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Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum
(ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth
characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and
metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable
environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in
tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found
that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the
ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-
targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and
clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in
cancer development and provide new insights for cancer therapy.
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FACTS

● Endoplasmic reticulum stress (ERS) plays an important role in
tumor development.

● The unfolded protein response (UPR) is the main response of
the endoplasmic reticulum (ER) to external stimuli.

● Targeting endoplasmic reticulum stress (ERS) may be a
potential strategy for cancer therapy in the future.

OPEN QUESTIONS

● What are the pathways by which endoplasmic reticulum stress
(ERS) acts in different cancers?

● How does endoplasmic reticulum stress (ERS) affect the tumor
microenvironment?

● How to improve the effectiveness of cancer treatment by
combining anti-ERS with anti-tumor drugs?

INTRODUCTION
The endoplasmic reticulum (ER) is the central biosynthetic hub of
the cell. It orchestrates the synthesis of proteins (secretory and
transmembrane proteins, along with certain cytoplasmic proteins)

and lipids [1, 2]. According to the presence or absence of
ribosomes on the surface, ER is dichotomized into the smooth ER
(without ribosomes) and rough ER. The smooth ER prioritizes
lipidogenesis, while the rough ER primarily facilitates protein
synthesis and maturation, thereby functioning as a key manu-
facturing site for a variety of membrane-bound and secretory
proteins. Additionally, the ER is essential not only for the synthesis
and processing of these proteins but also for the synthesis and
modification of proteins destined for other organelles, such as
lysosomal proteins. In normative physiological paradigms, the ER
quality control system stringently supervises the biogenesis and
maturation of proteins to ensure proper conformational folding
[3]. When proteins are not folded correctly, molecular chaperones
identify these abnormalities and move them into the cytoplasm
through a pathway opened by Hrd1-mediated autoubiquitination
[4], subsequently subjecting them to the rigors of the endoplasmic
reticulum-associated protein degradation pathway (ERAD) for
degradation by the 26s proteasome [5]. Conversely, when
exposed to pathological stimuli such as glycosylation inhibition,
disruptions in ER Ca2+ homeostasis, disulfide bond disruption,
intracellular hypoxia, pH fluctuations, and the accumulation of
damaged DNA [6, 7], the ER’s homeostatic equilibrium is
disturbed. This leads to a cascade of stress responses that ensure
cellular viability in adverse conditions, exemplifying the cellular
adaptive mechanisms to internal environmental changes, called
endoplasmic reticulum stress (ERS).
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ERS is the response of the ER to external stimuli, which may
encompass the ER overload response, sterol regulatory cascade
response (SRECR), and unfolded protein response (UPR) [8]. The
UPR is a compensatory system triggered by disruptions caused by
unfolded proteins within the ER, representing the most frequently
encountered and crucial type of ERS. It entails a highly intricate
mechanism, incorporating a complex network of intracellular
signaling pathways. This system not only regulates the removal of
misfolded proteins but is also coupled with an increase in ER size
and folding capacity, thereby maintaining the homeostatic
balance of the ER. The UPR process involves three ER transmem-
brane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like
endoplasmic reticulum kinase (PERK), and activating transcription

factor 6 (ATF6), which function as molecular sensors that instigate
the process by activating the downstream pathway; notably the
Bip/GRP78 signaling cascade [9]. In the absence of unfolded
proteins, these transmembrane units engage dynamically with the
regulatory chaperone Bip/GRP78 within the ER. However, the
accumulation of unfolded proteins induces a conformational
transition in Bip, modulating its affinity for these transmembrane
proteins and precipitating its release. Notably, IRE1 distinguishes
itself as a principal transmembrane protein possessing dual
enzymatic functionalities—kinase and ribonuclease. These are
enveloped within an N-terminal luminal sensing domain and a
C-terminal cytosolic effector domain [10]. Under physiological
conditions, the luminal domain of IRE1α interacts with the Bip/
GRP78 regulatory protein. With the onset of ERS, Bip plays a
central role as a sensor, detecting subtle stress variations within
the ER while simultaneously acting as an Hsp70 chaperone in its
binding to IRE1α. During such stress-induced states, Bip employs
its substrate-binding domain to recognize misfolded proteins,
thereby triggering a decrease in the affinity of its nucleotide-
binding domain for IRE1α. This sequence of molecular events
culminates in the ATP-driven dissociation of IRE1α from Bip. The
liberated IRE1α monomer undergoes dimerization and autopho-
sphorylation, activating its ribonuclease function, which catalyzes
the splicing of XBP1 mRNA at the proximal end of the ER
membrane and encourages its transcription and translation, thus
regulating a cascade of downstream reactions [11]. Analogous to
IRE1, the activation of PERK is instigated by the heightened affinity
of Bip/GRP78 for unfolded proteins. This facilitates the release of
PERK’s luminal domain from Bip, allowing oligomerization and
autophosphorylation processes to occur in PERK monomers. Upon
activation, PERK phosphorylates eukaryotic initiation factor 2
(eIF2α), thereby driving the translation of downstream open
reading frames—such as transcription factor ATF4—and influen-
cing key biological procedures including amino acid biosynthesis
and glycolysis [12]. ATF6 was initially recognized as an associating
protein of serum response factors, existing as a type II
transmembrane protein anchored to the ER [13]. This protein is
characterized by its transient activity and a notably brief half-life of
just 2 h, ranking it amongst the cohort of short-lived proteins [14].
In contrast to PERK and IRE1, ATF6 activation occurs within the
Golgi apparatus. Here, resident ATF6 undergoes proteolytic
cleavage by S1P and S2P proteases, giving rise to an active
ATF6 variant that regulates several downstream elements includ-
ing Bip/GRP78, GRP94, ERAD components, XBP1, the 58 kDa
protein (P58IPK/DNAJC3), and CHOP, thereby playing a pivotal role
in directing the UPR [15–18]. Moreover, ATF6 participates in
heterodimerization with XBP1, a downstream effector of IRE1,
enhancing ERAD. Importantly, this heterodimer exhibits increased
affinity for UPR compared to its XBP1 homodimer counterpart
under similar conditions [16] (Fig. 1).
ERS has been implicated as a central factor in diverse

pathologies, including type II diabetes, toxoplasma infection,
and ischemia/reperfusion injury [19–21]. A convergence of
modern research findings underscores the crucial role of ERS
within the oncogenic narrative, shaping cancer progression from
inception through to advancement. This review examines the role
and molecular foundations of ERS in cancer, delving specifically
into its influence on various biological processes such as
proliferation, apoptosis, metastasis, angiogenesis, drug resistance,
cellular metabolism, and immune response (Fig. 2). The ensuing
discourse will offer insights into the complexities of ERS in
tumorigenesis and cancer evolution, providing a strategic blue-
print for the design of cancer therapeutics.

THE ROLE OF ERS IN CANCER
The advancement of neoplasms is invariably influenced by a
spectrum of factors intrinsic to the tumor microenvironment

Fig. 1 Schematic representation of the unfolded protein response
in tumors. In the endoplasmic reticulum, the ERS-induced unfolded
protein response (UPR) promotes tumor progression via three
pathways: a The activating transcription factor 6 (ATF6) undergoes
sequential proteolytic cleavage by site-1 and site-2 proteases (S1P
and S2P), facilitating the generation of its active form. This form then
translocates to the nucleus and activates numerous downstream
targets. b Upon ERS, PKR-like ER kinase (PERK) is released from Bip/
GRP78 and undergoes self-oligomerization and phosphorylation.
Consequently, it phosphorylates eIF2α and activates ATF4. c IRE1 is
released from Bip/GRP78, then undergoes dimerization and
autophosphorylation, subsequently catalyzing the splicing of XBP
RNA and regulating a cascade of downstream reactions.
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(TME), including hypoxia, pH fluctuations, reactive oxygen species
(ROS), and a variety of cellular metabolites. In this milieu, the ER
orchestrates a complex response to external stimuli, facilitating
the ongoing growth of tumors. This discussion seeks to elucidate
the pivotal role and intricate molecular mechanisms of the UPR
within oncogenic paradigms. It will explore its ramifications on
tumor proliferation, apoptosis, metastasis, angiogenesis, drug
resistance, cellular metabolism, immune response, and the
resilience of neoplasms to pharmacological interventions.

Proliferation
The unrestrained division and rapid proliferation of cancerous cells
are essential for their accelerated growth. Within this dynamic,
tumor cells are constantly influenced by a number of intracellular
and extracellular stimuli, ERS plays a mitigating role in facilitating
tumor cell proliferation [22] (Fig. 3). In hepatocellular carcinoma
(HCC), TRIM25 has been found to target and degrade Keap1,
consequently activating Nrf2 and fostering HCC cell proliferation
by modulating the UPR signaling pathway and ERAD. Specifically,
TRIM25 mediates its effects via the IRE1–JNK branch of the UPR
pathway under conditions of ERS, functioning as a downstream
effector [23]. In melanoma, UPR activation catalyzes tumor cell
proliferation via the IL-6/STAT3 axis [24]. In non-small cell lung
cancer (NSCLC), elevated expression of PRL11 promotes tumor
cells proliferation through UPR and autophagy [25]. In addition,
IRE1–XBP1 axis, the downstream of the UPR pathway could
significantly accentuate MYC-driven tumorigenic progression in
breast cancer and urothelial carcinomas [26]. Similarly, extra-
cellular vesicles from cancer cells exploit the UPR’s IRE1α pathway
to instigate oncogenic transformation in bladder cancer [27]. The

pro-tumorigenic influence of IRE1α is proposed to be related to its
phosphatase function, wherein in reaction to ERS stimuli, IRE1α
recruits TRAF2 through its phosphatase domain, eventually
prompting the activation of c-Jun N-terminal kinase (JNK) and
nuclear factor κB (NF-κB) pathways and thereby bolstering
oncogenesis [28, 29]. Conversely, in the context of ERS signaling,
the PERK pathway exerts a tumor-suppressive effect, particularly in
breast cancer, where PERK activation significantly inhibits tumor
proliferation. However, the molecular intricacies of this phenom-
enon remain to be elucidated [30].
ATF6 is emerging as a key downstream effector in the field of

ERS. It has a spectrum of roles in oncological biology. It has been
elucidated that elevated ATF6α is closely associated with the
progression of prostate cancer. Furthermore, it could regulate
arachidonic acid metabolism via the ATF6α–PLA2G4A signaling
pathway to promote prostate cancer progression [31], or promote
the malignancy through a reciprocal negative feedback mechan-
ism with PTEN [32]. In addition, ATF6 plays a pivotal role in
maintaining BRCA-1 expression. This enables colon cancer cells to
evade DNA damage and enhance their viability [33]. In colorectal
cancer, phosphorylated ATF6 has been demonstrated to promote
tumor development by inducing gut microbiome dysbiosis and
activating the TIR domain-containing adapter-inducing interferon-
β (TRIF)/STAT3 signaling cascade [34]. Moreover, ATF6 has been
demonstrated to accelerate the proliferation of cervical cancer
cells via the MAPK pathway [35]. However, ATF6 exhibits a tumor
suppressor effect when combined treatment with clofoctol and
sorafenib in prostate cancer [36].
In certain circumstances, the inhibition of ERS can facilitate

tumor survival. For example, in BRAF-mutant uveal melanoma,

Fig. 2 The roles of ERS in tumor progression. The endoplasmic reticulum (ER) serves several crucial functions in tumors, including the
promotion or inhibition of tumor proliferation, induction of cell apoptosis, enhancement of tumor invasion and metastasis, stimulation of
tumor angiogenesis, facilitation of tumor cell glycolysis and lipid metabolism, support of tumor immune evasion, and mediation of drug
resistance.
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inhibiting ERS often promotes the survival of UM cells [37]. This
inhibitory effect may be related to ERS-associated autophagy. For
instance, in breast cancer, PRL5 downregulates E2F1 expression,
which in turn enhances the transcriptional activation of Bip/
GRP78, suppresses the ERS response, and promotes autophagy
[38]. Therefore, ERS-mediated autophagy is likely crucial for cell
survival [39]. The primary objectives of autophagy are to rectify
energy imbalances, ensure proper protein folding, and recycle
cellular contents [40]. Generally, under ERS, the UPR detects the
accumulation of misfolded proteins, leading to the activation of
ATG genes (autophagy regulators) [41]. It is noteworthy that
during this process, IRE1 and PERK are more significantly involved
in stimulating autophagy [42]. In pancreatic cancer cells (PANC-1),
fisetin induces protective autophagy by regulating the levels of
IRE1, PERK, and ATF6 through the p8-p53/PKC-α pathway.
Autophagy inhibitors CQ and 3-MA can enhance the anti-tumor
effects of fisetin [43]. In gliomas, flavokawain B induces autophagy
in GBM cells through the ERS-dependent
ATF4–DDIT3–TRIB3–AKT–MTOR–RPS6KB1 signaling pathway to
inhibit proliferation [44]. Similarly, combined treatment with
autophagy inhibitors CQ proves to be an effective anti-tumor
strategy in pancreatic cancer cells. ERS-related autophagy is also
observed in lung adenocarcinoma, where interferon gamma (IFN-
γ) induces ERS and UPR in lung adenocarcinoma cells by activating
the JAK1/2–STAT1 and AKT–mTOR signaling pathways. IFN-γ-
induced UPR subsequently reduces the expression of LAMP-1 and
LAMP-2, impairing autophagic flux [45]. Additionally, DEH inhibits

the growth of colorectal cancer cells by activating the PERK/eIF2α
and IRE1α/XBP1s/CHOP pathways, thereby stimulating autophagy
[46].
These findings highlight the role of ERS during cancer

progression. The UPR’s downstream branches exhibit divergent
impacts across various malignancies, either as oncogenic drivers
or suppressors, which were influenced by the intrinsic character-
istics of the tumor and the interplay between the different
branches of the signaling pathway. In addition, the functionality of
ATF6 is complex and its paradoxical effects in prostate cancer may
be related to the pharmacological agents used. Further investiga-
tion is needed to unravel the complex underlying mechanisms.

Apoptosis
Apoptosis operates as an inherent mechanism, aiding organisms
in sustaining homeostasis within their internal environment.
Conventionally, ERS serves a beneficial function, managing the
synthesis and processing of a variety of proteins, including
secreted and membrane-bound proteins. Nonetheless, during
instances of prolonged or intense ERS, tumor cells inevitably
encounter failure in re-establishing normal ER functions. This
results in cellular dysfunction, ultimately triggering cell death.
It has been demonstrated that ERS can induce tumor cell

apoptosis through the IRE1/TRAF2/ASK1/JNK pathway, the
caspase-12 kinase pathway, and the C/EBP homologous protein
(CHOP)/GADD153 pathway [47–52] (Fig. 4). Specifically, the
caspase-12 pathway and the CHOP/GADD153 pathway may be

Fig. 3 The role of ERS in tumor growth, invasion, and metastasis. Growth: ERS regulates tumor growth through signaling pathways
including IRE1/XBP1/IL-6/STAT3, IRE1/TRAF2/NF-κB, PERK/NRF2, PERK/eIF2α/ATF4, and ATF6/STAT3. Metastasis: ERS regulates tumor metastasis
mainly through modulation of tumor cells EMT or polarization of tumor-associated macrophages.
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delineated as IRE1/TRAF2/caspase-12 and PERK/ATF4/CHOP,
respectively. These apoptotic signaling pathways may induce
apoptosis by promoting the upregulation of downstream
apoptotic effector protein caspase-3 [47, 49–52]. Additionally,
ERS can suppress Bcl-2 expression via the IRE1–JNK–CHOP
pathway, thereby inducing apoptosis in gastric cancer cells
[53, 54]. The IRE1/TRAF2/ASK1/JNK cascade is initiated when
IRE1 recruits TRAF2 to form the IRE1–TRAF2 complex. This
subsequently activates apoptosis signal-regulating kinase 1
(ASK1), which in turn activates JNK, ultimately leading to apoptosis
[47, 48]. The CHOP, a specific protein of ERS, is intrinsic to ERS and
a member of the CCAAT/enhancer-binding proteins (C/EBPs)
family. It is usually expressed at a minimal level. In the context of
ERS, transcription factors such as ATF4, ATF6, and XBP1 translocate
into the nucleus, where they enhance CHOP transcription. This
ultimately leads to the activation of the apoptotic effector
caspase-3, thus triggering tumor cell apoptosis [55]. Previous
studies have demonstrated that quercetin can induce apoptosis in
cervical cancer cells by activating the ERS response, although the
precise mechanisms underlying this process remain unclear.
Experimental data indicate that the levels of Bax, Bcl-2, GRP78,
CHOP, and IRE1 increase in correlation with the concentration of
quercetin [55]. This inference implies a potential linkage between
apoptosis in cervical cancer cells and the IRE1–JNK–CHOP
pathway, presenting a prospective novel therapeutic strategy for
cervical cancer. In addition, shikonin may stimulate the death of
gastric cancer cells via this pathway. Such an observation
accentuates the importance of the IRE1/JNK/CHOP signaling axis
in modulating tumor cell apoptosis [54].
In hypoxic conditions, osthole initiates the PERK/eIF2α/ATF4/

CHOP/DR5 signaling cascade within the UPR, thereby upregulat-
ing the expression of caspase-3 and promoting apoptosis in colon
cancer cells [56]. Similarly, docosahexaenoic acid monoglyceride

(MAG-DHA) activates the PERK/eIF2α/CHOP pathway and upregu-
lates the expression of the lytic enzyme caspase-12, thereby
promoting apoptosis of breast cancer cells [57]. The PERK/eIF2α/
ATF4 pathway also plays a role in cyclophosphamide-induced
apoptosis in colorectal cancer cells. Furthermore, it has been
demonstrated to promote apoptosis in chemoresistant (Hct-8/5-
FU) and chemosensitive (Hct and DLD-1) colorectal cancer cells
[58]. The methylation of FOXD3 under conditions of ERS results in
the augmented expression of proteins associated with the UPR,
followed by the upregulation of the CHOP protein, which
consequently promotes apoptotic processes [59]. It is noteworthy
that the downregulation of cFLIP represents a crucial early step in
the ERS-induced apoptosis pathway in colorectal cancer cells [60].
In bladder cancer, flacidoxide-13-acetate induces apoptosis by
activating the PERK/eIF2α/ATF6/CHOP signaling axis. Gamma-
tocotrienol, on the other hand, promotes apoptosis by activating
the PERK/eIF2α/ATF4 signaling pathway via ERS [61], it is
reasonable to posit that apoptosis in bladder cancer cells may
also be mediated through this pathway. Additionally, ERS-induced
apoptosis has been reported in glioma cells [62, 63]. In glioma cell
models U87 and T98G, dipyridamole induces apoptosis by
regulating the PERK/eIF2α signal pathway to activate the BH3-
only protein Noxa [51]. The PERK pathway-mediated apoptosis
generally follows the PERK/eIF2α/ATF4/CHOP pathway, similarly
demonstrated by [Re(CO)3(dmphen)(p-tol-ICN)]+ (TRIP)-mediated
cancer cell death [64]. Additionally, research on cetuximab-
induced apoptosis in laryngeal squamous cancer cells indicates
that ROS play a significant role in ERS-mediated apoptosis [65].
The findings provide insights for future investigations into ER-
mediated tumor cell apoptosis. ER-induced apoptosis of tumor
cells is also notably observed in neuroblastoma. Earlier studies
with Hela cells demonstrated that fenretinide (4HPR) induces
tumor cell death and procaspase activation via the PERK/eIF2α

Fig. 4 Effect of endoplasmic reticulum stress on tumor cells apoptosis. IRE1 induce tumor cells apoptosis via IER1/TRAF2/caspase-12, IRE1/
ASK1/JNK/BCL-2, and IRE1/JNK/BCL-2 signaling; PERK regulated tumor cells apoptosis via PERK/eIF2α/ATF4/CHOP/DR5/caspase-3 (caspase-12)
signaling; ATF modulated apoptosis via ATF6/CHOP/DR5/caspase-3 (caspase-12) signaling.
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signaling pathway [66]. Further research indicated that in
neuroblastoma, fenretinide achieves its anti-tumor effects by
inducing ERS, specifically through upregulating ATF4 transcription
levels, thereby promoting apoptosis [67]. Protein disulfide
isomerase (PDI) is a foldase and molecular chaperone essential
for the formation, breakage, and rearrangement of disulfide bonds
in unfolded or misfolded proteins, playing a critical role in
maintaining ER protein homeostasis. Dysregulation of PDI can
impair the protein-folding efficiency within the ER lumen, resulting
in the accumulation of unfolded and misfolded proteins, which in
turn triggers ERS [68]. Evidence has shown that PDI is over-
expressed in breast cancer [69, 70]. DDA, a PDI inhibitor, has been
demonstrated to induce breast cancer cell death in both in vitro
(MDA-MB-468) and in vivo (BT474 mouse xenograft model)
studies. The underlying mechanism may involve DDA targeting
PDI family members, such as PDIA1, AGR2, and ERp44, thereby
initiating DR4 and DR5-mediated caspase 8 and 3 activation,
leading to apoptosis [71].
As a general rule, ERS can instigate apoptosis through several

downstream signaling pathways. The most commonly implicated
pathways involve IRE1 and PERK, whereas ATF6, frequently
observed serving an anti-apoptotic role, is less prevalent. A
multitude of studies have suggested that upon activation in
osteosarcoma cells, ATF6 interacts with the polo-like kinase 4
promoter to enlist C/EBPβ, subsequently inhibiting apoptosis in
these cells [72]. In colon cancer cells, it conserves the expression of
BRCA-1, thereby shielding the cells from cytotoxic effects
mediated by ER stressors such as DPE and thapsigargin (TG) [33].

Invasion and metastasis
The intricacies of tumor invasion and metastasis represent a
complex phenomenon, with the underpinning mechanisms still
largely elusive. Research has underscored the substantial influence
of ERS not only on modulating tumor growth and apoptosis but
also on governing tumor invasion and metastasis.
The invasion and metastasis of tumors mediated by ERS are

influenced by multiple factors (Fig. 3). Initially, the process of
invasion and metastasis of tumors is linked to ERS-regulated
epithelial–mesenchymal transition (EMT), a transformation char-
acterized by the reduction of epithelial markers and an increase
in mesenchymal markers, which significantly contributes to the
invasiveness of tumor cells [73]. Within ERS, the UPR collabora-
tively regulates EMT with G-protein coupled receptors (GPCRs),
impacting tumor invasion and metastasis. GPCRs, upon binding
to ligands with trimeric proteins and β-arrestin on the cellular
membrane, initiate a cascade involving downstream UPR signals
such as IRE1, PERK, and ATF6. Concurrently, through interactions
involving PKA, PKC, calcium ions, and receptor tyrosine kinases,
GPCRs facilitate the activation of pathways like ERK/MAPK and
PI3K/AKT. These pathways, in concert with active ERS, upregu-
late the expression of EMT transcription factors (Snail1/2, Twist,
and ZEB1/2), further activating EMT [74]. For instance, in a
cervical cancer model, the ATF6 branch of UPR can promote EMT
and further tumor invasion and metastasis by reducing the
expression of E-cadherin and upregulating the expression of the
major transcription proteins Snail and vimentin through the
MARK signaling pathway [35]. In addition, calreticulin facilitates
both acute and chronic free calcium-dependent ERS by
activating the Slug and ERK signaling pathways and subse-
quently promoting EMT [75]. And ERS may enhance tumor
invasiveness and metastasis by promoting the release of
exosomes, which are specialized extracellular vesicles encapsu-
lating diverse RNA molecules and proteins, generally 50–200 nm
in diameter [76]. Research indicates that the CXCL12/CXCR4 axis
is closely related to liver metastasis of colorectal cancer, and
exosome-encapsulated miRNAs can promote this process by
enhancing the polarization of M2 macrophages [77]. In breast

cancer, ERS facilitates metastasis by inducing the release of
exosome circ_0001142, which polarizes M2 macrophages [78].
In summary, ERS generally facilitates the migration of the

majority of tumor cells. However, in certain tumors, such as
epithelial ovarian cancer, it paradoxically exerts an inhibitory
influence. The exact mechanisms behind this effect remain
elusive, potentially tied to the distinct characteristics inherent to
various tumor types.

Angiogenesis
Solid tumors are characterized by a microenvironment deficient in
oxygen and nutrients due to the significant consumption
necessitated by the rapid proliferation and invasive metastasis
of tumor cells. This deficiency can be replenished via tumor
angiogenesis. Under hypoxic conditions, ERS facilitates angiogen-
esis through the downstream pathway of UPR (Fig. 5). However,
ERS does not universally promote angiogenesis. In certain
contexts, it might suppress tumor vascular development, as
exemplified when angiogenesis is inhibited by tumor-secreted
exosomes induced by ERS [79, 80].
Hypoxia-inducible factor-1 (HIF-1), a key protein within the TME,

is known for its role in promoting the transcription of molecules
such as the vascular endothelial growth factor (VEGF) [81]. Studies
have suggested that XBP1, a downstream molecule of the IRE1
pathway, can facilitate tumor angiogenesis independently of VEGF
[82]. In model systems employing human umbilical vein
endothelial cells, IRE1 knockdown significantly impairs HIF-1α
protein expression under hypoxic conditions. This inhibition
appears to primarily depend on the endonuclease activity of
IRE1, rather than its downstream effector XBP1s [83]. Notably, in
gliomas, IRE1 inhibition results in marked downregulation of
angiogenesis-related molecules, principally those that are down-
stream targets of HIF-1. This could be attributed to IRE1’s role in
stabilizing HIF-1 protein [84]. Moreover, inhibiting IRE1α has been
observed to reverse ERS adaptation, thereby enhancing the
efficacy of anti-angiogenic therapies in triple-negative breast
cancer [85]. The IRE1 pathway of the UPR collaborates with ANG-II
to foster tumor angiogenesis. Specifically, Ang-II triggers the IRE1/
JNK/P38 signaling cascade of ERS and concomitantly upregulates
VEGF expression through interactions with its AT1R receptor
[86, 87]. Recent findings show that salubrinal acid B, a novel type I
IRE1 kinase inhibitor, suppresses angiogenesis by downregulating
this pathway [88]. These insights underscore multiple mechanisms
through which IRE1 fosters tumor angiogenesis.
In addition to IRE1 downstream factors XBP1 and HIF-1α, PERK

downstream factors such as ATF4 and ATF6 have been shown to
interact with vascular endothelial factor promoters, thereby
augmenting their expression [89–91]. PERK has been implicated in
promoting the expression of a plethora of angiogenic factors [92]. In
gliomas, it has been demonstrated that the expression of
peptidylglycine alpha-amidating monooxygenase mediated by PERK
stimulates angiogenesis, thereby accelerating tumor growth [93].
Moreover, in pancreatic ductal adenocarcinoma (PDAC), cancer-
associated fibroblasts (CAFs) can contribute to tumor microvascu-
lature formation and subsequent tumor progression by serving as
sources of endothelial cells. This is largely facilitated through the
activation of the PERK–eIF2α–ERK1/2 signaling pathway in CAFs,
driving the transition from mesenchymal to endothelial phenotypes
and thereby promoting tumor vascularization [94]. Among the three
primary downstream branches of the UPR, ATF6’s role in fostering
angiogenesis within tumors has been relatively underexplored.
Hence, ERS can either promote or hinder tumor angiogenesis,

setting the stage for inventive therapeutic strategies that exploit
ERS inhibition to boost anti-angiogenic responses. Furthermore,
beyond the direct effects of ERS, tumor exosomes associated with
this stress phenomenon can modulate angiogenesis, predomi-
nantly by inhibiting it.
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Drug resistance
Chemotherapy has long served as a cornerstone treatment for
various cancers, yet its effectiveness can sometimes be suboptimal
among certain patients. In addition to the notable side effects
associated with chemotherapy, sustained treatment often leads to
the development of drug resistance within tumor cells. Compar-
able challenges have emerged with recent advances in immu-
notherapies and targeted therapies. Consequently, a pivotal focus
in clinical oncology research involves augmenting tumor cell
susceptibility to chemotherapy and other therapeutic agents. Past
investigations have delineated five mechanisms through which
tumors may develop resistance: (1) reduced drug uptake; (2)
genetic determinants (including gene mutations, amplifications,
and epigenetic alterations associated with microRNAs); (3)
augmented autocrine production of growth factors; (4) repair of
drug-induced DNA damage; and (5) heightened metabolism of
xenobiotics [95].
First, tumor drug resistance associated with ERS correlates

with downstream pathways of the UPR. A previous study
showed that ATF6 mediates chemotherapy resistance in cancer
cells by promoting their survival [96]. Recent analyses of ERS and
resistance in HCC have shown that ATF6 activated P58 via its
protease activity [97]. For example, colorectal cancer patients
initially positive for EGFR exhibited significant sensitivity to
cetuximab, yet ultimately developed resistance [98]. Carfilzomib,
targeting K-RAS(+) and cetuximab-resistant colorectal cancer,
operates by upregulating UPR downstream CHOP and ATF6
expression, and enhancing apoptotic pathways through cas-
pase-3/7 for anti-tumor activity [99]. It has been demonstrated

that ATF6 sustains activation of the mammalian target of
rapamycin (mTOR) pathway, a vital element in tumor metabo-
lism [100]. Further research underscores the crucial role of ATF6
in DNA repair, which is achieved by maintaining BRCA-1
expression in colon cancer cells under ERS. This subsequently
elevates sensitiveness to doxorubicin by intensifying the
cytotoxic effects of ERS-inducing drugs [33]. This underscores
the potential of ATF6-targeted therapies as novel chemosensi-
tizers in colorectal cancer treatment. Earlier research on the
PERK pathway revealed that PERK induces tumor drug resistance
by upregulating ABC transporters or activating Nrf2 to stimulate
autophagy [96]. For example, in chemoresistant human color-
ectal adenocarcinoma HT29 cells, both ABCC1 and Nrf2 are
upregulated [101]. Present studies indicate that PERK primarily
enables drug resistance through the PERK–eIF2α–ATF4–CHOP
pathway by activating autophagy [97]. In the IRE1 pathway,
phosphorylated IRE1 upregulates ABC transporter expression,
inhibiting cell cycle arrest and apoptosis, thereby fostering drug
resistance, or by altering drug transport via splicing XBP1 and
activating Nrf2 [96]. This is specifically exemplified in colorectal
cancer, where 5-FU activation of the XRE1–ABCB1–XBP1 path-
way enhances ABC protein expression, promoting resistance to
fluorouracil [102]. And new resistance mechanisms involving
IRE1, such as the IRE1–TRAF2–JNK pathway enhancing DNA
repair and inhibiting apoptosis, as well as affecting drug
transport by splicing XBP1 and activating Nrf2, have been
proposed [97]. In certain cancer types, drug resistance is
orchestrated through the modulation of the IRE1 and PERK
signaling pathways. Notably, triple-negative breast cancer

Fig. 5 The role of ERS in tumor angiogenesis. Endoplasmic reticulum stress (ERS) plays a pivotal role in the modulation of tumor
angiogenesis via a myriad of interwoven pathways, encompassing IRE1α, PERK, BIP, ATF6, and the secretion of exosomes. Within the IRE1α
signaling axis, certain molecules, such as SaIB and ANG-II, have been implicated in either activating or repressing the angiogenic process.
Along the PERK pathway, entities like SHB and cancer-associated fibroblasts (CAFs) facilitate angiogenesis through the manipulation of the
PERK cascade. In contrast to these mechanisms, a reduction in BIP expression or the presence of tumor-derived exosomes tends to exert an
inhibitory influence on angiogenesis regulation.
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exhibits resistance to doxorubicin, and osteosarcoma demon-
strates resistance to cisplatin, among others [103, 104]. In
melanoma, activating mutations in BRAF induce persistent ERS
[105]. The resistance to most anti-cancer therapies is attributed
to the adaptation to prolonged low-intensity ERS. For instance,
this resistance is mediated by the activation of NFκB and the
inhibition of apoptosis proteins via the IRE1α/TRAF2 pathway
[106]. Another instance of resistance in melanoma involves
vemurafenib, which induces miR-410-3p in melanoma cells
through ERS. This induction promotes the transition of cells to a
more invasive phenotype, resulting in resistance to BRAF
inhibitors [107].
Furthermore, the resistance or sensitivity of tumor cells to

therapeutic agents may be associated with BiP/GRP78, a
chaperone protein that binds to monomers downstream of the
UPR and stabilizes IRE1, PERK, and ATF6. It has been extensively
documented that overexpression of GRP78 contributes to
resistance in various cancers, such as sorafenib resistance in liver
cancer [108], sunitinib resistance in renal cancer [109], and
gefitinib resistance in NSCLC [110]. In pancreatic cancer models,
GRP78-mediated chemotherapy resistance arises from its interac-
tion with the extracellular domain of CLPTM1L/CRR9 on tumor cell
surfaces. This interaction can be targeted by monoclonal
antibodies against CLPTM1L/CRR9, enhancing chemotherapy
sensitivity and unveiling a novel therapeutic approach [111].
BiP/GRP78 can also regulate nasopharyngeal carcinoma resistance
to cisplatin through the modulation of exosome ERp44 [112].
Additionally, a distinctive aspect observed in cervical cancer
models is that overexpression of GRP78 in cervical cancer (CVC)
exhibits dual influences on cisplatin responsiveness, affecting both
resistance and sensitization [113, 114]. These examples underscore
the pivotal role of BiP/GRP78 in conferring resistance to
chemotherapeutic and immune-targeted drugs, with targeting
BiP/GRP78 emerging as a promising strategy for enhancing cancer
treatment. Of course, there are many more mechanisms of tumor
cell resistance mediated by ERS, including the role of
hydroxymethylglutaryl-CoA synthase 1 in promoting resistance
in acute myeloid leukemia through the ER–UPR–mitochondrial
axis [115]. ERS-induced downregulation of PHLPP leads to
chemotherapy resistance in colon cancer [116], and ERS-induced

upregulation of exosome miR-301a-3p causes resistance in HER2-
positive gastric cancer cells to trastuzumab [117].
Moreover, ERS does not invariably enhance tumor resistance to

therapeutic agents; it can also substantially boost sensitivity by
aiding some tumors in overcoming resistance. Part of this
mechanism is closely related to ERS-induced apoptosis of tumor
cells. For example, recent research indicates that exosome miR-
512-3p has facilitated retinoblastoma cells in overcoming cisplatin
resistance by promoting apoptosis triggered by ERS [118].
Numerous instances exist, such as the inhibition of phosphoglu-
comutase 3 (PGM3) activating UPR to counteract gemcitabine
resistance in pancreatic cancer [119], and the activation of the
IRE1–XBP1 pathway of UPR overcoming ibrutinib resistance in
diffuse large B-cell lymphoma [120] (Table 1).
Taken together, ERS plays an extremely important role in

various cancer drug therapies, and the mechanisms by which
different UPR signals affect tumor drug resistance are not the
same. Notably, even a singular pathway can have profoundly
disparate impacts on either enhancing sensitivity or fostering
resistance to drugs in tumor cells. Thus, further exploration into
the role of ERS in modulating tumor resistance could unveil novel
strategies for overcoming drug resistance in cancer.

Glycolysis and lipid metabolism
Normal cellular metabolism plays a pivotal role in maintaining
physiological functions. In cancer cells, due to the demands of
rapid growth and invasive metastasis, metabolic activities are
abnormally amplified to support their proliferative needs.
Concurrently, the accumulation of metabolic waste can negatively
impact the growth of these cells. As a result, ERS aids cancer cells
in adapting to various hostile environments, thus promoting their
survival (Fig. 6).
Initially, ERS modulates glycolysis in a variety of cancer cells to

control tumor growth. For example, in PDAC, BZW1 is over-
expressed and functions as an adapter of PERK, facilitated eIF2α
phosphorylation. This activation promoted internal ribosome entry
site-dependent translation of HIF-1α and c-Myc, stimulating the
Warburg effect and accelerating PDAC cell proliferation [121]. In
addition, ERS-dependent upregulation of ERO1L also facilitates the
Warburg effect, thereby promoting PDAC growth [122]. Treatment

Table 1. Representative drugs that induce tumor sensitivity or resistance via ERS.

Pharmaceutical Targets Mechanism Tumor References

Carfilzomib ATF6 CHOP, ATF6
caspase-3/7↑

Colorectal cancer [99]

5-FU IRE1 IRE1–ABCB1–XBP1 Colorectal cancer [102]

5-FU PERK ABCC1↑, Nrf2↑ Colorectal cancer [101]

Doxorubicin ATF6 Cytotoxic effect Colorectal cancer [33]

Doxorubicin IRE1, PERK PDCD4–eIF4A–FAK pathway Triple-negative breast cancer [103]

Sorafenib, sunitinib, gefitinib GRP78/BIP Unclear Hepatocellular carcinoma
Renal cell carcinoma
Non-small cell lung cancer

[108–110]

Gemcitabine GRP78/BIP CLPTM1L/CRR9 Pancreatic cancer [110]

Ibrutinib IRE1 IRE1/XBP1 Diffuse large B-cell lymphoma [120]

Trastuzumab Unclear miR-301a-3p HER2-positive gastric cancer [117]

Cisplatin
Cisplatin

Unclear
IRE1,PERK

miR-512-3P
NF-κB

Retinoblastoma
Osteosarcoma

[118]
[104]

Cisplatin GRP78/BIP Exosomal ERp44 Nasopharyngeal carcinoma [112]

Cisplatin GRP78/BIP ATM pathway and calcium efflux Ovarian cancer [113, 114]

Gemcitabine Unclear PGM3↓ Pancreatic cancer [119]

Imiquimod Unclear miR-410-3p Melanoma [107]

Tamoxifen Bip/GRP78 Unclear Breast cancer [170]
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of HeLa cells with the glucose analog 2-deoxyglucose or TG
induces ERS, promotes LDHA and LDHB expression by inhibiting
miR-23a, thus adapting the cells to aerobic glycolysis and
enhancing tumor proliferation [123]. In addition, the ERS receptor
Bip/GRP78 plays a critical role in pancreatic cancer by modulating
the oxidative state of cells to maintain tumor stem cell stability
[124]. In highly invasive breast cancer, betulinic acid induces Bip/
GRP78 overexpression and activates PERK, leading to eIF2α
phosphorylation, which inhibits β-catenin expression and subse-
quently represses c-Myc-driven glycolysis [125]. And estrogen
enhances the Warburg effect in breast cancer by activating the
IRE1 signaling pathway of the UPR to suppress TXNIP expression,
elucidating the pathway by which the estrogen/ERα–IRE1–TXNIP
axis stimulates tumor cell growth and proliferation [126]. Low
expression of XBP1, including XBP1s and XBP1u (downstream
targets of IRE1), can inhibit the Warburg effect in prolactinoma
GH3 cells by downregulating PKM2, and fulvestrant exerts its
tumor-suppressive effects through this pathway [127].
Second, in addition to glycolysis, alterations in lipid metabolism

are a major hallmark of cancer [128]. In tumor cells, ERS affects not
only glycolysis but also lipid metabolism. It is well documented
that lipid metabolism in tumor cells is closely linked to the
IRE1 signaling pathway. For example, in tumors transformed by c-
Myc, IRE1α/XBP1s stimulates tumor growth by upregulating the
expression of the lipid desaturase SCD1, a key enzyme in lipid
metabolism and tumor invasion located in the ER [129, 130]. In
addition, studies suggested that IRE1α, through its role in
regulated IRE1-dependent decay (RIDD), acts as a transcriptional
repressor of DGAT2 expression in cells such as MDA-MB-231,
HCC1806, and BT-549, resulting in reduced DGAT2 mRNA levels

and subsequently lower triacylglycerol levels [131]. Apart from the
IRE1 pathway, tumor lipid metabolism is intricately linked to the
PERK pathway. Prior research has demonstrated that dysfunction
in the PERK pathway leads to reduced expression of fatty acid
synthesis enzymes like FASN, ACL, and SCD1, highlighting the link
between PERK and the regulation of lipid metabolism [132]. In
studies using the HepG-2 liver cancer model, apoptin-mediated
ERS was found to drive changes in lipid metabolism, increasing
the expression of lipid synthesis-related enzymes such as FASN,
ACC, PLD1, and SCD1 within the first 24 h, followed by a decline
[133].
This emphasizes the influence of ERS on lipid metabolism,

suggesting that sustained stress may result in a diminution of
lipase levels due to ER injury, consequent enzyme downregula-
tion. Moreover, apoptin has been demonstrated to inhibit the
invasion and metastasis of HepG-2 liver cancer cells, thereby
presenting a new avenue for research. In summary, ERS imposes
diverse effects on glycolysis and lipid metabolism within tumor
cells, subsequently modulating their growth as well as the
processes of invasion and metastasis.

Immunity response
In certain adverse tumor environments, including nutrient
deprivation, hypoxia, accumulation of inhibitory metabolites, and
abnormal production of ROS, the ER balance within tumor-
associated immune cell subsets is disrupted, leading to compro-
mised anti-tumor immune responses [134] (Fig. 7). ERS induced by
the TME is a major factor in the dysfunction of tumor-infiltrating
T cells [135, 136], which was mainly achieved through the
activation of IRE1, PERK, and CHOP driven by the TME [137–139].

Fig. 6 Effects of endoplasmic reticulum stress on glycolysis and lipid metabolism. Glycolysis: in tumor cells, glycolysis may be modulated
by ERS-induced UPR, miRNA, or mitochondrial dysfunction. Specifically, the upregulation of BZW1 and overexpression of ERO1L promote
pancreatic ductal cancer cell glycolysis through PERK. BA induces overexpression of GRP78 and activates the PERK pathway, subsequently
downregulating β-catenin expression. This series of events leads to c-Myc-mediated glycolytic inhibition, thereby suppressing breast cancer
cell proliferation. Estrogen enhances glycolysis and orchestrates the proliferation of breast cancer cells by decreasing the expression of TXNIP
via activation of the IRE1/XBP1 pathway. The anti-proliferative effect of fulvestrant on prolactinoma GH3 cells is achieved by activating IRE1,
reducing PKM2 expression, and inhibiting glycolysis. Lipid metabolism: ERS typically affects lipid metabolism through IRE1, PERK, and GRP78/
BIP. IRE1 can augment SCD1 expression or mediate RIDD to reduce DGAT2 mRNA expression, thereby impacting lipid metabolism. The PERK
pathway can influence lipid metabolism by controlling the expression of lipid regulatory enzymes such as FASN, ACL, and SCD1. Conversely,
GRP78/BIP regulates lipid biosynthesis by modulating SREBP.
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It was shown that accumulation of cholesterol by CD8+ T cells in
the tumor-induced expression of the inhibitory receptors PD-1
and 2B4 and promoted T cell exhaustion in an XBP1-dependent
manner. Conversely, XBP1 deficiency enhanced T cell anti-tumor
function and prolonged patient survival [139, 140]. And CD36-
mediated uptake and oxidation of low-density lipoprotein
progressively induces severe ERS in T cells, which is a major
cause of CD8+ T cell dysfunction [141, 142]. In certain cancers,
such as uveal melanoma, CD8+ T cell infiltration levels correlate
strongly with a higher risk of disease. Reports indicate that high-
risk uveal melanomas show increased infiltration of CD8+ T cells,
follicular helper T cells, gamma and delta T cells, and activated NK
cells, while low-risk cases show a greater presence of memory
resting CD4+ T cells, naive B cells, activated and resting mast cells,
monocytes, and resting NK cells [143]. The mechanism may be
that in CD8+ T cells, ERS and the UPR act as extracellular immune
regulators, modulating dendritic cells (DCs) through polarization
types and pro-inflammatory responses, thereby promoting the
production of under-proliferating T cells [144]. A study had
elucidated a potential mechanism by which DCs deficient in the
adapter protein BAT3, which interacts with TIM-3 on T cells, exhibit
a hyperactive UPR, leading to the development of a tolerogenic
phenotype that subsequently attenuates the efficacy of anti-
tumor T cell responses [145]. Furthermore, tumor DCs with
inactivated XBP1 can enhance the functionality of lymphocytes,

such as the maturation of cytotoxic T lymphocytes and memory T
lymphocytes [146]. Additional research on diffuse large B-cell
lymphoma demonstrates that in myeloid macrophages, activation
of the Notch-1/IRE1/XBP1s pathway promotes the secretion of IL-
6, IL-4, and PD-L1, thereby suppressing the functionality and
proliferation of CAR-T cells and facilitating their apoptosis [147].
The mechanisms by which ERS affects tumor-associated DCs have
also been elucidated, where changes in the TME leading to the
accumulation of unfolded protein induce the activation of ERS and
IRE1α–XBP1 signaling, thereby inhibiting their antigen-presenting
function [148, 149]. These examples highlight the significant
influence of the IRE1–XBP1 axis within ERS on tumor-related
immune cells. Moreover, tumor-associated macrophages (TAMs), a
predominant myeloid cell population in numerous cancers, exhibit
increased XBP1 splicing in TAMs isolated from colorectal cancer
patients compared to peripheral monocytes or macrophages
[150]. The PERK pathway also influences the functionality of TAMs,
as evidenced in the B16-F10 melanoma model, where PERK-
deficient macrophages show impaired M2 polarization [151]. This
illustrates the critical role of ERS in TAMs. The role of PERK in
tumor immunity extends beyond this; a GSEA result indicates that
PERK is primarily enriched in immune-related signaling pathways
in breast cancer (BRCA), thyroid cancer, and head and neck
squamous cell carcinoma (HNSSC). Furthermore, PERK expression
correlates closely with infiltrating macrophages, DCs, and immune

Fig. 7 The role of ERS in tumor immunity. In tumor-associated immunity, the IRE1 arm not only suppresses T cell activity and proliferation,
but also inhibits the antigen presentation capacity of dendritic cells (DC) and the proliferation of natural killer (NK) cells. The PERK arm,
through its signaling pathway, can influence the expression of macrophages, DC, and T helper (Th) cells, and also plays an
immunosuppressive role in myeloid-derived suppressor cells (MDSCs). Furthermore, ATF6 primarily mediates the occurrence of innate
immunity in the intestine.
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markers like macrophage mannose receptor 1 (MRC1, CD206), as
well as T helper cells (Th) [152]. In the context of tumor-associated
myeloid-derived suppressor cells (tumor-MDSCs), the downregula-
tion of PERK transforms these cells into myeloid cells that activate
CD8+ T cell-mediated anti-cancer immunity, featuring compro-
mised NRF2-driven antioxidant capabilities and disrupted mito-
chondrial respiratory balance. This immune regulation is
orchestrated through the STING pathway, with the abrogation of
STING ameliorating the immune activation caused by PERK
deficiency in tumor-MDSCs [153]. The fundamental mechanism
involves STING’s ability to modulate NF-κB activity, a pivotal factor
in the functionality of tumor-MDSCs [154].
In tumor response, the impact of ERS on tumor immunity also

involves NK cells. As a downstream effector of the mTOR signaling
pathway, IRE1–XBP1 regulates the proliferation of NK cells by
targeting c-Myc [155]. Certainly, as a UPR effector protein, ATF6
plays a role in tumor-associated immune responses, and in the
absence of inflammation, ATF6 activation in colon epithelial cells
promotes intestinal dysbiosis and innate immune responses,
leading to microbiota-dependent tumor formation, although the
exact mechanism remains to be investigated [34]. In the UPR
process, the immunoglobulin-binding protein BIP is crucial in
tumor-associated immune dynamics. Downregulation of BIP
through phosphorylation of PERK and IRE1 stimulates the
generation of damage-associated molecular patterns in response
to radiation-induced ERS, facilitating DC maturation and effector T
lymphocyte activation. In addition, BIP gene knockout combined
with irradiation of glioma stem cells effectively prevents tumor
development and reduces tumor recurrence after radiotherapy
[156].

DISCUSSION AND PROSPECTS
The ER is a cellular component responsible for protein synthesis,
and it induces ERS when its surrounding environment is disrupted
or its function is impaired, disrupting the state of balance. ERS is
widely associated with various human diseases, including
neurodegenerative diseases, diabetes, cardiovascular diseases,
inflammation, and cancers [19–21]. Pertinently, in cancer, ERS
serves as a vital signal transduction pathway determining the fate
of cancer cells, affecting their survival, metastasis, and resistance
to therapy [157–159]. The TME is a process of polymorphic
changes, such as hypoxia, glycation, and the accumulation of
acidic substances, all of which can easily induce ERS [6, 7]. ERS
broadly manifests through three principal pathways: the UPR, the
endoplasmic overload response, and the sterol regulatory
element-binding protein (SREBP) cascade. These mechanisms are
instrumental in maintaining cellular homeostasis under stress
conditions [8]. In tumor cells, the principal pathway involved is
UPR, primarily orchestrated by IRE1, PERK, and ATF6. These three
transmembrane proteins, located on the ER membrane, play
distinct roles in manipulating tumor survival and development,
alternately promoting or inhibiting tumor growth across different
human tumors. Furthermore, the upregulation of ER-resident
proteins and folding enzymes under stress conditions bolsters the
ER’s protein-folding capacity, thereby alleviating the load of
unfolded proteins within the ER lumen.
Numerous studies have shown that the UPR can promote the

proliferation of tumors such as liver cancer, melanoma, and breast
cancer through various signaling cascades such as IRE1/XBP1/JNK,
IRE1/XBP1/IL-6/STAT3, and IRE1/TRAF2/NF-κB [23, 24, 28, 29]. In
the context of ERS-mediated tumor regulation, the role of IRE1
emerges as particularly significant. This includes promoting the
proliferation of breast cancer cells via its IRE1–XBP1 pathway [26];
mediating tumor cell apoptosis through the IRE1/TRAF2/ASK1/JNK
pathway [47, 48], controlling IRE1 signaling via GPCRs and
subsequently activating EMT to foster tumor metastasis [74]; or
promoting tumor invasion through the IRE1–XBP1 pathway,

reflecting the multifaceted role of IRE1 in tumor development.
Similarly, PERK’s mechanism closely aligns with IRE1, though it
may inhibit tumor proliferation, as evidenced in breast cancer [30].
ATF6 is mainly manifested in the acquisition of tumor resistance or
sensitization, where it can promote tumor resistance via P58 [97],
or act downstream of carfilzomib, achieving tumor resistance in
patients resistant to cetuximab [99]. Additionally, ATF6’s role in
promoting microbiome-dependent tumor formation through
intestinal flora imbalance and innate immune responses [34], or
facilitating prostate cancer progression via the ATF6α–PLA2G4A
pathway affecting arachidonic acid metabolism [31], highlights its
varied implications in cancer dynamics, albeit its limited reported
involvement in angiogenesis, similar to PERK. Within the context
of ERS, Bip/GRP78 functions as a critical chaperone protein,
impacting tumor energy metabolism not only by directly
modulating the expression of various metabolic regulators but
also by displaying dual characteristics that augment both
sensitization and resistance. While certain mechanisms have been
elaborated upon, others remain enigmatic, such as whether Bip/
GRP78 operates through the three downstream branches of the
UPR or if additional cascading pathways are involved. Are there
more exosomes that can regulate tumor cell resistance to immune
agents? These questions continue to pose challenges. Throughout
the various stages of tumor development influenced by ERS, it’s
worth contemplating the cascading signals for tumor cell
apoptosis elicited by ERS: (1) IRE1/TRAF2/ASK1/JNK pathway; (2)
IRE1/TRAF2/caspase-12; (3) PERK/ATF4/CHOP; (4) IRE1–JNK–CHOP;
(5) PERK/eIF2α/ATF4/CHOP/DR5; and (6) PERK/eIF2α/ATF4/CHOP/
DR5 and other apoptotic pathways. These pathways predomi-
nantly achieve the induction of various tumor cell apoptosis by
triggering the expression of caspase-3/7/9 or suppressing the
expression of anti-apoptotic protein families. Hence, elucidating
more about the mechanisms by which ERS incites tumor cell
apoptosis is of paramount importance, with studies focusing on
such pathways offering invaluable therapeutical targets. For
instance, the P97 inhibitor CB-5083 activates the
IRE1–XBP1s–CHOP pathway, promoting apoptosis in osteosar-
coma cells [160]. In the treatment of neuroblastoma, resveratrol
has been shown to trigger ERS-mediated intrinsic apoptosis in
neuroblastoma cells and inhibit rho-dependent migration, thereby
extending patient survival [161]. Recent studies have further
demonstrated that fenretinide is an effective therapeutic option
for neuroblastoma [162]. Beyond neuroblastoma, fenretinide also
exhibits its anti-tumor effects by inducing apoptosis in head and
neck squamous cell carcinoma through the upregulation of the
pro-apoptotic protein NOXA via ERS [163]. These findings under-
score the broad-spectrum anti-cancer properties of fenretinide.
This highlights the potential of targeting ERS-induced apoptosis as
an efficacious cancer treatment strategy.
Furthermore, ERS is pivotal in cancer cell survival, proliferation,

and treatment resistance. Targeting ERS pathways, particularly the
UPR mediated by IRE1, PERK, and ATF6, offers a novel therapeutic
approach. As noted, IRE1 and PERK signaling are critical for RMS
cell survival, with IRE1 inhibitor MKC8866 and PERK inhibitor
AMGEN44 inducing senescence in rhabdomyosarcoma cells to
curb proliferation. Therefore, developing RMS-targeted therapies
using MKC8866 and AMGEN44 could be effective [164]. PDI family
members are overexpressed in various cancers [165], and PDI
dysfunction induces ERS, as previously discussed. For example, in
PDAC cells, the PDI inhibitor E64FC26 induces ERS, disrupting
protein homeostasis and leading to lysosomal defects. These
defects limit apoptosis and ferroptosis induced by E64FC26-
triggered ERS. Moreover, lysosomal defects prevent the formation
of autophagolysosomes, resulting in autophagic cell death in
PDAC cells [166]. Various PDI inhibitors, including LOC14 [167],
securinine [168], and DDA [71], exhibit different effects across
cancers, many closely linked to ERS, making them crucial targets
for future development. ERS significantly contributes to tumor
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drug resistance. For instance, in EGFR(+) colon cancer patients
resistant to cetuximab, carfilzomib can enhance apoptotic
signaling through ERS, serving as a viable alternative to cetuximab
[99]. Furthermore, the overexpression of Bip/GRP78 in cervical
cancer cells results in cisplatin resistance, underscoring the
therapeutic potential of targeting ERS in cancer treatment. Future
research should aim to optimize these therapies and overcome
potential resistance mechanisms [113]. In relation to the interplay
between ERS and autophagy in tumor cells, this topic has been
previously discussed. Clinically, chloroquine and its derivative
hydroxychloroquine (HCQ) are the only autophagy inhibitors
approved for use. Clinical studies have indicated that HCQ can
overcome chemotherapy resistance in various tumor cell lines and
animal cancer models [169]. Cook et al. showed that in a breast
tumor rat model, Bip/GRP78 promotes acquired resistance to
tamoxifen in tumor cells [170]. In ERα-positive breast cancer cell
lines, combined treatment with HCQ and tamoxifen exhibited
superior efficacy compared to endocrine monotherapy [171].
Other instances include apatinib inducing ERS-mediated apoptosis
and autophagy in esophageal squamous cell carcinoma via the
IRE1α–AKT–mTOR pathway, enhancing cell sensitivity to paclitaxel,
and being used in combination with CQ [172]. These findings
highlight the role of autophagy inhibitors in overcoming tumor
resistance and sensitivity, suggesting that autophagy inhibitors
represent a promising strategy for anti-cancer therapy.
Alterations in the tumor cell microenvironment and inherent

stemness under ERS remain largely unexplored, necessitating
urgent attention. Moreover, some crucial and complex issues
persist unresolved, such as whether other chaperone molecules
besides Bip might play a role in initiating the UPR pathway. A
more comprehensive examination of the interactions and
influences of the UPR’s tripartite branches IRE1, PERK, and ATF6
on tumor biological behaviors, including growth, invasion,
metastasis, and angiogenesis, is imperative. Notably, these path-
ways often regulate tumor dynamics via downstream
STAT3 signaling, underscoring the importance of exploring
STAT3’s role in tumor pathology as a promising research direction.
Additionally, the pressing need to develop new therapeutic
targets countering ERS in cancer treatment cannot be overstated.
Fortuitously, several strategies targeting ERS, such as GlaxoS-
mithKline’s PERK inhibitor GSK2656157 and the IRE1 activator
IXA4/6, are already underway [173, 174]. Advancing the specificity
of ERS’s regulatory influence on tumor biology remains a pivotal
area for future exploration. Prospective studies should aim to
systematically elucidate the role of ERS in tumor tissues,
emphasize the effects of ERS-mediated signaling pathways on
diverse tumor biological behaviors, and innovate targeted
therapies based on ERS and its downstream mediators.
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