumor
size and improved patient outcome. It is proposed that newly
formed HEV promote antitumor immunity by recruiting naive
lymphocytes into the tumor, thus allowing the local
generation of cancerous tissue-destroying lymphocytes.
Understanding how HEVs develop and function are therefore
important to unravel their role in human cancers. In LN, HEVs
develop during embryonic and early post-natal life and are
actively maintained by the LN microenvironment. Systemic
blockade of lymphotoxin-b receptor leads to HEV de-
differentiation, but the LN components that induce HEV
differentiation have remained elusive. Recent elegant studies
using gene-targeted mice have demonstrated clearly that
triggering the lymphotoxin-b receptor in endothelial cells
(EC) induces the differentiation of HEV and that CD11cC

dendritic cells play a crucial role in this process. It will be
important to determine whether lymphotoxin-b receptor-
dependent signaling in EC drives the development of HEV
during tumorigenesis and which cells have HEV-inducer
properties. This may reveal therapeutic approaches to
promote HEV neogenesis and determine the impact of newly
formed HEV on tumor immunity.

Introduction

The raison d’etre of a LN is to filter lymph that passes through
it, sequester incoming antigen and mount an appropriate
response, be it activation, tolerance or homeostatic proliferation
of lymphocytes. To do this, LN must sample the full repertoire
of naive and memory lymphocytes in the body.1,2 Specialized
blood vessels called HEVs are key players in this process because
they extract naive and memory lymphocytes from the blood-
stream, regardless of antigen receptor specificity, and deliver
them into the node under homeostatic conditions.3 Here, lym-
phocytes scan dendritic cells as well as the supporting fibroblast
reticular cell (FRC) network for activating, tolerogenic and
homeostatic stimuli.4-7 Lymphocytes that do not encounter a
cognate antigen leave the node within hours and re-enter the
same or a different LN during lymphocyte recirculation, which is
a fundamental for effective immunosurveillance.8 Following acti-
vation and differentiation, precursors of effector T lymphocytes,
such as T helper cells and cytotoxic T cells, exit the LN via effer-
ent lymphatics after 2–3 d, re-enter the bloodstream and are
recruited to sites of inflammation by cytokine-activated blood
vessels (which are not HEVs) to clear infection and repair dam-
aged tissues (Fig. 1).

What are High Endothelial Venules (HEVs)?

HEVs form a branching network of post-capillary venules
which is fully integrated into the normal blood vascular bed of all
secondary lymphoid organs except the spleen. The HEV network
is highly spatially organized, controlling both the site of lympho-
cyte entry and contributing to the structural organization of LN
(Fig. 2). Incoming arteries arborize into a capillary bed in the
outer cortex or B cell area of the LN and feed directly into the
post-capillary venular network where HEVs are found. HEVs
gradually increase in size from the smallest at the cortical–para-
cortical junction and largest vessels in the paracortex or T cell
area of the node. HEVs merge with larger flat-walled venules in
the medulla which drain into the collecting vein which exits the
LN.9 A combination of ultrastructural and histochemical studies
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has been used to identify and characterize HEV within LN. In
histological preparations, EC lining HEV have a characteristic
cuboidal morphology which distinguishes HEV from other post-
capillary venules (Fig. 3); it is this morphology that has engen-
dered the name HEVs. Other characteristic features of HEV
include a thickened apical glycocalyx and a thickened basal lam-
ina.10 The endothelial lining is enveloped in overlapping layers
of pericytes and pericyte-like FRC which form a prominent peri-
vascular sheath that is part of the thickened basal lamina.11,12

Although a defining feature, the characteristic endothelial
morphology on its own cannot be relied on to identify HEV.
The height of EC varies significantly between strains of mice, ani-
mal species and the method of tissue collection.10,13,14 High
endothelial cells (HEC) express differentiation markers such as
vascular endothelial (VE)-cadherin/CD144 and CD31 that con-
firm their endothelial identity; however, these markers are
expressed by all vascular EC and are not specific for HEC.15 A
more reliable marker for HEV is the expression of peripheral
and/or mucosal addressin (Fig. 3). Addressins are expressed on
the inner, apical surface of EC lining HEV and are ligands for
homing receptors on lymphocytes. Thus, addressins identify the
functional capacity of HEV to recruit lymphocytes from the
bloodstream into LN.

In adult mice, expression of peripheral node addressin
(PNAd), a ligand for L-selectin/CD62L, is a defining feature of
HEV since it is not normally expressed by other types of blood
vessel inside or outside of lymphoid organs,16 although PNAd
staining is detected in some activated epithelia.17 PNAd express-
ing HEV are identified by immunohistochemical staining using

the rat monoclonal antibody MECA-79 (Fig. 3). MECA-79
identifies 6-sulpho sialyl Lewisx, (a functional carbohydrate epi-
tope that binds L-selectin) on extended core-1 branched O-
linked sugars and detects HEV in human and murine tissues as
well as in sheep LN which do not have characteristic high-walled
HEV.10 The MECA-79 epitope is displayed on a number of ser-
ine/threonine-rich mucin domain containing proteins including
CD34, GlyCAM-1, podocalyxin, endomucin and nepmucin.17

L-selectin also binds 6-sulpho sialyl Lewisx on core-2 branched
O-linked sugars as well as N-linked sugars but these are not iden-
tified by MECA-79.18 Monoclonal antibodies that identify 6-sul-
pho sialyl LewisX on both O- and N-linked sugars in mice and
humans (including those identified by MECA-79) have recently
been described.19,20 Interestingly, PNAd is also expressed at the
basolateral or ablumenal surface of HEC but its expression is reg-
ulated independently of apical PNAd. Basolaterally expressed
PNAd has been shown to contribute to lymphocyte homing to
LN but its precise role is not fully understood.17

The mucosal addressin (MAdCAM-1), a ligand for a4b7
integrin, is used to identify HEV in mucosal lymphoid organs
(mesenteric LN and Peyer’s patches) of adult mice. However,
MAdCAM-1 is not a specific marker of HEV since it is also
expressed by blood vessels in the gastro-intestinal lamina propria
and the spleen; MAdCAM-1 is also expressed by stromal cells in
embryonic LNs.21 The serine/threonine-rich mucin domain in
murine MAdCAM-1 can be modified with the MECA-79 epi-
tope and bind L-selectin as well as a4b7 integrin22; it is not clear
if the less conserved mucin domain in human MAdCAM-1 binds
L-selectin.23,24

Figure 1. The role of high endothelial venules in T lymphocyte dependent immunity. HEV recruit naive and central memory T lymphocytes from the
bloodstream into lymph nodes where they scan antigen loaded dendritic cells that have migrated from infected, damaged or cancerous tissues (1). Fol-
lowing activation by antigen, activated T lymphocytes exit the lymph node via lymphatics and re-enter the bloodstream (2). Activated T lymphocytes
are recruited to sites of inflammation by cytokine-activated blood vessels (which are not HEVs) to clear infected or cancerous tissue (3).
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The distribution of addressins in human lymphoid organs is simi-
lar to that reported in mice. PNAd positive, structurally distinct
HEV have been reported in peripheral LN.25 MAdCAM-1 is prefer-
entially expressed by HEV in mucosal associated lymphoid tissues,
such as the appendix, but is also expressed by non-HEV blood vessels
in the lamina propria and submucosa of the gastro-intestinal tract as
well as marginal sinus lining cells of the spleen.25-27

In adults, PNAd and MAdCAM-1 were originally described
to distinguish between HEV in peripheral (subcutaneous) and
mucosal LN (mesenteric LN and Peyer’s patches). However,
expression of these two addressins overlaps in some LN. For
example, PNAd is co-expressed by MAdCAM-1 positive HEV in
mucosal associated lymphoid organs such as mouse mesenteric
LN (Fig. 3) and human tonsils16,25 and PNAd dominates over
MAdCAM-1 in HEV of mucosal lymphoid tissues that develop

post-natally, such as nasal- ,
bronchial- and ocular-asso-
ciated lymphoid tissues.28-
30 Addressin expression is
also developmentally regu-
lated. PNAd and MAd-
CAM-1 are co-expressed by
peripheral LN HEV in utero
and neonatally, however
PNAd expression is
restricted to the baslolateral
surface of HEC. During the
first weeks of life, MAd-
CAM-1 expression is down-
regulated and PNAd is
expressed at the apical sur-
face as HEV complete mat-
uration.31,32 Addressin
expression is also regulated
by immune activation;
MAdCAM-1 can be re-
expressed by peripheral LN
HEV and PNAd expression
can be downregulated in
antigen-reactive LNs of
adult mice with consequent
changes to the homing
properties of HEV.33,34

How Do HEVs Work?

Although widely used to
identify HEV, PNAd is
only one component of the
molecular address required
for lymphocytes to home
to peripheral LN under
homeostatic conditions.
The role of apically
expressed PNAd is to sup-

port the capture and rolling of L-selectin positive blood-borne
leucocytes on the endothelial cell lining of HEV. Additional
requirements are luminal expression of an arrest chemokine such
as CCL21 (or CXCL13 for B cells)35 and ICAM-1/CD54, which
supports LFA-1 integrin dependent arrest of rolling lymphocytes
on the inner, luminal surface of HEV (Fig. 4).36,37 Naive and
central memory T cells as well as B cells are recruited into periph-
eral LN under homeostatic conditions using this address code.
Recent studies have shown that some innate immune cells enter
LN under homeostatic conditions using, at least in part, L-selec-
tin and/or CCR7. For example, precursors of classical dendritic
cells (pre-DCs),38 natural killer (NK) cells39,40 and plasmacytoid
dendritic cells (pDCs)41 have all been shown to enter peripheral
LN in unperturbed mice, although in much lower numbers than
T and B lymphocytes.

Figure 2. The migration of immune cells in and out of lymph nodes via high endothelial venules and lymphatics.
The main artery into the node arborizes into a capillary bed in the outer cortex that leads directly into the post-capil-
lary venular network where HEVs are located. HEVs increase in size as they traverse the paracortex or T cell area of
the node and merge with flat-walled venules in the medulla. HEV are ensheathed by fibroblast reticular cells (FRC)
that are continuous with the FRC-coated conduits that form the supporting internal scaffold on which lymphocytes
and antigen presenting cells crawl during immunosurveillance (insert). Under homeostatic conditions HEV are major
portals for entry of naive (TN), central memory (TCM) T and B cells as well as precursors of conventional dendritic cells
(pre-DCs), natural killer (NK) cells and plasmacytoid dendritic cells (pDCs). Effector T cells (TE), NK cells, pDCs, neutro-
phils (PMN) and monocytes can be recruited by HEV in activated LN. Lymphatic vessels form a separate vascular sys-
tem. Afferent lymphatics drain the surrounding area and deliver tissue-derived dendritic cells (DCs) to the FRC
network and <70 kDa solutes to the basal lamina of HEV via the conduit system. Recirculating and activated lym-
phocytes leave via efferent lymphatics to re-enter the bloodstream.
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Figure 3. For Figure legend, see page 5.
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A defining histological feature of HEV is the presence of lym-
phocytes within the endothelial cell lining and the surrounding
basal lamina (Figs. 3 and 4)37 which suggests that transmigra-
tion across the HEV wall is regulated and rate-limiting. This is a
complex event involving sequential interactions between migrat-
ing immune cells, EC, pericytes, and FRC which is only just
starting to be understood. Intravital microscopic analysis of lym-
phocyte transmigration across HEV has shown that the first step
of transendothelial migration from the apical to basolateral endo-
thelial surface takes as little as 3 min.4 Although lymphocytes
have been reported to penetrate the endothelial cell cytoplasm
(transcellular migration) in vitro, they also take the conventional
route between adjacent EC (paracellular migration).42 Lympho-
cytes take 10 min to migrate across the underlying basal lamina

and the surrounding perivas-
cular sheath, however, the
close apposition of FRC to
the basal lamina of HEV
makes it difficult to separate
these stages.36 Some progress
has been made in identifying
signaling pathways in lym-
phocytes that control migra-
tion across HEV. Studies
using genetically modified
mice and pharmacological
agents have shown that
cooperative signaling down-
stream of L-selectin and
CCR7,43 downregulation of
cell surface L-selectin by
ectodomain proteolysis,44,45

affinity regulation of LFA-
146 and the intermediate fil-
ament vimentin47 all regu-
late transendothelial
migration but how these
events are integrated is not
understood. An additional
key regulator of transendo-
thelial migration is lysophos-
phatidic acid (LPA) which is
generated locally by HEV-
derived autotaxin and pro-
motes transendothelial
migration by inducing

polarization and motility in lymphocytes.48,49 Lymphocytes
must also be able to deform sufficiently to penetrate the HEV
wall and this is achieved by contraction of the tail (uropod).50

During transmigration, lymphocytes can accumulate apparently
within the endothelial lining of HEV in so-called “pockets” but
these are extracellular, not intracellular.51 The lysophophospholi-
pids LPA and sphingosine-1-phosphate (S1P) may control accu-
mulation in HEV pockets49,51 but there are other mechanisms
since lymphocytes accumulate within the endothelial lining of
HEV in mice treated systemically with a dual metalloproteinase
disintegrin (ADAM) and matrix metalloproteinase (MMP)
inhibitor (Fig. 4), although HEV pockets were not identified in
this study.52 Identifying the signaling pathways in high and flat
EC that control lymphocyte transmigration53 may help in

Figure 3. (See previous page). Distinguishing properties of high endothelial venules. (A) High endothelial venules (HEV) are lined with plump high endo-
thelial cells (HEC) which contrast with flat endothelial cells (EC) lining non-specialized post-capillary venules. HEC are supported by a thick basal lamina
and perivascular sheath of fibroblast reticular cells (FRC). HEV are also characterized by the presence of lymphocytes (Ly) within the endothelial cell lining
and basal lamina as shown by transmission electron micrography. (B) HEV in subcutaneous (peripheral) lymph nodes of mice such as axillary LN selec-
tively express peripheral LN addressin (PNAd) and HEV in mucosal associated lymphoid organs such as Peyer’s patches selectively express the mucosal
addressin MAdCAM-1. However HEV in other mucosal associated lymphoid organs such as mesenteric LN co-express PNAd and MAdCAM-1. C57BL/6
mice were injected with anti-PNAd (MECA-79) or anti-MAdCAM-1 (MECA-89) antibody and vibratome sections processed for whole mount immunohis-
tochemistry. Scale bar is 50 mM for LN and 100 mM for Peyer’s patches.

Figure 4. Lymphocyte transmigration across high endothelial venules is a multistage process. High endothelial cells
express a molecular address that captures and arrests blood-borne lymphocytes on the inner, luminal surface (1).
Arrested lymphocytes crawl over the endothelial lining before transmigrating across the wall of HEV. Transmigra-
tion can be separated into distinct stages according to the location of migrating lymphocytes. Lymphocytes first
transmigrate the endothelial lining where they can accumulate in HEV pockets (2). Lymphocytes can be retained in
the sub-endothelial space (3) before completing diapedesis by crossing the basal lamina and perivascular sheath
to enter the LN parenchyma (4). Inhibition of ADAM/MMPs arrests lymphocytes within the endothelial lining (stage
2) and the endothelial lining is thickened due to accumulated lymphocytes as shown by transmission electron
micrography.52

www.tandfonline.com e1008791-5OncoImmunology



unraveling the role of HEV pockets in regulating lymphocyte
entry into LN.

Compared to lymphocytes, pre-dendritic cells spend consider-
ably longer within the walls of HEV before entering the LN
parenchyma (5 h vs. 10 min for lymphocytes); whether dendritic
cells reside in HEV pockets alongside lymphocytes with the
potential for cellular cross-talk remains to be determined. What
determines residence time within the HEV wall is also an impor-
tant question to address. Adhesion molecules such as the leuco-
cyte integrins are strong candidates since they switch rapidly
between inactive and activate conformations during leucocyte
recruitment. For example, VLA-3 integrin at the leading edge of
transmigrating leucocytes binding to laminin in the basal lamina
and LFA-1 at the trailing edge (uropod) binding to EC regulates
retention vs. release of leucocytes in inflamed blood vessels.54

Other candidates include activated VLA-4 integrin which binds
to fibronectin, another component of the basal lamina.55 L-selec-
tin proteolysis may also regulate residence within the walls of
HEV45 since PNAd is expressed at the basolateral endothelial cell
surface17 and lymphocytes unable to downregulate L-selectin
take longer to transmigrate HEV.44,52 The chemokine-rich basal
lamina is also likely to control the onward migration of lympho-
cytes into the LN parenchyma.43,56

A unique feature of HEV which is extremely important for
controlling lymphocyte recruitment is the connection with affer-
ent lymph. The perivascular FRC sheath that surrounds HEV is
continuous with the FRC coated conduit system within LN and
forms a communicating unit that delivers incoming lymph-borne
soluble factors, such as chemokines and cytokines, directly to the
basal lamina of HEV (Fig. 2). Button-like attachments between
adjacent HEC and reverse transcytosis allow access of chemo-
kines to the luminal surface of HEV where they arrest rolling leu-
cocytes.57 The connection with afferent lymph is also important
to maintain fully differentiated HEV since expression of PNAd
and CCL21 depend on continual stimulation by, as yet, uniden-
tified components in afferent lymph (see below).33,58-60

The molecular address on HEC changes dramatically under
inflammatory conditions, in part due to the HEV-afferent lymphatic
connection which delivers inflammatory mediators from infected or
damaged tissues directly to the basolateral surfaces of HEV. De novo
expression of endothelial E- and P-selectins, increased expression of
VCAM-1, presentation of inflammatory chemokines and binding of
blood cells or microparticles allows recruitment of blood-borne leu-
cocytes which are normally excluded under homeostatic conditions
because they lack L-selectin and/or CCR7.61 Interactions between
HEV and activated platelets are important to prevent blood loss in
inflamed LN by maintaining vascular endothelial cadherin (VE-cad-
herin) expression on HEC34 and HEV bound platelets can also
recruit L-selectin negative lymphocytes into LN.62 Depending on
the infection or inflammatory stimulus, effector T cells,63 effector
memory T cells,64 NK cells 39,65 pDCs,66 monocytes.67,68 and neu-
trophils69 can be recruited byHEV into activated LN and have diver-
gent effects on the immune response. For example, effector T cell
recruitment by activated HEV can progress or resolve ongoing
immunity depending on whether antigen presenting cells are killed
or primed by incoming effector T cells.63,64

HEVs in Cancer

The presence and precise location of tumor-infiltrating lym-
phocytes, particularly cytotoxic and memory T cells, is a predic-
tor of clinical outcome in several vascularized tumors including
colorectal, lung and ovarian cancer.70-75 Conventionally it is
thought that effector T cells are generated in organized lymphoid
tissues, such as draining LN, and recruited to tumor tissue from
the bloodstream (Fig. 1). However, the recent finding of
HEVs in a number of different human cancers is important
since it raises the possibility that naive lymphocytes could be
recruited into the tumor tissue via these newly formed blood
vessels where an appropriate pro-inflammatory environment
would allow the generation of cancerous tissue-destroying
effector lymphocytes within the tumor tissue, thus avoiding
the dilution associated with their redistribution from draining
LN via the bloodstream.

PNAd expressing blood vessels with structural features of
HEV have been reported in primary tumors of breast, lung
and ovary, as well as in melanoma.76 The density of HEVs
correlated with the extent of T- and B-lymphocyte infiltration
of the tumor suggesting that, as in LN, HEVs are entry point
for lymphocytes. In a detailed study of resected tumor tissue
from 146 primary, invasive, non-metastatic breast cancers,
the density of HEVs (number of vessels/tumor area) corre-
lated with the numbers of infiltrating naive, memory and
granzymeC CD8C T cells as well as a gene expression profile
typical of Tbet, Th1, CD8C, and IFNgC cells.76 The clinical
impact of HEVs in these patients following surgery for pri-
mary breast cancer was analyzed retrospectively and the den-
sity of HEVs correlated with disease-free, metastasis-free and
overall survival rates for both global and node-positive breast
cancers.76 In a study of 225 primary melanomas, the density
of HEVs correlated strongly with reduced tumor size, expres-
sion of naive T- and Th1-associated genes and the presence
of DC-LAMPC dendritic cells.77 Although relatively small
numbers of patients have been analyzed, these clinical data
linking development of HEV to improved tumor immunity
are supported by experimental studies in mice where the
development of PNAd and/or MAdCAM-1 expressing vessels
correlates with reduced tumor growth, increased recruitment
of naive/central memory T cells and/or local expansion of T
cells within the tumor.78-80 However, in a mouse model of
infection (Helicobacter pylori)-induced carcinogenesis, the
development of PNAd expressing HEV preceded adenocarci-
noma formation.81 The impact of newly formed HEV on
tumor outcome will also depend on whether functionally
mature dendritic cells are present in sufficient numbers
within the tumor tissue to present tumor-derived peptides to
naive T cells and induce full T cell activation. Newly formed
HEVs may also recruit immunosuppressive cells, such as reg-
ulatory T cells, which will limit effective antitumor immu-
nity. It will, therefore, be important to determine the
mechanisms underlying the antitumoral effects of HEV
reported in breast cancer and melanoma and whether they
operate in other types of clinical cancer.
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Tumor Induced HEV in the Absence and Presence
of Extra-Lymphoid Structures

It has long been known that PNAd expressing blood vessels
develop at sites of chronic inflammation associated with autoim-
munity, infection, allergic inflammation, or graft rejection in
experimental mice and patients.17,28,82-84 These vessels show his-
tological features characteristic of HEV such as cuboidal endo-
thelium and lymphocytes transmigrating the vessel wall.25 In
addition, they are most often surrounded by dense lymphocytic
infiltrates organized into lymph-node like, T- and B-cell areas
which are called tertiary lymphoid organs (TLOs) because of
their resemblance to secondary lymphoid organs.

TLO have been reported in resected tumor tissues from a
range of different cancers,85 including non-small cell lung
cancer patients,72 metastatic melanomas86 and breast can-
cer.87,88 In colorectal cancer tissue, tumor-induced lym-
phoid follicles often containing germinal centers (Crohn’s-
like aggregates) are found not in the tumor tissue but in the
surrounding peritumoral area (Fig. 5).89 The role of tumor-
induced TLOs in regulating tumor progression is just start-
ing to be analyzed. In retrospective studies of lung, breast
and colorectal cancer, the presence of these structures is
associated with improved patient survival in some stud-
ies.72,90-92 TLO that support somatic hypermutation and
oligoclonal B cell expansion are found in invasive ductal
breast carcinomas93 and in metastatic, but not primary mel-
anomas,86 but the role of locally produced antibodies in
tumor progression has not been determined. Experimental
studies in mice have highlighted a protumoral, rather than
an antitumoral, effect of tumor-induced TLOs. For instance,
B16F10 melanoma cells expressing the CCR7 ligand,

CCL21, induced the formation of lymphoid tissues at the
tumor site, recruited Tregs and myeloid-derived suppressor
cells (MDSC) and promoted tumor growth.94 The study by
Martinet et al.76 is the first to measure the density of HEVs
in clinical cancers. Although the co-localization of HEV
with T- and B-lymphocyte infiltrates was reported, the den-
sity of lymphocytic infiltrates or whether they were orga-
nized into TLOs was not reported. In a recent study of
colorectal cancer, HEV were rarely observed within tumor
tissue but were found within organized lymphoid structures
in the surrounding peritumoral area.95 As reported
recently,96 the density of HEV containing TLOs did not
correlate with improved survival for all stages of colorectal
cancer.95 The types of immune cell recruited by tumor-
derived HEV will be regulated by the local inflammatory
environment as well as the organization of stromal cells dur-
ing the development of TLO. Therefore, the impact of
HEV on tumor immunity may change during progression
of the disease. It will be interesting to determine whether
the antitumoral effects of HEV reported in breast cancer
and melanoma are modified by the formation of tumor-
induced TLO.

Interestingly, PNAd expressing blood vessels have been
reported in tumors in the apparent absence of TLO. For
example, PNAd expressing HEV have been reported in pri-
mary melanoma in the absence of organized B-cell follicles86

and HEVs that form in tumor bearing mice following Treg
depletion are not located within highly organized, LN-like T-
and B cell infiltrates.80 PNAd expressing blood vessels that
do not adopt the conventional structure of HEV have also
been described in cancer97 and interestingly, tumor regression
in primary cutaneous melanoma correlated better with the

Figure 5. Tumor-infiltrating lymphocytes and tertiary lymphoid organs in colorectal cancer. The location and phenotype of CD3C lymphocytes infiltrat-
ing the tumor tissue has been correlated with patient outcome (A).73 Lymphocytes are also found in tumor-induced tertiary lymphoid organs/lymphoid
follicles in the peritumoral area (B). Tumor-infiltrating lymphocytes could be recruited directly from the bloodstream following their activation in draining
LN or in peritumoral TLO and release into the circulation, as outlined in Figure. 1. Lymphocytes activated in peritumoural TLOs could bypass the blood-
stream and migrate directly into the adjacent tumor tissue. Lymphocytes in cryostat sections of tumors were stained either for CD3 (A) or mismatch
repair enzyme MLH1 (B).
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presence of PNAdC vessels lined with flat as opposed to
cuboidal EC.98 Flat-walled PNAd expressing blood vessels
have been observed as early as 3 d following an inflammatory
insult99 which suggests that HEV development outside of LN
can be initiated independently of tertiary lymphoid
organogenesis.

What Drives the Formation of HEV?

In the recent study of primary breast cancer, the density of
PNAd expressing blood vessels was associated with longer dis-
ease-free survival,76 however
tumor-induced blood vessel
growth is thought to corre-
late with poor outcome. It is,
therefore, important to iden-
tify components of the tumor
microenvironment that con-
trol the development of
PNAd expressing blood ves-
sels. Currently, the develop-
ment of PNAd expressing
blood vessels is best under-
stood in mouse LN.

PNAd expressing HEV
develop in mouse LN during
early neonatal life (Fig. 6).
Since EC lining HEV are of
vascular origin HEV neogen-
esis may represent differenti-
ation of the LN post-
capillary network under the
influence of, as yet, unknown
factors within the LN micro-
environment. Several differ-
ent approaches have
demonstrated clearly that
once formed, fully differenti-
ated HEV are actively main-
tained by an intact stromal
compartment. Following iso-
lation of HEC from adult
mice, PNAd expression, the
distinct endothelial cell mor-
phology and lymphocyte
transmigration are downre-
gulated within days,100

although rat HEC retain
some differentiated proper-
ties in culture.101,102 Ligation
of afferent lymphatics in
mice and rats also results in
HEV de-differentiation.58,103

Administration of a lympho-
toxin-b decoy receptor

(LTbR-Ig) phenocopies afferent lymphatic ligation in that
PNAd expression and HEV function are downregulated in adult
mice.104 Whether this was a direct effect of blocking LTbR sig-
naling in EC or in other LTbR-expressing stromal cells such as
pericytes, FRC or lymphatic EC was not determined.105-107

Several recent papers have started to unravel the complex relation-
ship between LTbR signaling and the development of HEV and
have highlighted important roles for dendritic cells in the differentia-
tion and growth of HEV. Selective ablation of LTbR expression by
vascular EC prevented the development of fully functional, PNAd
expressing HEV able to support high levels of lymphocyte trafficking
in peripheral LN of mice.108 Engagement of endothelial LTbR by

Figure 6. The development of high endothelial venules inside and outside of lymph nodes. Lymph node: HEV
develop as an integral part of the blood vasculature during embryonic and early post-natal life. Mucosal addressin
(MAdCAM-1) is expressed on blood vessel endothelial cells in the late embryo. Luminal expression of peripheral
node addressin (PNAd) is induced on MAdCAM-1 expressing blood vessels early in post-natal life and MAdCAM-1
expression is either maintained or downregulated. Engagement of lymphotoxin-b receptor (LT-bR) on endothelial
cells drives the development of PNAd expressing HEV. Dendritic cells (DCs) and lymphatics vessels are required to
maintain fully differentiated PNAdC HEV and the size of the HEV network is regulated by CCR7C DCs. The stimuli
that organize the surrounding basal lamina, perivascular sheath and connecting conduits are not known. Tumor:
Tumor-derived factors, such as vascular endothelial growth factor, stimulate the growth of new blood vessels to
nourish the growing tumor. In mice, tumor-derived ligands for LT-bR stimulate HEV neogenesis and in primary
non-invasive breast cancer, dendritic cells (DC) are a candidate HEV-inducer cell since they are a major source of
lymphotoxin-b. Whether tumor-derived HEV arise from pre-existing blood vessels during tumor angiogenesis or
develop from circulating endothelial progenitor cells during tumor vasculogenesis remains to be determined.
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CD11cC cells is important in maintaining HEV differentiation since
depletion of CD11cC cells results in loss of HEV structure and func-
tion in a similar manner to afferent lymphatic ligation.109 A separate
approach by the Forster lab identified a role for CCR7 expressing
CD11cC cells, not in maintaining HEV differentiation, but in regu-
lating the overall size of the HEV network110 which suggests that
HEV growth and differentiation may be regulated by different types
of dendritic cell. Previous studies had shown that tissue-derived den-
dritic cells stimulate expansion of the HEV network via LTbR
dependent release of vascular endothelial growth factor (VEGF)-A
from the FRC network.105,111

Since the known LTbR ligands are membrane bound, an
important question is which LT-ab expressing dendritic cells
make contact with EC to induce and/or maintain HEV differen-
tiation. The study by Moussion and Girard109 showed that sub-
cutaneously administered dendritic cells entering via the afferent
lymphatics were able to maintain fully differentiated HEV in
CD11cC depleted mice.109 However, tissue-derived dendritic
cells are attached to the FRC network inside LN and have not
been reported to make contact with HEC.112-114 In contrast,
pre-DCs contact HEC during recruitment from the bloodstream
and reside within the HEV wall for up to 5 h but whether they
express LT-ab has not been determined.38 Studies using mice
deficient in different types of dendritic cell will be useful to
unravel the impact of dendritic cells and LTbR signaling on the
development and growth of HEV.38,115 Other LT-ab expressing
cells which are important for LN organogenesis and remodeling
should also be considered as HEV-inducer cells, such as RORgtC

lymphoid tissue inducer cells and B cells. It is also interesting to
consider that the effect of afferent lymph on HEV differentiation
may not be to deliver LT-ab expressing HEV-inducer cells, such
as tissue-derived dendritic cells, but rather as a source of chemo-
kines which gain access to HEV via the conduit system where
they position HEV-inducer cells alongside HEC to deliver the
contact signals necessary for HEV differentiation.

Whether HEV development and growth are driven by den-
dritic cells and/or LTbR signaling in tumor blood vessel EC in
clinical cancer remains to be determined (Fig. 6). Evidence in
support of this hypothesis comes from a study of primary non-
invasive breast cancer patients which showed that DC-LAMPC

dendritic cells represent the major source of LT-b in tumor tis-
sues and their presence correlates with the density of HEV. In
primary melanoma, the density of HEV also correlated with the
presence of DC-LAMPC dendritic cells.77 However, as in LN the
majority of dendritic cells are localized outside the basal lamina
of HEV and very few are in direct contact with HEC.116 LTbR
dependent HEV neogenesis in seen in experimental animals in
which LT-a or LIGHT are directly targeted to tumor cells,78

raising the possibility that cells other than dendritic cells could
drive HEV neogenesis in cancer. Interestingly, direct intratumou-
ral injection of CCL21 secreting dendritic cells recruited and
primed naive tumor reactive T cells within the tumor and
resulted in reduced tumor growth. In view of the findings of den-
dritic cell dependent HEV differentiation, it will be interesting
to determine whether the effect of dendritic cells in controlling
tumor growth depends on HEV neogenesis.117,118

Can Tumor Blood Vessels Be Manipulated to
Promote HEV Dependent Lymphocyte Homing?

If the induction of HEVs in tumor tissue correlates with
reduced tumor progression, an obvious goal would be to stimu-
late HEV neogenesis in tumors but we know very little about the
factors that control HEV neogenesis outside of LN. Some clues
have come from studies in which cytokines were ectopically
expressed in pancreatic islets of mice. Expression of lympho-
toxin-a induced MAdCAM-1 but both lymphotoxin-a and lym-
photoxin-b were required to induce PNAd expressing blood
vessels.119 The balance of LT-a vs. LT-ab expressing cells may
therefore drive the development of MAdCAM-1 and PNAd
expressing HEV in non-lymphoid tissues.

LT-a and LT-ab both activate the classical NF-kB pathway
characterized by nuclear translocation of p50-RelA complexes.
However, LT-ab also activates the alternative, non-canonical
NF-kB pathway that is hallmarked by NF-kB-inducing Kinase
(NIK)-dependent activation of IkB kinase (IKK)-a and nuclear
translocation of p52-RelB complexes.120 Non-canonical NF-kB
signaling is thought to play a dominant role in HEV neogenesis
since blockade of LTbR, but not TNFR, downregulates several
HEV-specific markers such as GlyCAM-1, MAdCAM-1,
CCL21 and HEC-6ST (the sulphotransferase that generates api-
cally expressed PNAd).104 In addition, IKKa(AA) mutant mice
with defective non-canonical NF-kB signaling lack functional
HEV.28 Conversely, mice lacking full-length p100 protein which
express constitutively active p52, display aberrant PNAd express-
ing HEV in the spleen.121 However, recent studies suggest that
there is considerable overlap between classical and non-canonical
NFkB signaling in driving the expression of HEV-associated
genes.122,123 For example, recombinant TNF-a, LT-a and LT-
ab all induce expression of MAdCAM-1 in EC isolated from
human and mouse tissues. HEC-6ST gene expression is induced
in EC by soluble recombinant LT-ab and by TNF-a in human,
but not mouse, EC (MJM, unpublished).124-126 However, induc-
tion of PNAd glycoproteins has not been reported in EC isolated
from non-lymphoid tissues, indicating that stimuli in addition to
activation of NF-kB signaling are required for HEV neogenesis.

If HEV neogenesis could be induced how might this impact
tumor immunity? Clinical data and experimental studies in mice
suggest that the tumor microenvironment restricts the recruit-
ment of cytotoxic, effector T lymphocytes from tumor blood ves-
sels.127 This restriction could be considered an immune
checkpoint which needs to be overcome for effective immuno-
therapy (Fig. 7). For example, following vaccination or adoptive
T cell therapy of tumor-bearing patients, even when tumor-spe-
cific T cells comprise 20% of circulating lymphocytes, the out-
come on tumor growth can be small.128 In mice, tumor blood
vessels are anergic to inflammatory cytokines that upregulate
CD8C T cell homing in non-involved peritumoral vessels129 and
tumor-derived factors, such as endothelin-B, suppress T cell
recruitment by limiting endothelial expression of homing-associ-
ated molecules such as ICAM-1 and VCAM-1.130 Endothelial
cell anergy may be related to the pro-angiogenic tumor environ-
ment; VEGF and FGF prevent cytokine induced homing
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molecule expression by
EC.131 Another potential
mechanism of limiting
cytotoxic T cell entry is the
induction of FasL on
tumour EC.132 The recent
finding that Foxp3 express-
ing Tregs suppress blood
vessel differentiation by
limiting HEV neogenesis
in tumors is yet another
strategy by which tumors
restrict lymphocyte entry
from bloostream.80

Different experimental
approaches have been
explored to increase the
recruitment of effector
CD8C T cells by tumor
blood vessels. Targeted
delivery of TNF-a using
monoclonal antibodies
that bind to tumor vessels
promotes T lymphocyte
infiltration of tumors
indicating that endothelial
cell anergy can be over-
come.133 Expression of
ICAM-1 and VCAM-1
can be induced by irradia-
tion134 and hyperthermia
induced IL-6 trans-signal-
ing leads to increased
effector T cell tumor infil-
tration and a reduction in
tumor growth.129 Interest-
ingly and somewhat
counter-intuitively, anti-
angiogenic therapy promotes CD8C T cell infiltration of
tumors131 and increases the efficacy of adoptive CD8C T cell
therapy in experimental mouse models.135 This could be a
direct consequence of increased homing molecule expression
on tumor vessels. However, rather than inhibit tumor angio-
genesis, anti-angiogenic therapy has been reported to
“normalize” tumor blood vessels by promoting pericyte
recruitment and increasing tumor vessel perfusion.136 Pericyte
maturation also promotes tumor blood vessel normalization
and has been shown to increase immune cell infiltration and
reduce tumor growth.137-139 It is possible that normalized
tumor blood vessels recruit more lymphocytes because they
can support the shear stresses required to maintain lympho-
cyte rolling140 and transmigration.141 The development of
HEV could promote antitumor immunity by recruiting naive
lymphocytes into the tumor, thus allowing the local genera-
tion of cancerous tissue-destroying lymphocytes as shown in
mice.79 It is also possible that, as in LN, locally produced

inflammatory mediators activate HEV to recruit effector cells
which counteract the panoply of immunosuppressive cells
which are enriched in vascularized tumors.142 It will, there-
fore, be important to determine which populations of
immune cells are recruited by tumor-induced HEV to dissect
their impact on tumor immunity.

Summary

The recent reports of HEVs in tumor tissue and a correlation
with reduced tumor progression has generated interest in how
these specialized blood vessels form and their impact on immune
responses to tumors. The rise of cancer immunotherapy has re-
focused attention on the tumor vasculature and the necessary role
that it plays in recruiting effector lymphocytes able to destroy
tumor cells. HEV neogenesis would represent a novel approach
to cancer therapy which is diametrically opposed to the long-

Figure 7.Manipulating tumor blood vessels to promote T lymphocyte homing in cancer immunotherapy. Left Tumor
blood vessels are anergic to inflammatory cytokines that normally upregulate endothelial cell (EC) expression of
homing-associated molecules for T lymphocytes. Tumor-derived factors such as endothelin-B and vascular endothe-
lial growth factor also limit the expression of homing-associated molecules thereby restricting the recruitment of T
lymphocytes. Right The recruitment of pericytes to immature tumor blood vessels leads to vessel normalization
which is associated with increased immune cell infiltration and reduce tumor growth. Vessel normalization reverses
EC anergy and upregulates expression of homing-associated molecules which recruit cancer-destroying T lympho-
cyte. Tumor-derived HEV may recruit naive and central memory lymphocytes and allow the generation of tissue-
destroying lymphocytes within the tumor tissue. The development of HEV in tumours may occur independently of
vessel normalization.
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standing goal to block tumor angiogenesis. However, anti-angio-
genesis therapies have not performed as well as first hoped.
Although many aspects of HEV biology are still to be unraveled,
the recent findings that lymphotoxin-b receptor-dependent sig-
naling in EC is critical for the development and function of
HEV are significant advances in our understanding and may pro-
vide therapeutic approaches to promote HEV neogenesis in
tumors and determine the impact on HEV on tumor immunity.
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