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INTRODUCTION

Endoscopic ultrasound (EUS) plays an important 
role in imaging of  the mediastinum and abdominal 
organs including the esophagus, stomach, duodenum, 
rectum, pancreas, biliary tract, peritoneal cavity, and 
retroperitoneum.[1-4] It has proven value in lesion 
characterization and intervention guidance.[5-11]

Since the introduction of  US contrast agents (UCA) for 
transabdominal US, attempts have been made to apply 
this technique to EUS but contrast-specific imaging 
was not technically possible using endoscopic probes. 
Therefore, UCA were displayed using conventional 
Doppler techniques, leading to adequate results in certain 
indications.[12-15] In 2005, Dietrich et al. published their 
experience with a prototype software used since 2003,[16] 

but it lasted until 2008 when specific contrast‑enhanced 
EUS using harmonics imaging became commercially 
available. Nowadays, a solid body of  research has 
been published concerning contrast-enhanced EUS in 
pancreatic lesions, lymph nodes, submucosal tumors 
of  the gastrointestinal (GI) tract, and less common 
applications including the biliary tract, vascular indications, 
and characterization of  epithelial tumors of  the GI tract.

In this manuscript, we describe the composition of  the 
UCA in general and refer to their approved indications. 
We also describe contrast‑specific imaging and safety 
issues. Finally, we discuss reasons when and why 
contrast-enhanced EUS should be applied, including 
future perspectives.
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ABSTRACT

Endoscopic	ultrasound	 (EUS)	plays	an	 important	 role	 in	 imaging	of	 the	mediastinum	and	abdominal	organs.	Since	 the	
introduction	of	US	contrast	agents	(UCA)	for	transabdominal	US,	attempts	have	been	made	to	apply	contrast‑enhanced	US	
techniques	also	to	EUS.	Since	2003,	specific	contrast‑enhanced	imaging	was	possible	using	EUS.	Important	studies	have	
been	published	regarding	contrast‑enhanced	EUS	and	the	characterization	of	focal	pancreatic	lesions,	lymph	nodes,	and	
subepithelial	tumors.	In	this	manuscript,	we	describe	the	relevant	UCA,	their	application,	and	specific	image	acquisition	as	well	
as	the	principles	of	image	tissue	characterization	using	contrast‑enhanced	EUS.	Safety	issues,	potential	future	developments,	
and	EUS‑specific	issues	are	reviewed.
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ULTRASOUND CONTRAST AGENTS

Ultrasound contrast agents composition
The lifetime of  air bubbles is short. In 1968, Gramiak 
and Shah reported observations of  clouds of  bubbles 
after intra-aortic catheter injection of  saline.[17] Further 
investigations reported on UCA consisting of  saline, 
indocyanine green, hydrogen peroxide, dextrose, and 
renografin.[18] Another approach was autologous blood 
injections at rapid rates which produced more stable 
bubbles.[19] Neither gelatin nor agarose gel proved to 
be useful to stabilize bubbles.[20] Synthetic polymers 
consisted of  cyanoacrylate and air were marketed under 
the name of  Sonovist® (Schering, Berlin, Germany). 
Those bubbles lasted more than 10 min and were taken 
up by the reticuloendothelial system.[21,22] Other tested 
materials included poly(D, L-lactide-co-glycolide)[23,24] and 
poly (vinyl-alcohol).[25]

One of  the first goals in producing effective UCAs 
around 1980 was to obtain stability long enough to 
reach the right heart. Since lung capillaries are efficient 
filters, it was not until the 1990s when left heart 
contrast became possible. Contrast-enhancing agents 
with improved stability to effectively enhance the blood 
pool appeared in 1995. The next objective was to 
produce bubbles enabling real-time imaging. This goal 
was reached by replacing air with poorly soluble gases, 
e.g., perfluorocarbons, which improved bubble durability, 
along with sophisticated acoustic parameters enabling 
the development of  software algorithms which could 
efficiently differentiate UCA from tissue signals.

All currently commercially available UCA consist of  
an inert gas encapsulated by a shell. The shell mainly 
influences the viscoelastic properties, i.e., stability and 
durability,[26] while the gas determines solubility and 
the majority of  the bubbles’ acoustic properties. As 
true blood pool agents, perfluorocarbons bubbles 
range from 1 to 10 µm in size, permitting passage 
through the pulmonary vascular system, which is 
essential for access to the systemic circulation.[27] Soft 
shell materials consist of  phospholipids or other 
surfactants and demonstrate improved nonlinear 
oscillations.[28] Protein-shelled microbubbles are also 
available (e.g., Optison®) consisting of  an albumin shell 
around perfluoropropane gas.

The terms “first and second generation UCA” are 
sometimes used to differentiate agents with air from 
those with low soluble gases. Although this overly 

simplifies the distinctions mentioned above, it is 
sufficient in clinical practice since development of  
second generation UCA leads to near complete 
disappearance of  first generation agents due to the ease 
of  use and effectiveness of  the former.

Uptake of  microbubbles by Kupffer cells has been 
described in the liver and by macrophages outside 
of  the liver. This mechanism depends on shell 
composition, size, and surface properties and cannot be 
predicted simply by the shell material.[29] The mechanism 
is understood for Levovist®, Sonazoid®, and Optison®.[29] 
The extended late phase in Sonazoid® is termed the 
“post-vascular phase” where it may persist for several 
hours in the liver and spleen.[30,31]

So-called nanobubbles have inferior oscillation 
behavior relative to microbubbles but are of  interest 
in therapeutic approaches; nanobubbles have a size of  
400–800 nm and can extravasate into tumor tissue.[26] 
The accumulation of  nanobubbles in tumors is referred 
to as passive targeting.[32]

The relevant UCA are summarized in Table 1.

ULTRASOUND CONTRAST AGENTS 
IMAGING

From the bubble to the ultrasound signal
UCA provide significant alterations in the reflection 
pattern. First, they increase the backscattered signal 
dramatically.[35] When acoustic pressure is applied, 
UCA resonate in a linear manner. With increasing 
acoustic pressure, nonlinear vibrational patterns 
appear.[27] Tissue produces harmonic resonances only 
at higher mechanical index (MI), thus differentiation 
of  signal origin whether tissue or UCA is possible. 
Using filter systems, multiples of  the natural 
frequencies are received, allowing a certain amount 
of  background (non-UCA) signal suppression. 
High-pressure levels disrupt microbubbles producing 
powerful signals and signals of  different qualities. 
Nonlinear patterns[27] are of  importance and are 
described below.

Bolus injection versus infusion
In most indications, UCA are simply injected as a bolus. 
Intravenous infusion is of  interest in cardiac imaging 
and other indications. Wash-in and wash-out kinetics are 
produced with controlled destruction using US pulses 
with high MI. Higher rates of  adverse events such 
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as premature ventricular contractions in patients with 
coronary diseases have been reported after continuous 
injection.

UCA have been also used in physiological and 
nonphysiological (extravascular) body cavities.[36] 
This is an off-label use except the application of  
Levovist® into the urinary bladder for evaluation of  
vesicoureteral reflux. Extravascular applications with 
SonoVue®, mentioned in the European Federation of  
Societies for US in Medicine and Biology guideline,[37] 
include injection of  contrast for assessment of  
hysterosalpingo-contrast-sonography, ascites to evaluate 
hepatic hydrothorax, bile ducts via percutaneous 
transhepatic cholangiography and drainage,[38,39] 
endoscopic retrograde cholangiography or surgically 
placed T‑tube, sialography, perianal fistula, abscesses,[40] 
pseudocysts, gastroesophageal reflux, Zenker’s 
diverticulum,[41] enema, and nephrostomy tubes.[1,2,6,37]

How can we use ultrasound contrast agents imaging?
In cardiology, UCA are used to improve difficult 
echocardiograms. The frequency of  difficult 
echocardiograms is given as approximately 30%. UCA 
imaging can improve these in a significant percentage.[42-46]

Cardiologic guidelines recommend UCA use in the 
following cases:
•	 If  two contiguous segments of  the left ventricular (LV) 

cavum are not observed
•	 To improve Doppler evaluations if  the initial spectrum 

signals are inadequate[27,47]

•	 If  serial assessment of  ejection fraction is required since 
UCA decrease variability

•	 If  apical  hyper trophic cardiomyopathy and 
noncompaction is suspected

•	 In the case of  intracavitary thrombi, LV aneurysms, 
Takotsubo myopathy.[48]

In most other indications, it is necessary to discriminate 
UCA from tissue signal as completely as possible.

Doppler‑based methods
In high MI imaging, stimulated acoustic emission is 
used with color or power Doppler. The microbubbles 
are destroyed using a high MI US impulse and the 
received signal is a complex US wave mix resulting in 
a Doppler shift.[49] It is particularly useful in the late 
phase of  a UCA with tissue specificity, e.g., Levovist®.[50] 
In EUS, color Doppler imaging has been used and it 
could be demonstrated that due to the small size of  the 

Table 1. Relevant ultrasound contrast agents and their relevant features
Contrast agent Year Components Approval Country/comments
Echovist® 1991 Galactose with air Shunt imaging in cardiology and in 

hysterosalpingo‑contrast sonography[33,34]
First approved echo enhancer

Albunex® 1995 Perflutren 
shell with air

Cardiology Typical first generation blood pool agent 
allowing no real time imaging

Levovist® 1995 Mix of galactose 
and palmitic 
acid with air

Cardiology, liver imaging, and 
intracavitary application for 
imaging of vesicoureteral reflux

Improved stability due to palmitic 
acid,[34] no real‑time imaging

Optison® 1997 Albumin shell 
with perflutren

LV opacification and endocardial 
border definition

Austria, Belgium, Brazil, Bulgaria, Cyprus, Czech 
Republic, Denmark, Estonia, Finland, France, 
Germany, Greece, Hungary, Ireland, Latvia, 
Lithuania, Luxembourg, Malta, the Netherlands, 
Norway, Poland, Portugal, Romania, Slovakia, 
Slovenia, Spain, Sweden, United Kingdom, and USA

SonoVue® 2001 Phospholipid 
shell with sulfur 
hexafluoride

LV opacification and endocardial 
border definition, breast, liver, 
portal vein, extracranial carotid 
and peripheral arteries, USA: Only 
approved for LV opacification and 
endocardial border definition, Canada: 
Only approved for LV opacification, 
endocardial border definition and 
diagnostic assessment of vessels

Austria, Belgium, Brazil, Bulgaria, Canada, 
China, Cyprus, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Honk 
Kong, Hungary, Iceland, India, Ireland, Italia, 
Japan, Latvia, Lithuania, Luxembourg, Malta, 
the Netherlands, Norway, Poland, Portugal, 
Romania, Russia, Singapore, Slovakia, Slovenia, 
South Korea, Spain, Sweden, Switzerland, United 
Kingdom, and USA (under the name “Lumason®”)

Definity® 2001 Phospholipid 
shell with 
octafluoropropane

LV opacification and endocardial border 
definition, Australia, Brazil, Mexico, 
India, Israel, and New Zealand: Imaging 
of liver and kidney, Canada: Liver, 
kidney, spleen, pancreas, bladder, 
bowel, ovary, uterus, testicles

Australia, Brazil, Canada, India, Israel, 
Mexico, New Zealand, Singapore, South Korea, 
United Arab Emirates, and USA

Sonazoid® 2007 Lipid shell with 
perfluorobutane

Imaging of focal liver lesions, Japan: 
Focal breast lesions

Japan, Norway, and South Korea[27]

LV: Left ventricular
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image window real-time imaging was possible although 
spatial resolution was poor.[51]

Vascular recognition imaging represents a method 
in which advanced low MI contrast-specific imaging 
is mixed with a Doppler technique adding direction 
information in larger vessels.[52-54]

Low mechanical index imaging and contrast‑specific 
imaging
The optimal contrast-enhanced imaging method should 
provide high-resolution real-time imaging over a long 
period with B-mode information side by side or as an 
overlay to the UCA signal. Current imaging methods 
come close to that aim. Drawbacks are a varying 
degree of  bubble destruction and a low quality of  the 
fundamental (tissue) image and reduced local contrast 
resolution. Low MI techniques have two effects: First, 
bubbles do not burst and second, they elicit harmonic 
US waves. Reduced MI can lead to problems in depth 
penetration.[55,56] For providing specific UCA imaging, 
initially, a low-pass filter was used to remove the 
fundamental waves. The next evolution generating higher 
spatial resolution was the use of  phase inversion modes 
with which the complete bandwidth of  the transducer 
can be utilized. Here, phase inverted pulses are sent 
simultaneously which results in information = 0 when 
echoes are linear, and summing of  information ≠ 0 
when nonlinear echoes, such as UCA echoes reflect.

Why do we use ultrasound contrast agents imaging?
The described methods lead to separately displayed 
tissue and contrast signals. In general, the following 
questions can be answered.

Vital versus avital
The easiest way to use UCA is to differentiate 
enhancement versus nonenhancement. Due to the blood 
pool character and the high specificity of  the signal, 
this is possible with high reliability.

In some clinical questions, neoplastic lesions and avital 
structures must be differentiated:
•	 Liver abscess, since pus frequently is not anechoic[40]

•	 Intraductal papillary mucinous neoplasia with focal 
mucus accumulations which mimics neoplastic 
nodules[57]

•	 Gallbladder stones without calcification which could 
be misdiagnosed as polyps

•	 Cardiac lesions mimicking thrombus but which are in 
fact neoplasms (unpublished data).

Detection of  nonvascularized areas provides important 
information in characterizing many lesions. For example, 
focal nodular hyperplasia shows a central scar in about 
2/3 of  patients[58] while GI stromal tumors typically 
show necrotic areas in contrast to lipoma, schwannoma, 
and leiomyoma.[59-61]

General enhancement
Typically, the enhancement intensity of  a lesion is 
compared with the surrounding reference tissue. 
Typical pancreatic ductal adenocarcinomas show a 
markedly lower degree of  UCA uptake compared to 
surrounding pancreatic tissue in more than 90% of  
cases. In comparison, other entities, e.g., neuroendocrine 
tumors, lymphoma, metastases, and the “pseudosolid” 
entity “serous microcystic adenoma,” typically show 
hyperenhancement. In daily practice, this discrimination 
from ductal adenocarcinoma is highly valuable due to 
the different approach in therapy and prognosis.[51,62] 
In liver cirrhosis, regenerative nodules typically show 
enhancement similar to the surrounding liver tissue 
whereas hepatocellular carcinoma are hypervascular and, 
therefore, hyperenhancing in more than 90% of  cases.[31,63]

To differentiate atelectasis from lung neoplasia, the 
earliest appearance of  UCA is significant. Early 
enhancement is indicative of  atelectasis supplied by 
vasa communes, which lack the oxygen-rich blood 
demanded by neoplasms. Since vasa communes derive 
from the right ventricle, they enhance earlier than 7 s 
after injection while the vasa privata enhance later. This 
later enhancement pattern has a high probability for 
neoplasia but caution is required as infarcted lung can 
appear similarly.[64-67]

Early phase  –  late phase
When UCA are injected as a bolus, the wash-in and 
wash-out kinetics can be evaluated. Analysis of  the liver 
late phase allows reliable differentiation between benign 
and malignant focal liver lesions due to the hepatic 
dual blood supply. Lesions without portal veins show 
a shorter contrast enhancement resulting in a relative 
hypoenhancement about 30 s after injection. Such focal 
liver lesions are mostly malignant.[55,58,63,68-73]

In the spleen, late phase hypoenhancement has a lower 
positive predictive value though for lesions with late 
phase enhancement similar to the surrounding tissue 
malignancy can virtually be ruled out. This principle 
is advantageous in daily routine when deciding which 
patients should be offered biopsy.[74-76]



Ignee, et al.: US contrast agents

359ENDOSCOPIC ULTRASOUND / NOV-DEC 2016 / VOL 5 | ISSUE 6

Special patterns
Specific patterns are shown by some tumor entities, 
e.g., centrifugal pattern of  hepatic focal nodular 
hyperplasia and peripheral nodular enhancement in 
hemangioma.[58,68,72,77]

Quantification
Enhancement kinetics are described elsewhere in this 
special issue of  EUS.

ULTRASOUND CONTRAST AGENTS SAFETY

In October 2007, the Food and Drug Administration 
(FDA) issued a new product labeling for UCA 
due to four patient deaths and about 190 serious 
adverse events with unclear causation but association 
with UCA use.[78] A “black box” warning regarding 
multiple disease state contraindications to UCA use 
was mandated, including acute myocardial infarction, 
decompensated heart failure, ventricular arrhythmias, or 
patients with high risk for the latter, respiratory failure, 
emphysema, conditions that may cause pulmonary 
hypertension and so on. Critics claimed that there 
was no proof  for more than temporal relation, and 
cited the higher rates of  incidents associated with 
alternative procedures after acute cardiac events. In 
2008, the FDA downgraded the contraindications to 
warnings. Safety studies in around 200,000 patients 
receiving Optison® and Definity® demonstrated a very 
low adverse event rate.[79-81] For Optison® and Definity®, 
there was an approximately 1:10,000 incidence of  
acute anaphylactoid reaction immediately after UCA 
injection.[82] In 2006, Piscaglia et al. published an analysis 
of  23,188 investigations using SonoVue® for abdominal 
indications. Twenty-eight Italian centers provided data 
with no fatal events recorded. There were 29 adverse 
events, of  which 2 were serious, resulting in a rate of  
0.0086%. Four adverse events required treatment.[83] 
SonoVue® has additionally been tested in patients with 
chronic obstructive pulmonary disease without relevant 
problems.[84]

FUTURE PERSPECTIVES

Therapeutic applications of  UCA include targeted 
thrombolysis and substance delivery. Examples are 
inducing thrombus dissolution in acute ST elevation 
myocardial infarction and intracranial thrombolysis. 
This has led to the development of  micro- and 
nano-bubbles. Another example is sonoporation-induced 
drug delivery in patients with pancreatic cancer. An 

interesting contrast development is silica shell particles, 
which are not actually bubbles, but be shown on high 
MI and could be useful as a therapeutic vehicle.[26]

Targeting
Passive targeting refers to the tendency of  microbubbles 
to accumulate in malignant lesions due to leaky vasculature 
and lack of  lymph vessels draining the tissue. Active 
targeting requires surface modification, and the target 
must be presented on the luminal side of  endothelial cells 
due to the blood pool character of  microbubbles. In vitro 
studies and animal studies have been reported for models 
in thrombosis detection, atherogenesis,[85-87] and transplant 
rejection.[88] The diagnosis of  tumors has been successfully 
shown in animals.[89] Nevertheless, clinical studies have not 
been performed so far.

Therapeutic approaches
The concept of  utilizing UCA to enhance the vibratory 
effects generated by US pulses has gained much attention. 
The research group around Tachibana demonstrated 
in 1995 that US thrombolysis is more effective in the 
presence of  bubbles, which is explained by cavitation and 
other effects.[90] Molina et al.[91] demonstrated the rate of  
arterial recanalization in stroke patients to be higher in 
patients with additional microbubble injection compared 
to injection of  tissue plasminogen activator alone. Petit 
et al.[92] found similar effects.

US triggered substance delivery is based on the 
principle of  destroying contrast bubbles by applying 
high energy US, which additionally increases capillary 
and cell membrane permeability.[93]

Microbubbles may also be used for gene therapy, but 
even with specially designed UCA, their effectiveness 
remains inferior to viral transfection modalities. 
Nevertheless, side effects of  viral transfection are relevant 
and local control of  UCA-controlled gene therapy is 
better.[94,95] The principle of  US-mediated drug release 
seems to be promising. Here, also sonoporation helps 
open the blood–brain barrier.[96] Anti-tumor drugs could 
be delivered using UCA, but studies on animals have not 
reached the point where clinical trials seem to be close.

ENDOSCOPIC ULTRASOUND APPLICATION

This manuscript provides not only an overview of  UCA 
but also of  the meaning of  UCA in US imaging. UCA 
applications already play an important role in daily routine 
of  many sonographers but remain novel to EUS specialists.
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Several manuscripts on the use of  contrast-enhanced 
EUS have been published. The following issues have 
been covered: Characterization of  solid and cystic 
pancreatic masses, GI subepithelial lesions, biliary 
tract diseases, lymph node, and tumor staging. The 
mentioned applications will be covered by the other 
manuscripts in this volume of  EUS.

EUS is different to percutaneous US in several respects:
• The patient is under sedation, thus time-consuming 

methods must be critically considered;
• The benefit of  contrast‑enhanced EUS must be high 

enough to justify prolongation of  sedation;
• Currently available UCA, contrast imaging software, 

and transducer bandwidth are less optimal than the 
transcutaneous approach resulting in reduced depth 
penetration and near field bubble destruction;

• Full doses of  SonoVue® are typically necessary with 
the current equipment unlike percutaneous techniques 
where half  or quarter dosages are generally used;

• Breath-hold maneuvers are less practical.

EUS should be performed considering these factors. 
The investigator should try to optimize the native 
image as much as possible using machine adjustments 
and probe position. Contrast-enhanced EUS is unlikely 
to provide additional information when B-mode is 
insufficient. Short real-time imaging intervals should 
be interrupted using intermittent contrast-enhanced 
imaging to reduce bubble destruction to a minimum. 
The investigator should focus on a specific question 
during contrast-enhanced EUS (e.g., the early phase in 
pancreatic cancer, uptake or no uptake in solid nodules 
of  cystic pancreas lesions, necrotic areas in subepithelial 
upper GI tract lesions, or late phase in the liver) and 
concentrate on the indication and specific question. The 
method is valuable, but the ease of  use is less proven 
than in percutaneous studies. Comparative studies 
between Sonazoid® and SonoVue® have not been 
published to date.
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