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Abstract

Large-scale functional networks, as identified through the coordinated activity of spatially distributed brain regions,
have become central objects of study in neuroscience because of their contributions to many processing domains.
Yet, it remains unclear how these domain-general networks interact with focal brain regions to coordinate thought and
action. Here, we investigated how the default-mode network (DMN) and executive control network (ECN), two
networks associated with goal-directed behavior, shape task performance through their coupling with other cortical
regions several seconds in advance of behavior. We measured these networks’ connectivity during an adaptation of
the monetary incentive delay (MID) response-time task in which human participants viewed social and nonsocial
images (i.e., pictures of faces and landscapes, respectively) while brain activity was measured using fMRI. We found
that participants displayed slower reaction times (RTs) subsequent to social trials relative to nonsocial trials. To
examine the neural mechanisms driving this subsequent-RT effect, we integrated independent components analysis
(ICA) and a network-based psychophysiological interaction (nPPI) analysis; this allowed us to investigate task-related
changes in network coupling that preceded the observed trial-to-trial variation in RT. Strikingly, when subjects viewed
social rewards, an area of the fusiform gyrus (FG) consistent with the functionally-defined fusiform face area (FFA)
exhibited increased coupling with the ECN (relative to the DMN), and the relative magnitude of coupling tracked the
slowing of RT on the following trial. These results demonstrate how large-scale, domain-general networks can interact
with focal, domain-specific cortical regions to orchestrate subsequent behavior.
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A diverse set of behaviors, from normal to pathologic, has been linked to the responses of large-scale functional
networks. Yet, it remains unclear how these domain-general networks shape subsequent processing in cortical
regions with domain-specific function. Here, we examine how two such networks, the default-mode network
(DMN) and executive control network (ECN), connect functionally with other cortical regions to alter performance
in an incentive-compatible task. We found that differential coupling between a prototypical face processing
region and DMN and ECN tracked subsequent improvements in performance to social stimuli. Our approach
allowed us to examine direct coupling with functional networks to future behavior, providing a significant step
kforward in understanding how large-scale networks coordinate thought and action. j

ignificance Statement \

Introduction
Since the discovery of functionally correlated brain re-
gions (Biswal et al., 1995), large-scale functional networks
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have been considered fundamental features of brain ac-
tivity (Gusnard and Raichle, 2001; Beckmann et al., 2005;
Behrens and Sporns, 2012). These networks are highly
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reliable across large samples of participants (Biswal et al.,
2010; Smith et al., 2013) and are thought to reflect intrin-
sic properties of brain organization. Many of these
networks reflect sensory and perceptual processes in-
stantiated within visual or auditory regions (Smith et al.,
2009). Still others contribute broadly to cognitive process-
ing across stimulus and task domains, including the
default-mode (DMN), executive control (ECN), and fron-
toparietal networks (Dosenbach et al., 2007; Smith et al.,
2009). These functional networks have been linked to
various aspects of behavior including demographic vari-
ables (Filippini et al., 2009; Cowdrey et al., 2014), traits
(Shannon et al., 2011; Kucyi et al., 2014), and cognitive
states (Smith et al., 2009; De Havas et al., 2012).

Yet, for effective behavior in a particular task, these
large-scale domain-general networks must alter ongoing
task-specific processing in focal brain regions. To claim
that such interactions (i.e., between large-scale networks
and specific brain regions) are critical for behavior
change, several conditions should be met. First, a large-
scale network should be identifiable during task perfor-
mance independently of other concurrent activation; that
is, networks should be able to be extracted regardless of
other processes occurring in focal brain regions that
might contribute to that task (i.e., without relying on seed-
based analyses; Cole et al., 2010; Smith et al., 2014b).
Second, the coupling between a given network and a
given focal brain region should systematically vary across
task conditions according to the relative engagement of
the task (Friston et al., 1997; O’Reilly et al., 2012). Third,
those changes in coupling (e.g., effective connectivity;
Friston, 2011) should predict the characteristics of sub-
sequent behavior, to provide evidence that the coupling
contributes to effective task performance. If these condi-
tions are met, there would be strong evidence that cou-
pling between a functional network and a focal brain
region contributes to a specific cognitive process.

In the current study, we examined effective connectivity
between large-scale networks and focal brain regions
while subjects played a reaction times (RTs) game to
receive social and nonsocial rewards in a modified mon-
etary incentive delay (MID) task (Knutson et al., 2000). We
have previously used this task to produce meaningful
variability in reaction time behavior that reflects relative
motivation (Clithero et al., 2011). We focused on the DMN
and ECN since both have been linked to task perfor-
mance, engagement, and other markers of executive
function and
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preparatory behavior. Behaviorally, we found that partic-
ipants exhibited slower response times (RTs) subsequent
to social relative to nonsocial trials, reflecting a change in
motivation according to social stimulus type. We investi-
gated whether coupling with DMN and ECN contributed
to this subsequent-RT effect by combining independent
components (ICA) and psychophysiological interactions
(PPIs) analyses. This network-based PPI (nPPI) pipeline
allowed us to examine how DMN and ECN contribute to
other cortical regions to shape subsequent motivated
behavior up to several seconds later. Strikingly, we found
that DMN and ECN differentially coupled with a region in
the fusiform gyrus (FG) when subjects viewed the social
rewards, and that changes in this coupling tracked the
effect of stimulus type on subsequent RT. This region of
the FG is consistent with the functionally-defined fusiform
face area (FFA), a region classically associated with face
processing (Kanwisher et al., 1997; McCarthy et al., 1997).

These findings highlight functional network interactions
that guide subsequent changes in reaction time behavior.
While the cognitive mechanisms underlying the behavioral
effect of previous stimulus type on subsequent reaction
time require future research, we propose that this effect
may be driven by increased attentional interference of
social rewards relative to nonsocial rewards or a subse-
quent change in task motivation. Collectively, these re-
sults indicate that functional networks associated with
goal-directed behavior can interact with focal brain re-
gions to support future motivated behavior.

Materials and Methods

Participants

A group of 50 self-reported heterosexual males com-
pleted the task (mean age: 23.8 years, range 18-32); this
sample size was established before data collection. All
participants were screened before data collection to rule
out prior or current psychiatric or neurologic illness. We
excluded four participants because of data quality issues
(see below, Preprocessing), and we excluded five partic-
ipants because of a malfunctioning button box in the
scanner. These exclusions left a final sample of 41 par-
ticipants (mean age: 24.1 years, range: 18-32). All partic-
ipants gave written informed consent as part of a protocol
approved by the Institutional Review Board of Duke Uni-
versity Medical Center.

Stimuli and tasks

The experiment consisted of four components: (1) a
training session outside the scanner; (2) a modified MID
task (Knutson et al., 2000, 2001); (3) a passive viewing
task with results previously published (Young et al., 2015);
and (4) two additional postscan rating tasks. All partici-
pants received variable cash payment depending on their
performance.

In advance of the neuroimaging session, participants
memorized the associations of four fractal images with
different potential rewards (example in Fig. 1). On the day
of the scan, subjects were tested on the fractal images’
associations to ensure they remembered the meaning of
each image; if participants identified every association
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Figure 1. Task design. Fifty heterosexual men performed a modified MID task which examined timed responses to view social and
nonsocial images as rewards (faces and landscapes, respectively). Each trial of the task began with an abstract image presented as
a cue for 1500 ms indicating the potential reward for that trial. Following the cue, a fixation cross appeared for a variable duration
(interstimulus interval, 1500-4500 ms), followed by a target (a white triangle) that appeared on the screen for 750 ms; participants
responded by pressing a button box with their right index finger before the target disappeared. After the target, a feedback image (a
colored triangle) appeared for 750 ms; the feedback image was colored green if the participants’ response was sufficiently fast on the
trial (a win), and was blue if the response was too slow (a loss). After the feedback image disappeared, the participants waited a delay
period that varied according to the cue and whether the subject won or lost that trial. Lastly, the reward image (either a face or a
landscape) was shown for 2000 ms. Consent was provided for the use of the image in this figure.

correctly on the first attempt (n = 31), they received an
extra $5 in addition to their study compensation. All par-
ticipants successfully learned the image associations be-
fore entering the scanner.

Each trial of the modified MID task began with a fractal
image presented as a cue for 1500 ms (Fig. 1). The
different cues indicated the different potential benefits of
a fast response on that trial: (1) reducing the delay until the
presentation of a face image of a variable attractiveness
rating (social delay; SD); (2) increasing the attractiveness
of a face image presented after a variable duration (social
attractiveness; SA); (3) reducing the delay until the pre-
sentation of a landscape image of a variable attractive-
ness rating (nonsocial delay; ND); and (4) increasing the
attractiveness of a landscape image presented after a
variable duration (nonsocial attractiveness; NA).

Following the cue, a fixation cross appeared for a vari-
able duration (interstimulus interval; 1500-4500 ms), fol-
lowed by a target (a white triangle) that appeared on the
screen for 750 ms. Participants then responded by press-
ing a button box with their right index finger before the
target disappeared. A feedback shape then appeared for
750 ms; that shape was colored green if the participant’s
response was sufficiently fast (a win), and was colored
blue if the response was too slow (a loss). After the
feedback image disappeared, participants waited a delay
period that varied according to the cue and whether the
subject won or lost that trial. Lastly, the reward image
(either a face or a landscape) was shown for 2000 ms, and
there was an intertrial interval (ITl) that was jittered be-
tween 1500 and 4500 ms (with the 2000-ms reward image
duration, the minimum and maximum time delays be-
tween reward onset and subsequent cue onset was 3500
and 6500 ms, respectively).

Each run of the modified MID task consisted of 36 trials,
nine images of each SD, SA, ND, and NA in randomized
order. Across all runs included in the analyses, the four
types of transitions (e.g., social followed by social, social
followed by nonsocial, etc.) each occurred on ~25 = 1%
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of ftrials, reflecting effective randomization of stimulus
types across trials. Social images were photographs of
young adult women and were cropped to show only the
face (images were drawn from Smith et al., 2010). Non-
social images were photographs of landscapes, and did
not contain any body or facial features. All images were
resized to uniform dimensions. Attractiveness (high/me-
dium/low) of images was determined by ratings by an
independent group. Additionally, performance thresholds
were determined independently for each subject by an
algorithm that adapted the task difficulty so that accuracy
would be ~60% (observed hit rate = 60.7%).

After completing the four runs of the modified MID task,
participants completed an unrelated passive-viewing task
described elsewhere (Young et al., 2015). Following this
second scanner task, participants completed two tasks
outside the scanner. In the first task, participants rated the
attractiveness of each image they viewed in the modified
MID task on a scale of 1-7. Each participant’s highest-
rated face and landscape images were then used in a
second task involving forced choices between a land-
scape image and a face image presented simultaneously.

All tasks were programmed and displayed using the
Psychophysics Toolbox (version 3; Brainard, 1997) for
MATLAB (Mathworks).

Behavioral analysis

Behavioral data were analyzed using MATLAB and IBM
SPSS Statistics 20. A RT difference was calculated for
each participant by subtracting their mean RT on the trials
subsequent to nonsocial trials from their mean RT on trials
subsequent to social trials. Consequently, positive RT
differences indicate shorter RTs subsequent to nonsocial
trials (relative to social trials), whereas negative differ-
ences indicate shorter RTs subsequent to social trials
(relative to nonsocial trials).

To control for factors other than prior stimulus category,
such as attractiveness of the prior trial’s reward image,
the prior trial’s RT, and the subsequent trial’s stimulus
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type, we incorporated these factors into a general linear
model (GLM) for each subject. The GLM included the
following as regressors: (1) stimulus type on previous (t-1)
trial; (2) RT on previous trial; (3) attractiveness rating of the
reward image of the previous trial; and (4) stimulus type on
current trial t. This analysis indicates the specific influence
of each regressor on the current trial’s RT, and allowed us
to examine the unique influence of the previous trial’s
stimulus category (social or nonsocial) on current RT. In
our analyses, positive stimulus type B weights reflect
slower RTs on or following social trials, whereas negative
stimulus type B weights reflect faster RTs on or following
social trials.

Image acquisition

Neuroimaging data were collected using a General
Electric MR750 3.0 Tesla scanner equipped with an
8-channel parallel imaging system. We used a T,*-
weighted spiral-in sensitivity encoding sequence (SENSE
factor = 2), with slices parallel to the axial plane connect-
ing the anterior and posterior commissures [repetition
time (TR): 1580 ms; echo time (TE): 30 ms; matrix: 64 X
64; field of view (FOV): 243 mm; voxel size: 3.8 X 3.8 X
3.8 mm; 37 axial slices; flip angle: 70 degrees]. The first
eight volumes of each run were removed to allow for
magnetic stabilization. We additionally acquired whole-
brain high-resolution anatomic scans (T1-weighted FSPGR
sequence; TR: 7.58 ms; TE: 2.93 ms; matrix: 256 X 256;
FOV: 256 mm; voxel size: 1 X 1 X 1 mm,; 206 axial slices; flip
angle: 12 degrees) to allow for coregistration and normaliza-
tion.

Preprocessing

Our preprocessing used tools from the FMRIB Software
Library package (FSL version 4.1.8; http://www.fmrib.ox.
ac.uk/fsl/; Smith et al., 2004; Woolrich et al., 2009). We
corrected for head motion by realigning the time series to
the middle volume (Jenkinson and Smith, 2001), and then
removed nonbrain material using a brain extraction tool
(Smith, 2002). We then corrected intravolume slice-timing
differences using Fourier-space phase shifting to align to
the middle slice (Sladky et al., 2011). After spatially
smoothing the image using a 5-mm full-width-half-
maximum isotropic Gaussian kernel, we applied a high-
pass temporal filter with a 100-s cutoff, and we
normalized each 4-dimensional dataset to the grand-
mean intensity using a single multiplicative factor. Lastly,
we spatially normalized the functional data to the Mon-
treal Neurologic Institute (MNI) Template avg152 T1-
weighted template (3-mm isotropic resolution) using a
12-parameter affine transformation implemented in FLIRT
(Jenkinson and Smith, 2001).

As part of our preprocessing and quality control, we
additionally examined three partially correlated measures
of quality assurance: signal-to-fluctuation-noise ratio
(SFNR; Friedman and Glover, 2006), volume-to-volume
head motion, and number of motion spikes within the time
series (motion spikes were identified by evaluating the
root-mean-square-error of each volume relative to the
middle time point). Measures on each metric were con-
sidered outliers if they exceeded the 75th percentile plus
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the value of 150% of the interquartile range (i.e., a stan-
dard boxplot threshold); runs that were identified as out-
liers were excluded from further analyses. Additionally,
any participant who had fewer than two good runs (out of
four total runs) was excluded from further analyses. These
criteria eliminated four participants.

Neuroimaging analysis

To best meet the conditions for identifying task-specific
interactions between large-scale networks and focal brain
regions (see Introduction), our neuroimaging analyses
proceeded in two phases, each described in a separate
section below. First, we used ICA (Beckmann and Smith,
2004) and spatial regression (Filippini et al., 2009) to
identify the large-scale neural networks of interests (DMN
and ECN) and to examine the networks’ levels of activa-
tion over the course of each run. Second, we used gen-
eralized nPPI models (adapted from McLaren et al., 2012)
to identify brain regions whose coupling with the ECN and
DMN changed as a function of the effect of stimulus type
on subsequent RT. Importantly, this ICA-based nPPI ap-
proach follows the logic of region of interest (ROI)-based
PPI analyses, with the critical difference of examining
connectivity with data-driven large-scale neural networks
instead of a specific seed region. Critically, we note that
this nPPI pipeline allowed us to test the three necessary
conditions for inferences that functional networks alter
task-specific processing in focal brain regions.

Identifying large-scale functional networks

We used FSL’s Multivariate Exploratory Linear Decom-
position into Independent Components (MELODIC) ver-
sion 3.10 to identify large-scale functional networks in
the neuroimaging data (Beckmann and Smith, 2004).
MELODIC ICA was implemented using temporal concat-
enation, which looks for common spatial patterns of com-
ponents across participants’ data without assuming a
specific or common time course across all participants;
we note that previous research has also used temporal
concatenation-based ICA on task-based fMRI data (Ute-
vsky et al., 2014; Young et al., 2015). The preprocessed
data were whitened and projected into a 25-dimensional
subspace (Ray et al., 2013; Utevsky et al., 2014). The
whitened data were decomposed into sets of vectors
describing the temporal and spatial signal variation, using
a fixed-point iteration technique to optimize non-
Gaussian spatial source distribution (Hyvérinen, 1999).
The estimated component maps were then thresholded
by dividing the maps by the standard deviation of the
residual noise, then fitting a Gaussian-y mixture model to
the histogram of the normalized intensity values (Beck-
mann and Smith, 2004). This first step provided a data-
driven means to identify functional networks present
during task performance; this allowed us to meet the first
condition for identifying task-specific interactions be-
tween large-scale networks and specific brain regions.

All unthresholded spatial maps from the ICA were then
submitted to a spatial regression (part of FSL’s dual re-
gression analysis) to estimate the time courses of each
network (Filippini et al., 2009; Leech et al., 2011). In this
analysis, spatial maps are regressed onto each partici-
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pant’s functional data, resulting in a matrix of T (time
points) X C (components) B coefficients that characterize
each subject’s time courses for each network.

Characterizing reward-related network connectivity
and activation

We assessed task-dependent network coupling using a
generalized nPPI model. The generalized PPI, in contrast
to a standard PPI, computes a separate PPI term for each
task condition. This approach has been shown to yield
more accurate estimates of how connectivity varies as a
function of psychological context (McLaren et al., 2012).
The generalized nPPI analysis was conducted using FMRI
Expert Analysis Tool (FEAT) version 5.0.1.

The run-level model included six task regressors: social
cue (duration = 1.5-4.5 s), nonsocial cue (duration =
1.5-4.5 s), hits (duration = 0.75 s), misses (duration =
0.75 s), social reward outcome (duration = 2 s), and
nonsocial reward outcome (duration = 2 s). We addition-
ally included time courses of both the DMN and ECN that
were produced by the spatial regression. Because of the
minimum ITl of 1500 ms and the potential confound of the
cue presentation occurring between the outcome and
subsequent target phases of the task, we examined
whether there was any collinearity between the outcomes
and cues across the runs included in our analysis. For
each run included in our analyses, we calculated the
correlation values between the face and land outcome
regressors and the face and land cue regressors, and then
averaged these correlation values across all runs. The
mean correlation values between face or land cues and
face or land outcomes ranged from r = —0.25 to r =
—0.17 (minimum r = —0.28; maximum r = —0.10), indi-
cating that our run-level analyses were able to isolate and
model cues and outcomes independently, with minimal
collinearity between regressors.

For our network interaction analysis, nPPI regressors
were formed by multiplying the DMN and ECN time
courses (zeroed to the mean of the time course), sepa-
rately, by the social outcome and nonsocial outcome
regressors (zeroed to the minimum value of the task time
course; MclLaren et al., 2012); this yielded four nPPI re-
gressors: (1) DMNs=social; (2) DMNs#nonsocial; (3) ECN-
*social; and (4) ECN=#nonsocial. To control for motion in
the scanner, we additionally included motion spikes and
motion parameters as regressors. Lastly, to control for the
influence of other networks and potential artifacts on our
generalized nPPI, we included the time courses of the
remaining 23 components from the ICA. The nPPI analysis
allowed us to examine task-specific coupling between
ECN and DMN with other regions in the brain, fulfilling the
second condition for identifying the task-specific interac-
tions of interest.

Subject-level analyses for the generalized nPPI were
run using FEAT and implementing FMRIB’s Local Analysis
of Mixed Effects (FLAME 1), and examined activation
across runs within each participant. Group-level analyses
included each subject’s demeaned Bs from the prior
stimulus-category regressor (see above, Behavioral anal-
ysis); this allowed us to examine whether network cou-
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pling predicts the characteristics of subsequent RT, and
fulfill the third condition for identifying task-specific inter-
actions of interest. The group-level analysis additionally
included the main effect of group and three motion-
related parameters (SFNR, volume-to-volume head mo-
tion, and number of motion spikes within the time series).
All resulting z-statistic images were thresholded using a
cluster-forming threshold of 2.3 and a corrected cluster-
significance threshold of p < 0.05. Although this threshold
combined with FSL’s FLAME 1 protects against false
positives, we note that all of our results also survived
permutation-based testing (Eklund et al., 2016). In these
supplemental tests, statistical significance was assessed
in a nonparametric fashion via FSL’s randomise; this tool
uses Monte Carlo permutation-based testing with 10 000
permutations and « = 0.05, corrected for multiple com-
parisons across the whole brain (Nichols and Holmes,
2002; Winkler et al., 2014).

Brain images and activations are displayed using
MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/;
Rorden et al., 2007). All coordinates are reported in MNI
space.

Results

Previous stimulus category influences current
behavior

Social rewards, such as images of individuals or inter-
actions with others, provide a useful tool for examining
the effects of both social context and nonconsumable
rewards on motivated behavior. However, relatively little is
known about the effects of social and nonsocial rewards
on future motivated behavior, and how the brain orches-
trates future motivated action. To examine the effect of
social rewards on subsequent motivated actions, we cal-
culated a subsequent-RT effect by subtracting RTs fol-
lowing nonsocial trials from RTs following social trials.
When averaging across value and delay trials, we found
an overall effect of previous trial stimulus type on current
trial RT: participants exhibited increased (slower) RTs
subsequent to social trials (M = 0.313 s, SD = 0.008 s)
compared to subsequent to nonsocial trials (M = 0.306 s,
SD = 0.008 s; t4q = 2.63, p = 0.01, d = 0.41; Fig. 2A).
This pattern replicated when examining hit trials only
(social: M = 0.317 s, SD = 0.009 s; nonsocial: M = 0.309
s, SD = 0.008 s; tyq = 2.63, p = 0.01, d = 0.41). Thus,
participants were slower after performing a social trial
compared to a nonsocial trial.

We next ran a GLM to control for properties of the
previous and current trials (see Materials and Methods,
Behavioral analysis). Across participants, current stimulus
category was the strongest predictor of current RT ({40, =
—4.31, p < .0001, d = 0.67), reflecting that participants
were faster to respond during a social trial than during a
nonsocial trial. The next strongest predictor was the pre-
vious trial’s stimulus category (t, = 2.46, p = 0.01,d =
0.38), reflecting that participants were slower to respond
following a social trial than following a nonsocial trial.
Neither previous trial’s RT nor previous trial’s reward at-
tractiveness rating significantly predicted the current tri-
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Figure 2. RTs are slower following face trials compared to landscape trials. A, Distribution of RT differences according to previous
trial’s stimulus type, calculated by subtracting RTs following nonsocial trials from RTs following social trials. RTs on trials following
social rewards were greater than those on trials following nonsocial rewards, indicating an effect of previous reward stimulus type on
subsequent behavior. B, Average 8 weights (with SEM plotted) across subjects from a behavioral regression predicting current RT.
We regressed current trial RT on a model including the following regressors: stimulus category (social or nonsocial) on previous trial,
RT on previous trial, attractiveness rating of the previous trial’s reward, and stimulus category on current trial. Of these four regressors,
current stimulus category most strongly predicted current RT; the negative B weight indicates that participants are faster to respond
during a social trial compared to during a nonsocial trial. The next most predictive regressor was previous trial’s stimulus category;
the positive B weight indicates that participants were slower to respond following social trials compared to following nonsocial trials.
Neither previous trial’s RT nor previous trial’s reward attractiveness significantly predicted the current trial’s RT.

al’s RT (Fig. 2B; Table 1). We note that the effect of
previous stimulus type on current RT was still significant
even after accounting for the large effect of current stim-
ulus type, reflecting a distinct role of previous stimulus
type unaccounted for by the other variables included in
the GLM. These results indicate that of the measured
properties of the previous trial, prior stimulus type had the
strongest effect on current RT.

September/October 2017, 4(5) e0084-17.2017

Network coupling with FG tracks effect of stimulus
category on subsequent behavior

Our behavioral results indicated that current-trial stim-
ulus type influences motivated behavior on the subse-
quent trial (which occurred 7 s or more later), such that
participants were slower to respond following social trials
compared to following nonsocial trials. However, it re-
mains unclear how interactions in the brain during this
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Table 1. Behavioral regression results

Regressor Parameter estimate (SEM) t stat p value
Current trial (f) stimulus type —0.055 (0.013) —-4.31 <0.0001
Prior trial (t-1) stimulus type 0.033 (0.013) 2.46 0.01
Prior trial (t-1) attractiveness 0.019 (0.011) 1.74 0.09
Prior trial (t-1) RT <0.0001 (0.013) 0.005 0.99

To examine the effects of other trial characteristics on current trial RT, we regressed current trial RT on a model including: stimulus category (social or nonso-
cial) on previous trial, RT on previous trial, attractiveness rating of the previous trial’s reward, and stimulus category on current trial. Our analysis indicated
that current stimulus type had the strongest effect on current RT; however, of all the characteristics from the prior trial, only prior stimulus type had a signifi-

cant effect on current RT.

previous stimulus outcome affect the subsequent RT. To
investigate this, we examined how effective connectivity
with the ECN, a network implicated in cognitive control
and goal-directed behavior, and the DMN, a network
linked with task engagement orchestrate this change in
future motivated behavior. We predicted that this
subsequent-RT effect would be guided, in part, by
changes in the coupling between these large-scale func-
tional networks and domain-specific brain regions when
viewing social images compared to when viewing nonso-
cial images. In particular, we predicted that the
subsequent-RT effect would be driven by changes in the
relative coupling of the ECN and the DMN during the
reward outcome phase of the previous trial. Our analysis
pipeline allowed us to meet the criteria to claim that
interactions between large-scale networks and specific
brain regions are critical for behavior changes (see Intro-
duction).

After running the ICA, we identified the DMN and ECN
maps by running spatial correlations between the un-
thresholded maps from our ICA and the DMN and ECN
maps from Smith et al. (2009). From our 25 components,
we selected the maps that best matched the DMN (R =
0.776; other components: R,c., = —0.006, R.in
—0.179, Ryax = 0.124) and ECN (R = 0.64; other com-
ponents: Rean = 0.019, R, = —0.092, R, = 0.296)
maps from Smith et al. (2009; Table 2). For ease of
visualization, thresholded maps (Z > 4) are shown in
Figure 3.

Following network identification, we ran a nPPI analysis
that used participant-specific DMN and ECN time courses
(estimated by the spatial regression analysis) as the phys-
iologic regressors and presentation of social and nonso-
cial images as the psychological regressors. This nPPI

Table 2. Spatial correspondence with canonical networks

identified regions that are influenced by the ECN and
DMN in a task-dependent manner. We then tested
whether these influences on cortex predicted the effect of
prior stimulus type on current RT. Our nPPI analysis indi-
cated that effective connectivity between the FG (peak:
x =38,y = —64,z = —20, p < 0.0001, voxel extent =
383) and the ECN increased (compared to FG-DMN con-
nectivity) when participants viewed social rewards (Fig.
4A), and that the magnitude of this increase tracked the
slowing of RT on the subsequent trial (Fig. 4B). Strikingly,
this peak voxel is consistent with the often functionally-
defined FFA (McCarthy et al., 1997; Kanwisher and Yovel,
2006). Identification of the terms associated with this peak
voxel using the meta-analytical tool Neurosynth (http://
neurosynth.org; Yarkoni et al., 2011) yielded “faces,”
“FFA,” and “fusiform face” within its top four associations.
These results suggest that functional networks associated
with goal-directed and preparatory behavior can interact
with focal brain regions to support task-relevant behavior.

To ensure that this connectivity was associated with the
previous trial’s outcome rather than the current trial’s cue,
we ran an additional nPPI to examine whole-brain con-
nectivity during social cues, nonsocial cues, and nonso-
cial > social cues. Notably, there were no regions
exhibiting changes in connectivity with the ECN relative to
the DMN in any of the three contrasts tested. To further
investigate this, we used the FG region showing changes
in ECN-DMN connectivity during the previous outcome
phase as a mask during the current cue phase, and
examined whether the ECN-DMN connectivity from this
ROI tracked the effect of prior stimulus on current RT.
Across the three contrasts tested (social, nonsocial, non-
social > social), there was no correlation between the ROI
connectivity estimates and the effect of previous stimulus

Canonical network

Visual 1 IC10
Visual 2 ICO1
Visual 3 ICO1
Default mode IC06
Cerebellar IC18
Sensorimotor IC13
Auditory IC14
Executive control IC04
R frontoparietal IC03
L frontoparietal IC0O7

Independent component number

Spatial correlation ()
0.82
0.66
0.45
0.78
0.32
0.59
0.66
0.64
0.64
0.77

To identify the DMN and ECN, we ran spatial correlations between canonical neural networks (Smith et al., 2009) and the 25 components from our ICA. The
highest-correlating ICA component numbers for each network map and the correlation values are listed.
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Figure 3. Networks identified from ICA. Using ICA across our
task runs, we identified large-scale functional networks. This
analysis produced 25 components. Our analyses focused on the
components that best matched DMN (highest-correlating com-
ponent illustrated on top) and the ECN (highest-correlating com-
ponent illustrated on bottom) from Smith et al. (2009). For
visualization purposes, maps are thresholded at Z > 4.

type on current RT (social: r = —0.12, p = 0.45; nonsocial:
r=0.01, p = 0.94; nonsocial > social: r = 0.23, p = 0.15).
Collectively, these results support the claim that changes
in subsequent RT are associated with differential network
connectivity with the FG during the previous outcome
phase, and cannot be attributed to other aspects of task
performance.

No regions showed increased coupling with ECN (rela-
tive to DMN) during nonsocial rewards that tracked the
effect on subsequent RT, nor did any regions show in-
creased coupling with DMN (relative to ECN) during social
or nonsocial rewards that tracked the effect on subse-
quent RT. Additionally, there were no regions that exhib-
ited changes in coupling with the DMN or ECN when
comparing social and nonsocial rewards (e.g., DMN-
social > DMN-nonsocial; ECN-social > ECN-nonsocial;
and the inverse contrasts) that tracked the effect on sub-
sequent RT. Lastly, we ran a whole-brain GLM using the
RT Bs as a covariate to examine whether any regions’
activation tracked the effect of stimulus type on subse-
quent RT; we found that no regions tracked this effect
using this traditional GLM. Thus, coupling between large-
scale networks and the FG that tracked the effect on
subsequent RT was only observed during the viewing of
social rewards.

Discussion

Recent neuroscience research has highlighted the rel-
evance of large-scale functional networks to various as-
pects of behavior (Eichele et al., 2008; Kelly et al., 2008;
Anticevic et al., 2010; Rosen et al., 2016). While many of
these studies have linked network activation and connec-
tivity to behavior, the contribution of these networks to
motivated behaviors via focal cortical regions has been
relatively understudied. For example, although previous
work has found correlations between DMN and working
memory (Sambataro et al., 2010; Piccoli et al., 2015) or
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Figure 4. FG connectivity tracks effect of stimulus type on
subsequent behavior. A, A nPPI indicated that an area in the FG
exhibits heightened effective connectivity with ECN (compared
to DMN) during social reward outcomes; thresholded at p <
0.05. We note that this result also held with permutation-based
testing (Eklund et al., 2016). B, Parameters estimates extracted
from the FG connectivity track the effect of stimulus type on
subsequent behavior (stimulus-type B weights estimated from
our behavioral GLM; see Materials and Methods, Behavioral
analysis): as FG-DMN connectivity increases relative to FG-ECN
connectivity, RTs are further slowed following social trials com-
pared to following nonsocial trials.

Slower after social trials
bbbl el

sustained attention (Bonnelle et al., 2011; Gui et al., 2015),
understanding how these distributed functional networks
influence other cortical regions to shape behavior has
remained a significant challenge. Here, we found that
participants were slower in a RT task after having per-
formed a trial for a social reward relative to a nonsocial
reward (after accounting for the influence of the current
trial cue type), reflecting a change in motivated behavior
according to previous social stimulus type (Clithero et al.,
2011). We then examined the neural mechanisms under-
lying this effect using nPPI analysis, an adaptation of
generalized PPI analysis (i.e., effective connectivity) that
examines effective connectivity with large-scale func-
tional networks. This analysis pipeline allowed us to iden-
tify changes in coupling between large-scale networks
and focal brain regions that predicted subsequent moti-
vated behavior. Our results demonstrate that two goal-
relevant networks, the DMN and ECN, interact with FG in
a manner that predicts trial-to-trial adjustments in RT.
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Our analysis on our modified MID task identified that
participants exhibit slower reaction times on trials subse-
quent to social outcomes, relative to trials subsequent to
nonsocial outcomes. These results are consistent with a
difference in motivational processes due to the social
nature of the previous reward outcome, analogous to
effects on motivation observed in similar tasks with non-
social stimuli (Clithero et al., 2011). There are at least two
potential explanations for this subsequent reaction time
effect. The first hypothesis is that social images are more
distracting than nonsocial images, and participants may
still covertly attend to a prior social reward more so than
they do a prior nonsocial reward. Previous research indi-
cates that social images interfere with visual attention to a
greater degree than nonsocial images (Ebitz et al., 2013);
thus, it is possible that this differential interference may
affect subsequent trials differently, as well. A second and
related potential explanation is that participants’ de-
creased motivation can be attributed to the satisfaction of
receiving a motivating reward on the previous trial, much
akin to results seen in “satisfaction of search” (SOS)
research. In SOS research, participants performing visual
search tasks tend to discontinue their search after finding
an initial item, and either miss or display slower reaction
times for subsequent items (Berbaum et al., 1990; Fleck
et al., 2010). As applied to our MID task, a more motivat-
ing reward outcome (social images) may hinder the per-
formance on the subsequent trial. Future research will be
needed to explore the cognitive mechanisms driving the
observed subsequent-RT effect and to determine if it is
specific to social versus nonsocial stimuli, or may gener-
alize to items that are more motivating versus less moti-
vating.

Our findings expand on recent research examining the
relevance of DMN and ECN activation to behavior, poten-
tially in task-relevant contexts. Specifically, we found that
increased ECN (relative to DMN) coupling with the FG is
associated with enhanced subsequent task performance.
These results are consistent with previous studies dem-
onstrating different relationships between the DMN and
ECN with task behavior: while ECN activation is often
associated with heightened task performance and behav-
ior (Dosenbach et al., 2007; Seeley et al., 2007), DMN
activation is frequently linked to decrements in behavior
and engagement in both humans (Weissman et al., 2006;
Eichele et al.,, 2008) and nonhuman primates (Hayden
et al., 2009, 2010; Heilbronner and Platt, 2013). Impor-
tantly, however, our findings extend these previous re-
sults by demonstrating direct coupling of these networks
with a prototypical social-perception processing region in
a task-dependent manner. Our results additionally high-
light that the opposing effects of DMN and ECN are not
limited to concurrent behavior, but also affect subsequent
behavior with effects observed seven or more seconds
later. These findings support the idea that large-scale
networks interact with lower-level perceptual regions to
contribute to motivational processes (Clithero et al., 2011)
and shape later behavior.

Unlike previous studies examining large-scale networks
(Seeley et al., 2007; Brewer et al., 2011; Ossandon et al.,
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2011; Utevsky et al., 2014), our experiment demonstrates
network coupling that directly shapes subsequent RT.
While prior studies report associations between functional
connectivity and behavior, estimates of functional con-
nectivity solely report on correlations in activation (not
coupling) between regions, which can be the result of
various phenomena (Friston, 2011). Specifically, reported
changes in functional connectivity can arise from numer-
ous causes, including: changes in connectivity with
another region, changes in observation noise (or signal-
to-noise ratios), and changes in the degree of neuronal
fluctuations (for a review, see Friston, 2011). Thus,
changes in functional connectivity may not reflect
changes in coupling between cortical regions. In contrast
to functional connectivity, we implemented an adaptation
of a traditional PPI analysis to measure effective connec-
tivity between functional networks and other cortical re-
gions. PPl analyses measure whether a psychological
context (e.g., outcome stimulus category) influences how
one brain region or network (the “seed”) contributes to
another (the “target”) by examining whether an interaction
between the psychological context and the seed is iden-
tified in the target (Smith et al., 2016). Thus, a PPI analysis
can eschew the potential confounds of functional connec-
tivity analyses and reflects a change in neural coupling
(e.g., effective connectivity). We note that our novel ap-
proach of generalized nPPI, applying generalized PPI
analyses to large-scale networks, allows us to examine
task-dependent contributions between networks and
other cortical regions (Friston et al., 1997; Friston, 2011).
In this way, our study extends prior work by demonstrat-
ing specific task-dependent coupling of the DMN/ECN.
Although recent meta-analytic work has demonstrated
that PPl produces consistent and specific patterns of
connectivity (Smith et al., 2016; Smith and Delgado,
2017), it is important to note that PPI results can be
interpreted in two ways (Friston et al., 1997). First, our
effects could reflect a context-specific modulation of ef-
fective connectivity. In this case, face presentations mod-
ulate the degree to which the DMN and ECN contribute to
FG. Our results focus on the difference between DMN and
ECN contributions to FG which seem to facilitate social
motivation (Clithero et al., 2011). Alternatively, our effects
could reflect a modulation of stimulus-specific responses.
In this case, the DMN and ECN influence how FG re-
sponds to the presentation of the face; under this inter-
pretation, our results suggest that the degree to which
DMN enhances face responses in FG is greater than that
of ECN. In either interpretation, the resulting effect on FG
connectivity predicts behavior. A better understanding of
the mechanisms and causal relationship underlying our
results may be facilitated by other analytical approaches,
such as dynamic causal modeling (DCM; Friston et al.,
20083; Friston, 2011), although relatively less is understood
regarding how the biophysical models implemented in
DCM apply to distributed functional networks (Buxton
et al., 1998; Friston et al., 2003). Additionally, other meth-
odological approaches, such as transcranial magnetic
stimulation (Fox et al., 2012; Luber and Lisanby, 2014;
Mueller et al., 2014) or transcranial current stimulation

eNeuro.org



eMeuro

(Keeser et al., 2011; Hampstead et al., 2014) may also
better inform the specific interactions between FG and the
ECN and DMN.

One potential caveat to note is that our task design
included a cue to indicate the current trial’s stimulus type
in between the previous trial's outcome phase and the
current trial’s response phase. Because the current trial’s
stimulus type is the strongest predictor of the current
trial’s RT, there may be concerns over whether the neural
coupling we observe can be attributed to the cue, rather
than the previous trial’s outcome. This concern is amelio-
rated through both the randomization of trial types (i.e.,
the identity of the outcome on the previous trial is uncor-
related with the trial type on the subsequent trial), as well
as the run-level models implemented in our PPl analysis
that included separate regressors for both the outcome
phase (social and nonsocial outcomes, separately) and
the cue phase (social and nonsocial cues, separately).
Including these separate regressors for each phase al-
lowed us to distinguish effects of the cue and outcome
phases on connectivity. This concern is additionally miti-
gated by the analyses examining connectivity during the
cue phase. A nPPI showed no changes in ECN-DMN
connectivity during social cues, nonsocial cues, or social
> nonsocial cues when looking across the whole brain. A
supplementary ROI analysis using the FG region indicated
that FG connectivity with the ECN (relative to the DMN)
during these three contrasts did not track the effect of the
previous trial stimulus type on subsequent RT (as illus-
trated by the lack of significant correlations between the
connectivity estimates and the effect of previous stimulus
type on subsequent RT). However, future research may
benefit from a modified task design in which there are no
informative stimuli presented between a reward image
and subsequent response.

As an additional caveat, we note that our paradigm and
results leave room for interpretive challenges. Because
participants exhibited faster RTs to view social images
compared to nonsocial images, we cannot discern
whether our nPPI results from the social-stimuli condition
are due to the stimulus type itself (i.e., face images) or
would generalize to other highly motivating stimuli. While
prior work linking FG to face processing supports the
interpretation that our results are indeed due to that spe-
cific stimulus type (Kanwisher et al., 1997; McCarthy
et al., 1997; Kanwisher and Yovel, 2006; Engell and Mc-
Carthy, 2014), future studies could compare within-
domain images of varying attractiveness to other
categories of motivating stimuli (e.g., money). Such an
analysis would speak to whether these behavioral and
neural results are unique to face image rewards, or are
due to participant differences in subjective value (Bos
et al., 2013; Smith et al., 2014a).

Our results demonstrate task-dependent contributions
between the DMN and ECN and the FG that shape sub-
sequent motivated behavior. These large-scale networks
are known to be disrupted in a variety of psychopatholo-
gies marked by impairments in attention and reward pro-
cessing, including autism spectrum disorder (Assaf et al.,
2010; Young et al., 2015), obsessive compulsive disorder
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(Stern et al., 2011, 2012), and major depressive disorder
(Sheline et al., 2009; Grimm et al.,, 2011), and so an
improved understanding of how they influence moment-
to-moment behavior could have clinical relevance and
advance models of pathophysiology (Insel et al., 2010;
Cuthbert and Insel, 2013). Thus, this study marks a sig-
nificant step toward better understanding and treatment
of disorders characterized by impaired social and reward
processing.
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