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Abstract: This paper addresses the efficiency of Bluetooth Low Energy (BLE) communication in
a network composed of a large number of tags that transmit information to a single hub using
advertisement mode. Theoretical results show that the use of advertisements enables hundreds
and thousands of BLE devices to coexist in the same area and at the same time effectively transmit
messages. Together with other properties (low power consumption, medium communication range,
capability to detect a signal’s angle-of-arrival, etc.), this makes BLE a competing technology for the
Internet of Things (IoT) applications. However, as the number of communicating devices increases,
the advertisement collision intensifies and the communication performance of BLE drops. This
phenomena was so far analyzed theoretically, in simulations and in small-scale experiments, but
large-scale experiments are not presented in the literature. This paper complements previous results
and presents an experimental evaluation of a real IoT-use case, which is the deployment of over 200
tags communicating using advertisements. We evaluate the impact of the number of advertisements
on the effective data reception rate and throughput. Despite the advertisement collision rate in our
experiment varying between 0.22 and 0.33, we show that BLE, thanks to the multiple transmission of
advertisements, can still ensure acceptable data reception rates and fulfill the requirements of a wide
range of IoT applications.

Keywords: Bluetooth Low Energy; advertising mode; Internet of Things; large-scale system; system
validation; experimental evaluation

1. Introduction

Bluetooth Low Energy (BLE) is a widespread communication protocol that is getting more and
more interest as a technology for Internet of Things (IoT) solutions. BLE has been developed for
several years now, with version 5.1 being published in early 2019. BLE has two modes of operation:
connectionless (also called advertisement) and connected (also called paired). Connectionless operation
uses advertisement messages and optional scan request–response message pairs to transmit data from
end-devices (also called advertisers or broadcasters) to a central device (also called a scanner or a hub).
This is a one-way broadcast communication without acknowledgments (Figure 1), which means that
data is only transferred from end-devices to scanners.
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Figure 1. Bluetooth Low Energy (BLE) advertisement and scanner operation in connectionless mode.
The green color denotes advertisements that are coincidentally received, i.e., when the hub happens to
scan the same channel as the one the tag uses for transmission.

Advertisers broadcast messages repeatedly (every advertisement interval plus random advertisement
delay) using three (out of a total of 40) shared radio channels (numbered 37, 38, and 39). The
advertisement interval is between 20 ms and 10.24 s, and the advertisement delay is a random value in
the range of 0 to 10 ms. Scanners continuously scan these channels in order to receive transmissions
coincidentally (scanners switch channels every scan interval and listen for the advertisements for
the scan window on every channel, see Figure 1). Upon reception of the advertisement, the scanner
may send a scan request message that is answered with a scan response, which in turn contains
additional information.

When the scanner receives the advertisement from the end-device it can initiate a connection
(pairing) and establish a link that enables bidirectional data transmission. While the connection is
active, a dedicated communication channel between both devices is established and used for data
exchange. In the connected mode, BLE devices use dedicated radio channels (out of a total of 37 data
channels available), avoiding channels that are used by neighboring devices, and switching channels
to ensure coexistence with other 2.4 GHz radios in the vicinity.

BLE connection-based communication is typically used in small, embedded devices in a wide
range of different applications such as wearables, smart sensors (e.g., [1]), healthcare monitoring
systems (e.g., [2]), home automation and smart homes, and indoor positioning (e.g., [3]). In these
applications, sensor data is exchanged after a connection is established, and advertisements are only
used by the central device (e.g., a mobile phone or hub) to detect sensors. As the connected mode
has been widely used and demonstrated in various applications, it has been thoroughly evaluated
and tested, among others, for the following features: throughput, latency, energy consumption [4–6],
coexistence with other BLE devices, as well as other radio technologies operating in the same radio
band: WiFi, ZigBee, and IEEE 802.15.4 [7–9]. From the vast number of network deployments
and various published research results, BLE can be considered as a well designed communication
technology that is robust and reliable, even in the highly occupied 2.4 GHz spectral band. However, the
number of simultaneous connections is limited by the number of available radio channels and available
resources in the device [5] (e.g., 8 for STMicroelectronics tags and 20 for Nordic Semiconductor tags).
Consequently, the connected mode does not scale well and its application to large scale IoT systems
is limited.

With the introduction of the IoT concept, more focus has been put on radio technologies that enable
the communication of thousands of end-devices to the network. This led to the development of new
communication technologies (e.g., sub-GHz) and introduced new network communication concepts,
where high capacity, the ability to serve thousands of end-devices, energy efficiency, and autonomous
operation are more important than communication speed, channel throughput, or complex radio
topologies. Using advertisements for data communication in connectionless BLE is similar to these
approaches, making connectionless operation attractive for IoT applications.
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Compared to connection-based communication, the connectionless mode has several limitations,
which primarily come from using advertisement and optional scan response messages for data
transmission. These limitations include a small payload size, relatively long transmission intervals
(affecting effective data throughput and transmission delay), a small number of radio channels
used (thus increased probability of collisions), and a lack of acknowledgments to confirm that the
transmission was correctly received [10–12]. Although these form a limitation, it is worth noticing that
several communication technologies and protocols used in IoT networks (e.g., LoRaWAN, SigFox)
do not provide the same properties and can still be effectively used in a vast number of applications.
Furthermore, there are some aspects that suggest that connectionless BLE, when compared to WiFi,
ZigBee/IEEE 802.15.4, and even sub-GHz solutions, can be better suited for small-to-medium network
size IoT applications. Firstly, it does not have the scaling issue, which means that theoretically it
can effectively communicate data between thousands of devices, and is often proposed as a method
for opportunistic data transmission [13,14], monitoring applications [15], and localization systems
based on radio signal strength [3,16]. BLE outperforms other 2.4 GHz technologies in terms of energy
costs, throughput, and latency [7,17]. Compared to sub-GHz technologies, BLE has no duty-cycling
restrictions, which limit the amount of time a radio can use for transmission. Moreover, the energy
efficiency [18] and expected lifetime [19] of BLE outperforms unlicensed sub-GHz technologies. BLE is
also much more widespread, and the newest version of the standard (BLE 5.1) enables the receiver to
estimate an angle-of-arrival, which can be used for accurate localization of communicating devices
and further extend the range of possible applications. Additionally, in the connectionless mode, scan
request and scan response messages are optional and do not need to be used. This means that the tag
may not receive any radio packets and may turn off the radio after transmission, as a consequence,
reducing energy consumption. Moreover, the connectionless mode does not incur any additional
energy cost required to establish and maintain the connection. This provides further energy savings.
Consequently, connectionless BLE is an attractive technology for IoT applications, where a large
number of devices coexist in a small or medium size area.

Taking the above into account, real-life evaluation of connectionless BLE communication becomes
important, especially since the results presented in the literature are mainly based on simulations
and theoretical analyses addressing device discovery latency (e.g., [11,12]), the coexistence of a small
number of devices [20], and energy efficiency [5,10,13,21,22]. The contribution of this paper includes
the following:

• Experimental evaluation of a large number of BLE devices communicating simultaneously using
advertisement messages in the presence of mutual and external interference;

• Demonstration of the applicability of the connectionless BLE mode to large-scale and
medium-area IoT applications.

The paper is organized as follows. Section 2 presents related work and previous results of BLE
advertisement mode evaluation. Section 3 describes our evaluation setup, scenarios, and metrics used
in the experiments. Section 4 presents the results of our experiments and discusses the performance of
BLE connectionless communication for different settings of the parameters. The paper is summarized
in Section 5, which draws conclusions and discusses the applicability of the BLE advertisement mode
to large-scale IoT applications.

2. Related Work

Aguilar et al. [13] analyzed the performance of both connection-based and connectionless BLE
communication for opportunistic data collection from sensors. For connected mode, they assumed that
there are only two BLE devices in the network so there was no need for the central device to switch
between the end-devices. As a result, consequences of switching (e.g., on throughput) were not taken
into account. Theoretical analyses focused on the evaluation of the end-device’s current consumption,
energy cost per bit, lifetime, and maximum amount of data transmitted. The experimental evaluation
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was only conducted for connected communication of two BLE devices. The presented results show
that connectionless communication has a significantly lower current consumption and is less affected
by transmission errors, but at the same time allows less data to be transmitted (from 2 to 5 orders
of magnitude). Consequently, the lifetime of a BLE sensor operating in the connectionless mode
is approximately twice as long, while the energy cost per bit of data is 2–3 orders of magnitude
larger when compared to the connection-based mode. The article concludes that connectionless BLE
communication is suitable for IoT applications where sensors report small amounts of data (with
required throughput up to approximately 280 Bps) and have to operate on batteries for long periods
of time. Unfortunately, the authors did not analyze large-scale deployments and did not conduct
experiments that would validate the theoretical results.

The energy efficiency of BLE tags was thoroughly studied for various hardware architectures and
application scenarios: BLE 121LR platform in the opportunistic data transmission [13], CC 2541 and
nRF 51822 in the continuous monitoring application [21], nRF 51822 operating in the connectionless
mode [22], and Stick’N’Find tags used as beacons in the localization system [16]. All these works report
very low power consumption for the connectionless mode, that is significantly lower than the energy
consumed in the connected mode. Unfortunately, none of these works have conducted experiments in
large-scale deployments.

Harris et al. [20] verified, with the use of simulations (using ns-3 simulator) and experiments,
BLE efficiency in dense IoT deployments where a high collision rate and energy consumption are
expected. Experimental evaluation was conducted for 10 minutes using up to 9 Nexus 5 smartphones
as scanners and up to 20 Estimote tags. The focus was on active scanning, with the scanners sending
scan requests, and the tags sending advertisements every 950 ms and responding with scan responses.
Harris introduced two metrics: (i) X-second success, which equals 1 if in every X-second-long time
window (from the initial scan request) at least one scan response is received; and (ii) total success,
which is the ratio of a successful scan request–scan response interaction versus all expected interactions
during the test. The total success rate achieved in [20] for a single scanner and a single advertisement
device was 85% and dropped to slightly above 80% for 20 advertisers. It was shown experimentally
that both the total and 5-s success rates drop significantly with the number of active scanners, while
the number of advertisers was shown to be less important. Unfortunately, the authors neither verify
the performance of passive scanning (when there are no scan requests and scan responses sent) nor
perform experimental evaluation with a larger number of advertisers.

The article by Shan et al. [10] investigates collisions of advertisements when a large number of
BLE devices is located in a narrow area. The experiments were carried out with 40 iBeacon devices
using an advertisement interval above 1 s, and a single scanner built using a RaspberryPi (RPi) single
board computer. The scanner operated in a passive scanning mode with a scan interval of 10.24 s. For
the network of up to 10 tags, the advertisement reception rate was close to 100%, but dropped quickly
for larger numbers, reaching approximately 61% for 40 tags. The scope of this work was similar to
ours, but a relatively small number of tags was used in the experiments and large advertisement
intervals were used. Moreover, the article also lacks more detailed information about the operation of
the RPi-based scanner.

The paper by Shan and Roh [12] focuses on the discovery time of BLE tags. Their goal was to
tune BLE parameters (namely, the advertisement interval) in order to shorten the detection time of
BLE tags by the scanner running in a continuous scanning mode (i.e., the scan interval and the scan
window parameters are set to the same value) and lower the energy consumed by the tags during
discovery. The detection time investigated by Shan and Roh corresponds to the X-second success
metrics. The numerical and simulation results presented in this paper show that, for an advertisement
interval between 200 ms and 3 s, detection of up to 500 tags takes less than 10 s. In other words,
within 10 s a single scanner receives at least one advertisement packet from each of the 500 tags—this
corresponds to 10-s success metrics (for the passive scanning) which, for 500 devices, is equal to 100%.
Smaller advertisement intervals (below 200 ms) and those above 3 s cause detection times to increase
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significantly (cf. Figure 8 in [12]). Although Shan and Roh only focused on tag discovery and analyzed
BLE using just simulations, their results show that if the advertisements contain data (e.g., some
measurements), then in dense environments it takes several seconds (and, consequently, transmission
of several advertisements) to successfully transmit the data to the scanner. Moreover, the optimal
advertisement interval should increase with the number of BLE tags, with values between 100 ms
and 2 s being appropriate for networks of up to 1000 tags. Unfortunately, the article lacks the real life
validation that would take into account the imperfections of real hardware and software.

The performance of data transmission in the advertisement mode depends on both the efficiency
of the packet reception and the packet collisions in the communication channel. Ghamari et al. [22]
examined advertisement collisions when a large number of BLE nodes simultaneously transmit data.
The paper addresses energy costs incurred by the collisions and the development of the collision model,
which can be used to estimate the collision ratio for a different number of advertising devices. The
presented results are based on theoretical analysis and small-scale experiments with 7 tags. The results
show that decreasing the advertisement intervals greatly increases the probability of packet collisions,
which in turn affects the quantity of received advertisements and throughput, and also increases the
energy consumed by the BLE tags. Unfortunately, the small-scale real life validation of the findings is
a shortcoming of this article, since large-scale performance was only analyzed theoretically.

The previous studies on the performance of BLE are mostly based on theoretical analyses
and simulations that targeted connection-based communication. Since advertisement messages are
commonplace in BLE networks, it is interesting to assess to what extent they can be used for data
transmission in connectionless communication. To date, only a few papers have addressed this topic
and none have conducted a large-scale experimental evaluation.

3. Experimental Setup

The aim of our experiments was to verify if the connectionless BLE mode applies to data
transmission in IoT applications. In contrast to work previously published by other authors, we chose
to run a real life experiment with a large number of devices in order to provide an insight into how
such networks operate in practice. The experiments allowed the analysis of BLE operation using real,
imperfect transceivers (which are often used in IoT systems) operating in the presence of interference
from other BLE devices and other 2.4 GHz networks.

In the experiments, we imitated one of the most typical IoT applications: distributed monitoring.
In this application, the tags are deployed in a small or medium size area, and possibly move around
at low speeds. A real-life example of such an application is the well-being monitoring of animals
on a farm. In such an application, tags are worn by the animals and hubs are deployed in the
sheds. For dairy cows, for example, roughly 100 cows live in one shed with an area of approximately
1000–1500 m2. For smaller animals, for example sheep or goats, the number of animals (tags) in the
shed can significantly grow. During the operation, the tags perform measurements, data processing,
and aggregation, and send the resulting information to the infrastructure devices (hubs) deployed in
the area. The hubs aggregate the received information and forward it to the central server for further
processing and storage. Communication from the tags to the hubs uses BLE advertisements. Other
technologies (e.g., WiFi, Ethernet, GSM) are used to link the hubs with the server.

The abovementioned scenario was reproduced in an experimental setup at the university
(Figure 2). The number of tags was 210, we used one hub, and deployed all the devices in a laboratory
(roughly 21 m2).
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Figure 2. Photograph of the BLE tags deployed in the laboratory.

3.1. Hub

The hub is based on the RPi Zero W single board computer (Figure 3). This version of RPi is
compact and includes a WiFi- and BLE 4.1-compatible radio, which makes it a perfect candidate for
our application.

Figure 3. Photograph of the hub used as the scanner in the experiments.

The RPi runs a Linux operating system with BlueZ 5.50, an official Linux Bluetooth protocol stack.
The hub runs a Python script that starts a BLE sniffer and uses the MariaDB database management
system for storing configuration parameters and results. Upon startup, the sniffer loads a list of the
tag’s MAC addresses and starts a passive scanning, i.e., no scan request–scan response messages are
exchanged. The list is used for filtering the incoming BLE packets—only packets originating from
the tags on the list are analyzed and stored in the database (we did not use the whitelisting feature
from the BLE specification due to the limited size of the whitelist). During the operation, the sniffer
continuously scans for advertisements, processes them in Python script, and then stores information
in the database. The stored information includes the message’s payload, the tag’s MAC address, the
received signal strength indicator (RSSI), and timestamp. To speed up the operation, the database
contains a single table without indexes and constraints.

We decided to build the hub using a general purpose single board computer. The goal was
to verify if an off-the-shelf, low-cost, and easy to use device can be used as a hub in real life for a
BLE-based IoT application. As the hub is not a dedicated device, its underperformance in receiving
and processing the advertisements (resulting from receiver saturation, communication and processing
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delay, channel switching delay, etc.) may adversely affect the results of the evaluation. This does not
however impair verification if the BLE connectionless mode can be used in large-scale IoT applications.
Nevertheless, the performance of the hub, when advertisements from a few tags are received, should
still be estimated. This was the goal of the first evaluation scenario (Section 3.3) and allowed us to
assess the relative performance drop in subsequent scenarios.

3.2. Tags

The tags are dedicated BLE devices designed and developed for the purpose of a distributed
monitoring application. The device is based on the nRF 52832 system-on-chip from Nordic
Semiconductor, which incorporates a BLE-5.0-compatible radio and ARM Cortex-M4F microcontroller.
Additional components on the device include sensors and power circuits.

In the target application, the tags continuously take the sensors’ readings, perform data
analysis and aggregation, and periodically broadcast scannable undirected advertisement messages.
The advertisement interval equals 250 ms, which is a trade-off between packet collision probability and
the effective network throughput [22]. Message payload changes every data interval (TDI) and contains
the successive portion of the collected measurements. During the lab experiment, the advertisement
payload did not contain actual data, but a sequence number and random data up to the total length
of 30 bytes. The goal of the target application is to ensure that all the measurements are successfully
transmitted from the tags to the hub. In the experiments, the sequence numbers were used to simulate
distinct measurements and validate if every measurement successfully reaches the hub. For successful
transmission, it is enough that at least one advertisement for each sequence number is correctly
received. As the sequence numbers change every 10 s (i.e., TDI = 10 s) and the advertisement interval
equals 250 ms, upon successful transmissions the hub should receive 40 advertisements with the same
sequence number—in fact, the expected number of advertisements per sequence number is lower, as
the advertisement interval is biased with a random delay of between 0 and 10 ms. The shift is evenly
distributed, so on average it is equal to 5 ms. The expected advertisement interval equals 255 ms and
the expected number of advertisements per sequence number is 39.

3.3. Scenarios

The laboratory experiments used one hub to monitor two tags (referred to as A and B) randomly
selected from all the available tags. Other tags (up to 210 tags) were used to generate background
interference and collisions in the communication channel. These devices were under full control
regarding their mode of operation and transmission parameters (e.g., frequency, power, payload
length). As the experiments were carried out in the university laboratory, external BLE devices
(e.g., owned by students) might have appeared randomly in the vicinity and could have introduced
additional variance in the measurements. These devices were out of our control and may have affected
the results of the experiments. It is worth mentioning that such a situation is beneficial as it is common
to real life applications, when one cannot have full control over the environment and external devices
operating in the vicinity. To assess and minimize the influence of such devices, the tests were conducted
over a long period of time, both during the day and night. As presented in Section 4.2, the external
devices have a small influence on the experiments.

During the experiment, all the tags (including tags A, B, and all interference tags) were
transmitting advertisements with a transmission power of 0 dBm and a payload length of 30 bytes.
Tag A and the interfering tags used an advertisement interval equal to 250 ms, and tag B had
the advertisement interval set to 750 ms. A different interval was selected for tag B in order to
investigate which interval better suites the target application in the presence of heavy interference.
The transmitted payloads contained random data and sequence numbers that changed every 10 s
(TDI =10 s). The maximal number of advertisements received for each sequence number from tag A is
ADVA = 39 and for tag B, ADVB = 14.
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Scenario 1 was run to evaluate the performance of the RPi as a scanning device when only tags
A and B were transmitting. This scenario was run for 68,996 s, which is approximately 19 h and
10 min (Table 1). The purpose was to investigate how many advertisement messages are correctly
received, processed, and stored by the hub, and what is the expected ratio of missing messages due to
underperformance of the RPi.

The goal of Scenario 2 was to evaluate how reception of the advertisements drops as a function of
the number of tags simultaneously transmitting when only tags A and B were recorded by the hub.
The greater number of transmitting tags corresponds with a higher likelihood of packet loss due to
collisions in the communication channel, as well as the higher load of the hub that is needed to filter
out advertisements (except those coming from tag A and B). Scenario 2 was run for 76,525 s, which is
approximately 21 h and 15 min.

In Scenario 3, we tested decreases in performance when a large number of tags sent their
advertisements simultaneously, with a big number of them being recorded by the hub. This scenario
shows how the performance of the hub drops with an increasing workload (i.e., the number of tags for
which advertisements are processed and stored in the database). The experiment in this scenario was
run for 11,749 s, i.e., slightly over 3 h and 10 min.

Table 1. Evaluation scenarios and their parameters.

Scenario # Tags Transmitting # Tags Recorded Duration # Sequence Numbers Sent

1 2 2 19 h 10 min 6900
2 210 2 21 h 15 min 7652
3 210 52 3 h 10 min 1175

In all the scenarios, we collected raw advertisements and calculated several metrics to
analyze performance:

• Min, max, and average number of advertisements received per each sequence number;
• Minimal number of advertisements (A99%) so that 99% of all sequence numbers were received

with A99% or more advertisements (in other words, 1% of sequence numbers were missed or
received with a smaller number of advertisements than A99%);

• Number of missing sequence numbers (Smissing);
• TDI second data reception rate (DRRTDI ), calculated as the ratio between the number of sequence

numbers received by the hub and the number of sequence numbers (iterated every TDI data
interval) transmitted by the tag;

• Packet delivery rate (PDR)—the ratio between the number of advertisements received by the hub
(and stored in its database) and transmitted by the tag. This ratio takes into account the losses of
the radio packets due to collisions in the communication channel as well as the underperformance
of the hub (e.g., losses due to receiver saturation, buffer overflows, etc.).

The above definition of DRRTDI is similar to the X-second success defined in [20], but we calculated
it for the sequence numbers transmitted in the advertisement messages rather than the scan response
messages. DRRTDI equals 100% if at least one advertisement for each sequence number is correctly
received for sequence numbers that change every TDI seconds. As a result, DRR can be high (close to
100%) even if PDR is low for an appropriately chosen TDI interval.

For an application that uses connectionless BLE communication, it is important to maintain a
high DRR. In dense environments, PDR would inevitably be small, but DRR can be kept high by
properly setting the advertisement interval and data interval. These parameters determine the number
of advertisements containing the same payload (data), and thus the effective DRR for the given PDR.
Therefore, the anticipated value of DRR can be close to 100%.
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4. Results and Discussion

4.1. Results

In Scenario 1, only tags A and B were transmitting. The number of received advertisement
messages per single sequence number, from tag A, varied between 10 and 36 with 25 advertisements
being the average.

Figure 4 shows the probability density function (pdf) of the number of advertisement messages
per sequence number. This pdf follows Normal distribution with µ = 25.2 and σ = 3.9.

Figure 4. Probability density function of the number of advertisements per sequence number for tag A
and its approximation with Normal distribution.

As presented in Figure 4 and Table 2, from the expected 39 advertisements, at most 36 were
correctly received. In the worst case, the single sequence number was received in 10 advertisement
messages. Over 99% of sequence numbers ware correctly received in 17 or more messages, which is
approximately half of the expected 39 (only 1% of unique sequence numbers were received in less than
17 advertisements). In the same scenario, tag B (advertising every 750 ms) successfully transmitted
up to 14 advertisements per sequence number (this is equal to the expected number), however for
some of the sequence numbers the number of advertisements was as low as one (Figure 5). Still, all
sequence numbers in the experiment were successfully received by the hub and 99% of the numbers
were received at least 4 times.

Table 2. Statistics for tag A and B for the different scenarios.

Metrics
Tag A Scenario Tag B Scenario

1 2 3 1 2 3

Amin 10 3 2 1 0 0
Aavg 25 17 10 8 6 4
Amax 36 29 23 14 13 10
A99% 17 9 4 4 2 1

Smissing 0 0 0 0 5 10

µ 25.2 17.1 10.3 8.5 6.6 4
σ 3.9 3.5 3 1.9 2.1 1.7

DRR10s 100% 100% 100% 100% 99.9% 99.1%
PDR 64% 43% 26% 60% 47% 29%
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Figure 5. Probability density function of the number of advertisements per sequence number for tag B
and its approximation with Normal distribution.

It is worth mentioning that although DRR10s (i.e., the data reception rate when TDI = 10 s) equals
100% for both tags in this scenario, PDR equals 64% and 60% for tag A and B, respectively. As only
two tags were transmitting, we can assume that the collisions are negligible and that the 40% loss in
PDR is due to the underperformance of the RPi that was used as the hub.

In Scenario 2, the packet reception ratio dropped, but it still ensured a very high DRR10s and
met the requirements of the application. For tag A, all sequence numbers were correctly received
(DRR10s = 100%), however some in only 3 advertisement messages (out of 39 transmitted). For tag B,
some sequence numbers were missing (DRR10s = 99.9%) and the average number of advertisement
packets per sequence number dropped by 25%. For both tag A and B, the packet reception rate dropped
by approx 22% when compared to Scenario 1.

The number of advertisements received per sequence number dropped even more in Scenario 3.
Although all sequence numbers were received from tag A, some of them were received in only 2
messages (compared to 10 in Scenario 1) and the average number of advertisements per sequence
number dropped from 25 to 10. For tag B, 10 (out of a total of 1175) sequence numbers were not
received. For those that were received, only a few were received 9 or 10 times. In fact, most of the
sequence numbers were successfully transmitted in 3 or 4 advertisements, which is a significant drop
when compared to the initial 8 and 9 times in Scenario 1. Although obtaining the worst PDR (below
30%), both tags A and B were able to meet the requirements of the foreseen monitoring application
with DRR10s being above 99%.

4.2. Discussion

Figure 6 compares the pdfs for tag A and Scenarios 1, 2, and 3. As presented, the numbers of
advertisements per sequence number drop with the number of transmitting devices and the workload
of the hub. Approximation with Normal distribution is accurate. A similar drop can be seen for
tag B (Figure 7).
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Figure 6. Probability density function of the number of advertisements per sequence number for tag A
and its approximations with Normal distributions.

Figure 7. Probability density function of the number of advertisements per sequence number for tag B
and its approximations with Normal distribution.

Table 2 presents the statistics of advertisements per sequence number (min, average, max, 99%,
missing sequence numbers) as well as the PDR and DRR for all the scenarios and for both tags A and B.
The efficiency of advertisement transmission (PDR) is moderate (slightly above 60%), even for the first
scenario where there was no interference from other BLE tags. As interference increased (Scenario 2),
PDR drops to below 50%. The further drop (Scenario 3) is probably due to the underperformance of
the hub that was processing advertisements from 52 distinct tags. The low PDR in Scenario 1, and the
significant drop in Scenario 3 compared to Scenario 2, shows that the efficiency of the hub is important
for overall performance. The performance drop between Scenario 1 and Scenario 2 is mostly due to
interference and collisions caused by all the BLE tags transmitting simultaneously with tag A and
B. From the drop of PDR values, we can infer the probability of the collision in the communication
channel when 210 tags are advertising. It turns out that collision probability is equal to approximately
0.33 for tag A and 0.22 for tag B. These values are quite similar to the theoretical and simulation results
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presented in [22], where the probability of collision for 200 tags and advertisement intervals of 200,
300, 700, and 1000 ms was estimated at approximately 0.51, 0.4, 0.22, and 0.15, respectively.

Figure 8 presents the number of advertisements received per minute (over the time of the day)
from tag A and tag B in Scenario 1 and Scenario 2 (Scenario 3 lasted less than 4 h and was thus omitted).
It can be noted that the number of received advertisements increased during the night, and that the
variance of this number is also smaller at night—from approximately 8 pm to 6 am the next day. This
trend is quite clearly visible for tag A and can also be noticed for tag B in Scenario 1. For tag B, in
Scenario 2, the day/night change in the number of advertisements per minute is not visible, which is
probably due to the low number of advertisements received in this scenario from tag B. Although this
would require additional investigations, we think that the improved performance at night time might
be the result of lower collisions from external BLE devices and WiFi networks operating in the building
and sharing the same radio spectrum. The change in the performance is small, thus confirming our
assumption that external devices will not significantly affect the results of our experiments.

Figure 8. The number of advertisements received per minute during the experiment in Scenarios 1
and 2.

Figure 9 presents the data reception rate parameter for the cases in which advertisement payload
changes at a different data interval than that used in the experiments (namely, TDI = 1, 2, . . . , 9 s). The
reported values were calculated based on timestamps recorded by the hub with each advertisement
received during the experiment. The data reception rate inevitably decreases as the data interval
shortens, but for tag A, it was above 99% for TDT ≥ 4 s in all the Scenarios. For tag B, the data reception
rate goes below 99% for data intervals smaller than 8 s and 10 s in Scenarios 2 and 3, respectively, but
for the data interval greater or equal to 5 s it is always above 90%. This shows that conectionless BLE
communication can ensure high data reception rates, even for data that changes quite frequently. As a
result, BLE can be used in time-constrained IoT applications where LPWAN technologies can not be
used due to duty-cycling and message frequency restrictions.



Sensors 2020, 20, 107 13 of 16

Figure 9. Data reception rate for different data intervals.

Figure 10 presents PDR for all the tags that were recorded by the hub in Scenario 3 (i.e., 52 tags
each sending advertisements every 250 ms). As can be seen, the reception rates vary significantly, for
some of the tags reaching almost 44%, while dropping below 20% for others. Most of the tags recorded
had PDR in the range between 21% and 30% (lower and upper quantile), with the median equal to
26%. This suggests that some of the tags were performing worse when compared to tag A. However,
it can also be the case that the variations in PDR could have been a consequence of the deployment
of nodes during the test—the distance from the tags to the hub was not equal, and their respective
spatial placement and relative orientation was also different, which might have had an effect on radio
propagation and reception.

Figure 10. Boxplot of the packet delivery rate (PDR) for 52 tags recorded in Scenario 3.

The RSSI values measured by the hub for all the tags and scenarios have great variability, with
results ranging from −55 to −96 dBm. The experiments show, for all the monitored tags and scenarios,
that the RSSI histograms are multimodal with two or three distinct peaks (Figure 11). Our hypothesis is
that this results from the three different radio channels used for sending the advertisements. However,
because this characteristic of RSSI does not affect our analysis and result, further investigation is out of
scope of this article.
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Figure 11. Histogram of the received signal strength indicator (RSSI) for tags A and B in Scenario 2.

Moreover, there is a safe margin between the lowest received RSSI and the sensitivity level of
the hub (equal to −97 dBm). This suggests that advertisement losses (low PDR values) are due to
collisions in the communication channel and underperformance of the hub, rather than attenuation of
the radio signal. It also shows that tags can safely lower the transmission power by several dB in order
to preserve energy without degenerating PDR.

Even though power consumption and energy efficiency were beyond the scope of our experiments,
we still performed a basic evaluation and analyses. For the advertisement interval of 250 ms, the tags
consumed 227 µA on average at a supply voltage of 3.6 V. For the advertisement payload containing
30 bytes of data, which changed every TDI = 10 s, this yields an energy cost of 8.172 mJ or 32.9µJ/bit.
These values are comparable to the measurements reported in other articles (e.g., [13,16,22]). A further
reduction in the energy consumption can be achieved by adjusting the tag’s operation, e.g., lowering
the transmission power, decreasing the frequency of the advertisements [13,22], or switching the tag to
sleep mode after a predefined number of advertisements is sent.

5. Conclusions

This paper presented experimental evaluation of BLE advertisement communication when a large
number of advertisers are deployed in a small area. Such scenarios are representative to a wide range
of IoT applications. The experiment confirms a previous analytical and simulation evaluation that over
200 BLE advertisers can be used to successfully transmit data simultaneously (DRR > 99%), despite
collisions. For larger networks, the probability of packet collision would increase [22], therefore, in
order to sustain a high data reception rate, the tag and the hub parameters (advertisement interval,
scan interval, scan window) need to be adjusted and the data interval TDI needs to be increased. These
changes will however lower the effective data throughput.

As BLE has no duty-cycling limits, and that in advertisement mode data is transmitted periodically,
one can achieve a high DRR with the appropriate selection of the advertisement interval and data
interval. As presented, for an advertisement interval of 250 ms and a data interval greater then 4 s, DRR
is greater than 99%. When advertisements contain 30 bytes of information, the effective transmission
data rate is approximately 8 Bps. Although small, it allows 28 kB of data to be transmitted per hour,
which is enough for various IoT applications. Simply consider LoRa, one of the most promising
examples of unlicensed sub-GHz technology. With a spreading factor of 12,250 kHz bandwidth, and
the same payload size, transmission takes approximately 700 ms. For 1% duty-cycling (the widely
used setting in sub-GHz networks), this translates to 51 transmissions or 1.5 kB of data per hour.
Even for lower spreading factors of 7 and 9, the amount of data transmitted per hour may increase
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to approximately 16 and 5 kB respectively, but at the same time the effective communication range
drops significantly.

Based on the experimental results, we argue that the BLE connectionless mode is well suited for
IoT applications, especially for those that operate in small or medium areas, indoors, or require higher
throughput when compared to sub-GHz radio technologies. A lack of duty-cycling restrictions, low
energy consumption, a long expected lifetime, and good coexistence when deployed in mass scale
make BLE technology an attractive alternative to other radio technologies. Additional features of BLE
technology, such as advertisement extensions, optional scan request/response communication, the
possibility to communicate in connected mode, and the ability to estimate the angle-of-arrival, further
extend the range of possible BLE applications to IoT systems.

The conducted experiments show that advertisement-based BLE communication scales well and
can be used in real-life IoT applications. Future investigations may include the assessment of energy
consumed by the tag (as a function of its parameters and the number of simultaneously communicating
tags), and a more detailed evaluation of the impact of external advertisers on the performance of
the system.
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