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Abstract

The non-structural protein NSs is the main virulence factor of Rift Valley fever virus, a major zoonotic pathogen in Africa. NSs 
forms large aggregates in the nucleus and impairs induction of the antiviral type I IFN system by several mechanisms, includ-
ing degradation of subunit p62 of the general RNA polymerase II transcription factor TFIIH. Here, we show that depletion of the 
nuclear pore protein Nup98 affects the nuclear import of NSs. Nonetheless, NSs was still able to degrade TFIIH-p62 under these 
conditions. Depletion of Nup98, however, had a negative effect on Rift Valley fever virus multiplication. Our data thus indicate 
that NSs utilizes Nup98 for import into the nucleus, but also plays a general role in the viral replication cycle.

Rift Valley fever virus (RVFV; genus Phlebovirus, family 
Phenuiviridae, order Bunyavirales) is a mosquito-transmitted 
zoonotic pathogen that is endemic in Africa. In large and 
devastating outbreaks it can kill thousands of farm animals 
and hundreds of humans [1].

The particles of RVFV are enveloped and contain three 
genomic RNA segments of negative or ambisense polarity, 
termed L, M and S, according to their relative size [2, 3]. There 
are four structural proteins, namely the two glycoproteins Gn 
and Gc that are inserted into the envelope, and the nucleopro-
tein N and the RNA-dependent polymerase L that encapsidate 
the genomic RNA segments to form the ribonucleoprotein 
particles (RNPs). RVFV also encodes non-structural (NS) 
proteins. NSm1 and NSm2 are encoded on the M segment as 
part of a polyprotein that also produces Gn and Gc, and NSs 
is encoded on the S segment by an ambisense strategy. RVFV 
enters the host cell via endocytosis and Gn/Gc-mediated 
membrane fusion. All steps of the viral replication cycle such 
as transcription and replication of the RNP-encapsidated 
genome segments as well as particle assembly and egress take 
place in the cytoplasm. The NSs protein, however, is present in 
the nucleus and forms large and dense filamentous structures 
[4, 5].

NSs is the major pathogenicity factor of RVFV that strongly 
inhibits host cell gene expression [6]. NSs achieves this by 
a multitude of activities such as targeting the general RNA 
polymerase II transcription factor TFIIH by (i) sequestering 

subunits p44 and XBP to prevent assembly of TFIIH, and 
(ii) driving proteasomal degradation of the TFIIH subunit 
p62 [7, 8]. Moreover, NSs recruits the RNA polymerase II 
suppressor SAP30 [9, 10], binds to a wide range of RNA poly-
merase II promoters [11] and hinders the export of host cell 
mRNAs to the cytoplasm by an unknown mechanism [12].

Despite the fact that most functions of NSs to counteract 
antiviral host responses occur in the nucleus, the mode of 
NSs nuclear transport has remained unclear. NSs has a relative 
molecular mass of about 30 kDa, a size that is well below the 
40 kDa diffusion limit of nuclear pores [13]. However, NSs has 
a strong tendency to assemble into much larger filaments [14], 
and several mutant proteins were shown to have lost nuclear 
localization partially or entirely [4, 5, 15].

Previously, we have identified the nuclear pore protein 
Nup98 as the host cell interactor of RVFV NSs by affinity 
purification followed by MS [16]. Nup98 is a highly conserved 
component of the nuclear pore complex, and is exposed at the 
cytoplasmic as well as the nuclear periphery of the central 
channel [17]. Besides being part of the nuclear pore complex 
and participating in nuclear import, a fraction of Nup98 is 
intranuclear and involved in mRNA export, RNA polymerase 
II regulation and antiviral gene expression [17–19]. Unfortu-
nately, despite our earlier MS results [16], we were unable to 
robustly demonstrate an interaction of NSs with Nup98 by 
co-immunoprecipitation (data not shown). Moreover, when 
cells were infected with a recombinant strain ZH548 bearing 
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a C-terminally Flag-tagged NSs (rZH-CFNSs), immunofluo-
rescence analyses did not reveal any obvious co-localization 
or changes in the subcellular localization of Nup98 (Fig. 1a). 
In addition, Nup98 levels did not change in rZH-CFNSs 
infection when compared to a control virus expressing a 

Flag-tagged fragment of MxA (rZH-FΔMx) instead of NSs, 
as shown by immunoblot analyses (Fig. 1b). Therefore, unlike 
other targets of NSs, Nup98 appears to interact with NSs only 
transiently and without any consequences for Nup98 locali-
zation or stability. Nonetheless, when cells were depleted of 
Nup98 by small interfering RNA (siRNA), the cytoplasmic 
fraction of NSs increased [Fig. 2a (upper and middle panel) 
and Fig.  2b]. However, the nuclear target of NSs, TFIIH-
p62, was still degraded, probably by the residual NSs in the 
nucleus. Importantly, when the nuclear pore protein Nup62 
was removed by siRNA as a control, NSs located mostly to the 
nucleus, although a certain increase of the cytoplasmic signal 
was also observed [Fig. 2a (lower panel) and Fig. 2b]. Nup62 
is located in the central channel of the nuclear pore [20]. Like 
the more peripheral Nup98, it associates with the importin 
alpha/beta complex and mediates import of proteins [21]. 
Nonetheless, NSs nuclear import appears more dependent 
on Nup98 than on Nup62. Moreover, the slight impairment of 
NSs import could possibly also be explained by the observa-
tion that Nup98 levels can be affected by siRNA depletion of 
Nup62 (Fig. 2c).

To investigate the importance of Nup98 for RVFV infection, 
we measured virus yields under conditions of Nup98 deple-
tion. As shown in Fig. 3 (a), titres of the wt strain rZH548 
dropped by almost 1 log10 step in the absence of Nup98, but 
not when Nup62 was depleted. Surprisingly, the naturally 
NSs-deleted strain Clone 13 was also reduced upon Nup98 
depletion, although values did not reach significance levels. 
Thus, RVFV may require Nup98 for a general function in 
virus replication. Moreover, Nup98 depletion did not restore 
IFN induction by wt RVFV (Fig. 3b), in line with the still 
intact TFIIH-p62 destruction by NSs under these conditions 
(see Fig. 2c). However, a possible rescue of IFN induction 
imposed by Nup98 depletion might be hidden due to a 
general defect in nuclear import of transcription factors for 
IFN-β promoter activation. Indeed, the strong IFN induc-
tion by the NSs-deleted strain Clone 13 was reduced when 
Nup98 was absent, although statistical significance was not 
reached (see Fig. 3b). Reduced IFN induction could be due 
to the mentioned transport defect by Nup98 depletion, but 
is also expected based on the role of Nup98 in antiviral gene 
expression [19].

Our findings indicate that Nup98, one of the most conserved 
nucleoporins and an important player in cytoplasmic–nuclear 
transport [17, 22], is required by RVFV for two independent 
functions. First, Nup98 is involved in the nuclear import of 
NSs. Nup98 is known to act as a cytoplasmic docking site 
for nuclear transport substrates via its unique GLFG repeat 
domain, as opposed to the FG repeats of the other nucleo-
porins [17, 23]. The GLFG repeat region is known to bind 
to import cargo [17]. Interestingly, both NSs and nucleop-
orins contain intrinsically disordered regions that have the 
tendency of multivalent, low-affinity interactions [14, 22], 
perhaps explaining the role of Nup98 in NSs import on the 
one hand and the lack of a robustly demonstratable interac-
tion on the other. Unlike many other NSs interactors [7, 9, 10], 
Nup98 is not consumed or dislocated over the course of 

Fig. 1. Nucleoporin Nup98 in the presence of RVFV NSs. HeLa cells 
were infected with recombinant RVFV expressing a C-terminal Flag 
tag (rZH-CFNSs [7]) at an m.o.i. of 3. After an incubation period of 6 h, 
cells were fixed with 4 % paraformaldehyde in PBS and permeabilized 
with 0.5 % Triton X-100 in PBS, and immunostained for Flag-tagged 
NSs (Anti-Flag M2, 1 : 1000, green channel) and Nup98 (Nup98 C39A3, 
1 : 500, red channel) by confocal microscopy. (b) Immunoblot analysis. 
HeLa cells were left uninfected (mock) or infected with rZH-CFNSs 
or a control virus expressing a Flag-tagged N-terminal fragment of 
MxA (rZH-FΔMx [7]) at an m.o.i. of 5, and 16 h later were subjected 
to immunoblot analysis using antibodies against Nup98 (Nup98 
C39A3, 1 : 500), TFIIH-p62 [GTF2H1 (ab55199), 1 : 1000], Flag tag [Anti-
Flag (F7425), 1 : 2000] and cellular actin as a loading control (β-Actin 
8H10D10, 1 : 1000).
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Fig. 2. Effect of Nup98 depletion on nuclear import of NSs. HeLa cells with specific siRNA knockdown of Nup98 or Nup62 were infected 
with recombinant RVFV expressing Flag-tagged NSs (rZH-CFNSs) or the ΔMx control (rZH-FΔMx) at an m.o.i. of 3. After an incubation 
period of 24 h, cells were fixed, permeabilized and analysed for the presence of Flag-tagged NSs [Anti-Flag (F7425), 1 : 1000, green 
channel] and TFIIH-p62 [GTF2H1 (ab55199), 1 : 500, red channel] by confocal microscopy (a). (b) Quantification of microscopy images. 
In four biological replicates, around 100 infected cells per replicate were monitored for the presence of NSs and the cytoplasmic 
localization of NSs. *P<0.05 (Student’s paired t-test). (c) Knockdowns were verified by immunoblot analysis. The knockdown was 
achieved by two-fold reverse transfection with control siRNA (AllStar Negative Control; Qiagen) as well as validated pools of four siRNAs 
(Qiagen) against mRNAs for Nup98 (GeneSolution GS4928) and Nup62 (GeneSolution GS23636) as previously described [7]. Quantitative 
reverse-transcriptase PCR showed mRNA reduction to be at least 90 % (data not shown). One day after the second transfection cells 
were infected as described above. Antibodies for immunoblot were anti-Nup98 C39A3 (Cell Signaling, diluted 1 : 1000), anti-Nucleoporin 
p62 (BD Transduction Laboratories, diluted 1 : 4000) and anti-beta tubulin (Abcam, diluted 1 : 1000).
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infection. Second, the multifunctional Nup98 may execute an 
NSs-independent role in the viral replication cycle, perhaps 
the nuclear export of co-factors required for replication in the 
cytoplasm, or the expression of host genes required for virus 
replication. Nup98 is an IFN-stimulated gene and confers 
antiviral activity [19, 24]. It is therefore targeted by several 
viruses, either by interaction (vesicular stomatitis virus 
[24, 25]), phosphorylation (cardiovirus [26]), degradation 
(influenza A virus [27]) or specific cleavage (poliovirus [28]). 
Our findings that RVFV does not target or modify Nup98 in 

a comparable, direct manner might be explained by the fact 
that it is required for NSs import and viral replication.
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