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Universal classification of twisted, 
strained and sheared graphene 
moiré superlattices
A. Artaud1,2,3, L. Magaud1,2, T. Le Quang1,3, V. Guisset1,2, P. David1,2, C. Chapelier1,3 & 
J. Coraux1,2

Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer 
graphene’s electronic properties. Yet, the exact crystallographic structure on which their band structure 
depends remains highly debated. In this scanning tunneling microscopy and density functional theory 
study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC and on the 
close-packed surfaces of Re and Ir with ultra-high precision. We resolve small-angle twists and shears in 
graphene, and identify large unit cells comprising more than 1,000 carbon atoms and exhibiting non-
trivial nanopatterns for moiré superlattices, which are commensurate to the graphene lattice. Finally, a 
general formalism applicable to any hexagonal moiré is presented to classify all reported structures.

Graphene (gr) is a two-dimensional crystal with honeycomb structure, whose peculiar electronic properties have 
raised considerable interest in the past few years. Indeed, its electronic bands cross at the K and K′  corners of the 
Brillouin zone, giving rise to a linear energy dispersion of its quasiparticles close to the Fermi level1. Moreover, the 
bipartite nature of graphene’s lattice, with two triangular carbon sub-lattices (A and B), confers unique properties 
to these quasiparticles. By analogy to quantum electrodynamics2, a sublattice-related quantum number, so-called 
pseudo-spin, equivalent to the spin of Dirac fermions is defined3. For these reasons, the conical electronic bands 
around the K and K′  points of the Brillouin zone are called Dirac cones.

Such exotic electronic properties are predicted for pristine graphene, but are altered when graphene is sup-
ported by a substrate. Indeed, due to the structural mismatch between graphene and its support, graphene has 
periodically varying stacking configurations with its substrate4–9. This effect modulates the graphene-substrate 
interaction and distance10–14, over a so-called moiré periodicity, which can range from ~1 to ~15 nm. Depending 
on the interaction between graphene and the substrate, the moiré can have a dramatic impact on graphene’s 
properties. Some substrates impose only a weak interaction dominated by van der Waals forces, which is the 
case for graphene on hexagonal boron nitride15 or multilayer graphene on the carbon face of SiC16. In this case, 
the graphene-substrate distance is about 3.4 Å (refs 16,17), very close to the value 3.3539 Å of highly oriented 
pyrolytic graphite (HOPG)18, and graphene’s electronic properties are mostly preserved17,19. In these systems, the 
moiré acts as a smooth superpotential that varies slowly compared to the one associated to carbon atoms. The 
corresponding unit cell, which is larger than the one of pristine graphene, is associated with replica Dirac cones, 
reduced Fermi velocity20–23, with either superlattice Dirac cones21,22,24,25 or mini-gaps20,26 at the moiré Brillouin 
zone boundary. Such properties make this system an ideal playground to investigate quantum phases arising in 
periodic two-dimensional electron gases subjected to an external magnetic field25–27. In bilayer graphene samples, 
Van Hove singularities and electron localization also emerge from the coexistence of the Dirac cones of each 
layer28,29. Overall, in low-interaction systems, tuning moiré superlattices is a mean to tailor graphene’s electronic 
properties.

Other surfaces interact more strongly with graphene, and are prone to exchange electrons with it, establish-
ing partially covalent bonds. Graphene-substrate bonding then implies both van der Waals forces (physisorp-
tion) and partial covalent bonding (chemisorption), and is modulated along the moiré periodicity11,12,30–32. 
Graphene is thus nanorippled, the shortest graphene-substrate distances showing tendency to covalent bonding. 
Nanorippling amplitudes varying from 0.03 (on Pt(111)33) to 1.6 Å (on Re(0001)32) have been reported depend-
ing on the strength of the graphene-substrate interaction8. Systems with strong nanorippling amplitudes usually 
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have valence and conduction bands without Dirac fermion character34,35. For all those metals, however, the moiré 
modulation of graphene’s electronic properties goes along with a modulation of its chemical reactivity, inducing 
preferential sites for adsorbtion or functionalization. This makes moiré superlattices efficient to self-organize 
arrays of metallic clusters36,37 and molecules38,39. For gr/Ir, they can in turn influence the electronic properties of 
graphene, for instance opening a band gap35,40 or tuning the Fermi level and velocity41,42.

The usual structural model used to describe moirés assumes (Fig. 1a top) that a single moiré beating occurs 
within a moiré period and that the graphene and moiré lattices are commensurate (integer multiples of their 
lattice parameters can be found which are equal). This superlattice model was for instance often used to describe 
gr/Ir, but eventually proved too restrictive to describe the variety of situations observed in experiments (see 
refs 43–48 for gr/Ir) depending on growth conditions49 and sample history47,50. Accordingly more general models 
have been proposed. Some simply assume that the graphene and moiré lattices are incommensurate36. Others 
assume commensurability, yet without the constraint of a single moiré beating within the moiré unit cell. This 
situation is sketched in Fig. 1a (bottom) and accounts for experimental data obtained with gr/Ru and gr/Ir, for 
which four beatings were proposed in case of the zigzag rows of graphene aligning the close-packed ones of the 
metal47,49,51,52 and even more in graphene whose zigzag rows are ~30° rotated43.

There are many ways the above assumption for commensurability can be fulfilled, as can be shown by con-
sidering strains and rotation of the graphene with respect to its substrate53. For substrates exerting a weak bond-
ing with graphene, rotations readily occur43,54. Strain, on the contrary, is more energetically costly in reason of 
the high mechanical stiffness of graphene55. It appears that strains beyond few percents are not achievable in 
graphene synthesized on a substrate. Formal treatments of strain so far exclusively assumed biaxial strain. One 
noticeable exception is the description given by Hermann56. This description relates geometrical transformations 
to a set of indices characterizing the commensurability between two triangular lattices. Among the transforma-
tion considered in Hermann’s work is a shear strain, applied with a similar magnitude for the two lattices. The 
recently observed case of sheared graphene onto a rigid unsheared lattice49, such as a metallic substrate whose 
deformations induced by graphene can be neglected, is not accounted for to our best knowledge.

Here we present the straightforward extension of Hermann’s formalism to the latter case. Besides, we derive 
the relationships that establish the consistency between this formalism, and another one, recently presented by 
Zeller and Günther to describe the number of beatings a moiré can comprise57. Overall, with the help of geomet-
rical transformations, we provide a fully-consistent description of the full complexity of commensurate moiré 
superlattices, relating the graphene, substrate, and moiré, for the general case of an arbitrary strain (including 
shear, uniaxial, biaxial) and of superlattices having any number of beatings. This transformation is expressed 
within a matrix formalism and in an extension of the so-called Wood’s notation, which gives the angles formed 
between the unit cell vectors of graphene and the moiré as well as the ratio between these vectors’ length. We use 
the latter notation to construct maps of the possible commensurate moiré superlattices and to revisit previously 
published analysis of experimental observations. We show that supported graphene is subjected to strain levels 
far below what is usually assumed.

We apply this description to resolve the structure of the moiré superlattices in graphene on multilayer 
graphene prepared on SiC, and in monolayer graphene on Re(0001) and Ir(111). For this purpose, we resort to 
scanning tunneling microscopy (STM) in both direct and reciprocal (Fourier) space, in the latter case achieving 
better than 0.1 pm precision on the lattice parameter determination, owing to distortion-less imaging with atomic 
resolution across several 10 nm fields of view. We find rotated and sheared moiré superlattices. Similarly to the 
rotation, shear appears more obviously in the moiré than in the graphene, as confirmed by our density functional 
theory (DFT) calculations. Some of these moirés comprise several moiré beatings in the case of metal substrates. 
Strikingly, commensurability between graphene and moiré superlattices provides a fine description of even very 
large moiré supercells, comprising above 1,000 carbon atoms.

Results
General framework. In most cases, supported graphene and its substrate do not share the same lattice 
parameter and/or graphene lies twisted by some angle with respect to its support. Assuming commensurability 
between the two lattices, a supercell can be defined which comprises the smallest integer numbers of unit cells 

Figure 1. Moiré superlattice and beatings: (a) Ball model of a chain of (small) carbon atoms in graphene on 
top of a chain of (large) atoms from the support, both having different lattice parameters agr and as, whose 
commensurability defines a moiré superlattice with period am. For 6 graphene periods matching 5 support 
periods (orange), a single beating occurs within the moiré period, and the fast Fourier transform (FFT) reveals 
a fundamental harmonic defined by k =  (kgr −  ks)/(6 −  5) (b). For 11 graphene periods matching 9 support 
periods (purple), two beatings occur within the moiré period, with similar stacking configurations at the edges 
and at the middle of the ball model. The corresponding FFT reveals a fundamental harmonic at k =  (kgr −  ks)/
(11 −  9) (b).
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of both graphene and the support. This supercell defines the moiré superlattice. Formally, in a one-dimensional 
picture, the moiré superlattice parameter am is an integer number times graphene’s (agr) or the support’s (as) lattice 
parameters: am =  i agr =  m as, with i and m two coprime integers.

Still in one dimension, the reciprocal (Fourier) space unit vectors of the moiré superlattice (km), of graphene 
(kgr) and of the support (ks) hence fulfil i km =  kgr and m km =  ks. We stress that these two equations constitute 
the general definition of a moiré superlattice. On the contrary, the definition usually proposed in the literature, 
km =  kgr −  ks, does not require commensurability. It can be obtained in the particular case of a commensurate sys-
tem, with i −  m =  1, i.e. with i and m two consecutive integer numbers. This particular case is sketched in Fig. 1a 
(top). Figure 1b shows a different situation with i −  m =  2. Strikingly, at first sight the two moirés in Fig. 1a are 
very similar. Indeed, at the middle of both linear ball models, the stacking of the carbon atoms onto the substrate 
ones is similar. In an analogy with optics, beatings between the two lattices seem to occur at the same location. 
Careful inspection however reveals that, for the i −  m =  1 moiré (Fig. 1a top), the carbon atom sits exactly on top 
of the atom underneath, while for the i −  m =  2 moiré (Fig. 1a bottom), the coincidence is only approximate. The 
difference is most often subtle in a scanning probe microscopy experiment52 (similar graphene/support stackings 
yield similar signals), and usually overlooked, so the i −  m =  2 is generally (erroneously) described as a i −  m =  1 
moiré. In fact it has a richer Fourier spectrum than the latter, as can be seen on Fig. 1b. The fundamental Fourier 
harmonic of the i −  m =  2 moiré is km =  (kgr −  ks)/(i −  m) =  (kgr −  ks)/2, and not (kgr −  ks) as is the case for the 
i −  m =  1 moiré. The predominant intensity of the second harmonic (kgr −  ks) translates nothing else than the 
close (but not exact) lattice coincidence observed at half the moiré period (Fig. 1a bottom). The Fourier descrip-
tion of moirés naturally makes the distinction between both, the i −  m =  1 moiré containing only one beating, and 
the i −  m =  2 comprising two distinct ones.

The analysis of the moiré superlattices presented below will be performed by expressing the moiré superlattice 
unit vectors as function of those of the graphene and support unit cells. The analysis will also be expressed as 
function of elementary geometrical deformations, which we now introduce.

In the most general case, graphene is twisted, strained and sheared with respect to its substrate. The combi-
nation of all these contributions can be separated into four elementary geometrical transformations represented 
on Fig. 2a: an isotropic rescaling (1), a directional rescaling (2 and 3), and a rotation (4). These transformations 
translate in mechanical terms as biaxial strain εb (1), uniaxial strain in a given direction εu (2 and 3), and a 
rotation (4) of the graphene layer. It can be noted that the so far overlooked shearing contribution is taken into 
account by combining a rotation, biaxial and uniaxial strains. The impact of such a combination on a moiré has 
only been predicted56.

On the other hand, one can equivalently describe the graphene-substrate relation by explicitly writing the 
commensurate relation defining the moiré superlattice. In order to account for its structural complexity in two 
dimensions, a set of eight integers (i, j, k, l, m, n, q, r), which are determined through atomically-resolved micros-
copy, is then necessary (only four are needed to describe graphene maintaining the D6h symmetry, i.e. when it is 
only strained biaxially and rotated):
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The (i, j, k, l, m, n, q, r) integers used here correspond to the decomposition of the superstructure lattice vectors 
am1

 and am2
 into the basis formed by the graphene lattice vectors (i, j, k, l), and the supporting material lattice 

vectors (m, n, q, r), as sketched on Fig. 2b. This decomposition is in practice performed more conveniently but 
equivalently in reciprocal space (Equation (2)).

Figure 2. Structural interpretation of a moiré superlattice: (a) The transformation relating graphene lattice 
vectors a a( , )gr gr1 2

 to those of its support a a( , )s s1 2
 can be decomposed into four steps. (1) Graphene vectors are 

isotropically rescaled with respect to those of the support (light red). (2) Graphene is rotated with respect to its 
support (red), in order to determine the direction in which (3) a horizontal rescaling is applied (dark red). (4) A 
final rotation is applied (black). (b) The lattice vectors of the moiré superlattice decompose into both graphene 
and support bases, giving (i, j, k, l, m, n, q, r) =  (4, − 1, 1, 5, 3, − 1, 2, 4). (c) Corresponding extended Wood’s 
notation: (p1 Rϕ1 ×  p2 Rϕ2), where p1 and p2 are scaling factors, and ϕ1 and ϕ2 are rotation angles.
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By combining this description with that in terms of four geometrical transformations formally linking the 
graphene and support lattice vectors, one can relate the physical parameters describing how much graphene 
is strained and sheared to these eight integers. This relation is established in the Supplementary information 
(Equation (S21a,b)) and is later used to quantify uniaxial and biaxial strains in graphene.

At this point we can generalize to the two-dimensional limit the concept of number of beatings N in a moiré 
cell. One can then define number of beatings N1 and N2 along am1

 and am2
 (see Supplementary information):

= − + − − − − = − + − − − −N i m j n i m j n N k q l r k q l r( ) ( ) ( )( ) and ( ) ( ) ( )( ) (3)1
2 2

2
2 2

The number of beatings N within a moiré cell is then simply given by the product N =  N1N2.
Although using a set of eight integers is efficient to describe a moiré superlattice, it is a relatively cumbersome 

notation that does not give an immediate picture of the structure. A clearer formulation of such sheared struc-
tures is then desirable. In the simple case of graphene experiencing only deformations preserving its pristine D6h 
symmetry, the Wood’s notation circumvents this issue, describing the length and orientation of the superstructure 
lattice vectors compared to that of graphene or its supporting material. In the more general case addressed here, 
where the lattice vectors are allowed to vary in length and orientation independently as a result of shear and/or 
uniaxial strains, an extension of the Wood’s notation is required, which we derive here. As depicted on Fig. 2c, agr1

 
and agr2

 are rescaled (resp. rotated) with respect to as1
 and as2

 by factors p1 and p2 (resp. angles ϕ1 and ϕ2). The 
extended Wood’s notation reads as (p1 Rϕ1 ×  p2 Rϕ2). This notation gives the reader the ability to easily capture 
the graphene-substrate relation, and imagine how sheared it is by comparing p1 and p2, and ϕ1 and ϕ2. Once 
again, these quantities relate to the (i, j, k, l, m, n, q, r) integers, as explained in the Supplementary information. 
The same can be done to relate the moiré unit vectors to those of the support, as (P1 RΦ 1 ×  P2 RΦ 2), with:
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Precision on the structure determination. The geometrical formalism developed so far proves nec-
essary to properly interpret the refined twist angles and shearings observed in atomically-resolved microscopy 
images. The experimental uncertainty on the identification of the (i, j, k, l, m, n, q, r) integers is here discussed to 
justify this necessity.

Quantitatively, the uncertainty on (i, j, k, l) can be lowered by precisely determining k k( , )gr gr1 2
 and k k( , )m m1 2

. 
In practice, we measure the distance between the moiré spots and the graphene spots in the Fourier transform 
image (each spot corresponding to a Fourier component), which are expected to be evenly separated. The sharp-
ness of the spots is inversely proportional to the size of the atomically resolved image, and the number of spots 
increases with the contrast of the moiré with respect to the atomic lattice. The former effect sets a precision in the 
determination of the spacing between two spots of 6% in the case of gr/Ir, for which the image field of view is 
~500 nm2. The latter effect translates into an uncertainty as low as × ∼1/ 50 6% 1% in the case of gr/Ir (see 
Results below). Indeed, around the center of the reciprocal space, there are ~60 Fourier components, which cor-
responds to ~50 Fourier component spacings along one direction. The same is true around the graphene harmon-
ics, so overall, in our example, the precision over km and kgr is ~1%. For (i, j, k, l), this precision translates through 
propagation of uncertainty into 2%.

The above described determination of (i, j, k, l, m, n, q, r) is liable to put shears in evidence. At first thought, 
atomic resolution imaging can artificially produce sheared images. Such shears may result from imaging artefacts, 
for instance, in the case of scanning probe microscopy, thermal drift of the piezoelectric scanners or inequivalent 
calibration of these scanners along the two scan directions. However, these artefacts have no influence on the 
decomposition of kgr1

 and kgr2
 onto km1

 and km2
.

Twisted graphene bilayer. First, the case of multilayer graphene on the C-rich (0001) face (C-face) of a 
4H-SiC sample is considered in Fig. 3, where a ~1.5 nm beating is observed. In the present case, the relationship 
between the lattice vectors of the upper graphene layer and of the moiré can be read on Fig. 3b to deduce matrix 
Mgr

T
up

 (see Equation (2)). Here, this matrix indicates the coincidence of the graphene and moiré lattices in recip-
rocal space. In direct space, this means that the beatings match the moiré, so N =  1 (see General framework). For 
a N =  1 moiré, = −k k km gr

up
gr
low

1 1 1
, as the lower layer of graphene is the support material. From this, the matrix 

Mgr
T

low
 between the lattice vectors of the lower graphene layer and of the moiré is obtained. Transposing matrices 

Mgr
T

up
 and Mgr

T
low

 gives Mgrup
 and Mgrlow

, which hold the decomposition of the moiré unit vectors on the upper and 
lower graphene lattices in direct space:
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This commensurability relation gives a complete structural description, by decomposing the moiré lattice vectors 
in the basis of each graphene layer, using the set of integers (i, j, k, l, m, n, q, r) =  (4, 7, − 7, − 3, 3, 7, − 7, − 4). Using 
Equation (4a–d), such a structure can be analysed as two graphene layers sharing the same lattice parameter 
=a agr

up
gr
low (p1 =  p2 =  1), and rotated by ϕ ϕ ϕ= = = . °∼arctan(7 3 /73) 9 431 2  with respect to each other. This 

falls in the regime where the two graphene layers interact weakly, leading to Fermi velocity renormalization 
around the Dirac cones23,28,29.

Graphene on Re(0001). The case of multilayer graphene on C-face SiC has shown a situation where a moiré 
superlattice is related to a single structural parameter: the twisting angle ϕ. On the contrary, graphene supported 
by a metallic surface can not only be twisted with respect to its substrate, but also strained, due to the lattice mis-
match between the two. A full monolayer of graphene forms on Re(0001) through a self-limiting process58, and 
a ~2.2 nm period beating is found. These beatings were described as a N =  1 moiré superlattice with 10 graphene 
cells on 9 Re cells59, or 8 graphene cells on 7 Re cells32.

A direct analysis of the STM topograph along the same lines as for Fig. 3 is here challenging. Figure 4a high-
lights two additional phenomena, which have been little discussed to our knowledge in the context of graphene 
on metals60.

First, depending on the position within the beatings, the apparent height accessed by STM shows a varying 
number of visible C: in a valley, only 3 atoms out of a 6-C ring are seen, whereas on a hill, all 6 are observed. This 
is due to the sites occupied by the C atoms on the terminal metallic layer, which fall into three typical configura-
tions: a C on top of a metal atom (atop), or on top of a hollow site. Two kinds of hollow site can be distinguished, 
depending on the presence (hcp) or absence (fcc) of another metal atom of the second terminal metallic layer 
below the hollow site. In a valley, the sites occupied by the C atoms are either atop and hcp, or atop and fcc. The 
overlap of the pz-like orbital of a C atom in atop position with the d-like orbitals of the underlying metal atom is 
then maximal. Consequently, the local electronic density of states is modified, making it appear low in STM10. 
This explains why, for strongly-interacting substrates, only half the C atoms appear as protrusions in a moiré 
valley, while all of them can be identified on top of a moiré hill (see refs 38,51,60,61 for gr/Ru, ref. 62 for gr/Rh, 
and ref. 32 for gr/Re).

Second, the apparent atomic rows of C oscillate with the same periodicity as the beatings. This phenomenon 
has been reported and discussed in the case of gr/Ru (see ref. 60), and observed as well in many instances before 
and since then, it is known since the 1990s as the “odd-even transition” in the case of graphite63–65. Its origin is 
well illustrated in the case of the two distinctive moiré valleys. Indeed, they differ only in the site of the remain-
ing visible C atom: hcp or fcc. Depending on whether the site is hcp or fcc, the corresponding C atom belongs 
to sub-lattice A or B of graphene. As a consequence, when moving from one beating to the other, the C atoms 
that are observed switch continuously from one sub-lattice to the other. Along a row of C atoms, this induces an 
apparent oscillation of the row. Therefore, these two effects are related to a modulation of the electronic density of 
states on the two sub-lattices of graphene, which is correlated with the moiré periodicity.

Figure 3. STM analysis of multilayer graphene on C-face SiC: (a) (3.2 ×  3.8 nm2) STM topograph 
(Itunnel =  10 nA, Vbias =  100 mV) with emphasized upper graphene lattice (black), moiré superlattice cell (blue 
rhombus) and lattice vectors of upper graphene and moiré (red and blue respectively). (b) Corresponding FFT-
image with emphasized moiré reciprocal lattice (black) and lattice vectors of moiré and upper and lower layers 
of graphene (blue, red and green respectively).
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Using DFT calculations, these two effects have been reproduced in the case of a sheared and twisted N =  1 
moiré superlattice of gr/Re, comprising a sufficiently small number of atoms to be treated numerically. This moiré 
is characterized by the set (i, j, k, l, m, n, q, r) =  (9, 3, − 2, 7, 8, 3, − 2, 6). On Fig. S2b, one can see that the moiré 
reproduces the two anomalies described above. Only one C sub-lattice is observed in each moiré valley. Within 
the unit cell, this causes an effective oscillation of the atomic C row, which is actually related to the varying con-
tribution of each sub-lattice to the electronic density, as can be checked on Fig. S2a.

On Fig. S2b, it can be noted that the hills of the beating are not circular, but appear rather elliptical. This is 
attributed to the small shearing that graphene undergoes in this superstructure, whose effect is enhanced on the 
moiré. Similar non-circular hills can be observed on Fig. 4a, which is another clue that indicates graphene struc-
ture is sheared on this STM topograph.

Figure 4a,b display an analysis taking the two STM electronic effects into account. The FFT image is analysed 
similarly to Fig. 3b, although the situation is different. Indeed, in two directions, the graphene spots do not super-
impose with the extrapolated reciprocal space lattice paved with the −k kgr Re1 1

 and −k kgr Re2 2
 vectors. This 

means that the moiré is not a N =  1 superlattice (cf. Fig. 1a bottom,b). Moreover, the positions of the graphene 
spots with respect to the moiré reciprocal network vary for the three main directions. Consequently, based on the 
reciprocal space analysis, the moiré structure considered here is sheared. The commensurability relation of this 
structure reads as:

= − = − =
−

=
−( ) ( ) ( ) ( )M M M M9 1

1 17 and 8 1
1 15 so 9 1

1 17 and 8 1
1 15gr

T
Re
T

gr Re

The corresponding set of integers therefore is (i, j, k, l, m, n, q, r) =  (9, 1, − 1, 17, 8, 1, − 1, 15). As a signature of 
the anisotropy, the moiré cell contains a different number of beatings N1 =  1 and N2 =  2 in each of its main direc-
tions, as can be deduced from Equation (3). This analysis is displayed in direct space on top of the original STM 
topograph on Fig. 4a, where the superstructure lattice vectors are explicitly decomposed on the graphene lattice.

To get a more simple grasp of this structure, the moiré can be described using the (P1 RΦ 1 ×  P2 RΦ 2) 
extended Wood’s notation, with = + − × .∼P 8 1 1 8 7 551

2 2 , = − + − − × .∼P ( 1) 15 ( 1) 15 15 522
2 2 , 

Φ = . °∼arctan( 3 /15) 6 591 , and Φ = . °∼arctan( 3 /31) 3 202 , as deduced from Equation (5a–d). This nota-
tion makes clear the twice larger size of the moiré compared to a N =  1 superlattice, comprising 308 carbon 
atoms, as well as a sizeable shear. The corresponding shear of the graphene lattice is obvious in the corre-
sponding extended Wood’s  notat ion (p 1 Rϕ 1 ×   p 2 Rϕ 2) .  Using Equation (4a–d),  one gets 
= + − × .∼p 137 2 2 137 /154 0 8831

2 2 ,  = − + + × .∼p ( 1) 136 1 136 /154 0 8862
2 2 ,  ϕ = arctan1

. °∼( 3 /136) 0 73  and ϕ = . °∼arctan( 3 /271) 0 362 . This is summarized as (0.883 R0.73 ×  0.886 R0.36). This 
structure is close but different from the previously reported assignment of a (7 ×  7)R0, N =  1 moiré (ref. 32).

Overall, the structure is a superlattice both sheared and twisted with N1 =  1 beating in one direction and 
N2 =  2 in the other, giving rise to N =  2 beatings in the moiré cell. This is significantly more complex than the 
N =  1 twisted superlattices discussed in many reports, and even than the N =  4 untwisted superlattices reported 
in gr/Ir (see ref. 66) and gr/Ru (see ref. 51), or than a solely sheared superlattice56.

A more physical description of such a structure is given by comparing the graphene overlayer with its HOPG 
counterpart, and decomposing the strain in terms of a uniaxial and a biaxial contributions. Using Equation 

Figure 4. STM analysis of gr/Re: (a) (5.6 ×  5.2 nm2) STM topograph (Itunnel =  6 nA, Vbias =  30 mV) with overlaid 
graphene lattice (black), and lattice vectors of graphene and N =  2 superlattice (red and blue arrows 
respectively). Moiré cell (blue full line) and its closest unsheared approximation with N =  1 beating (green 
dashed line), with the coordinates of its corners in the graphene basis. The “odd-even” transition along lines of 
carbon atoms is also emphasized, as well as the either 6 or 3 C atoms observed in a moiré hill or valley.  
(b) Corresponding FFT-image with emphasized moiré reciprocal lattice (black) and lattice vectors of moiré, 
graphene and Re (blue, red and green respectively). Inset shows the −k kgr Re harmonics surrounding the 
center of the FFT-image with improved contrast.
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(S21a,b) in the case of gr/Re, graphene is biaxally compressed by εb ~ − 0.14% and uniaxially compressed by 
εu ~ − 0.84%. This shows a moiré is actually related to a non-trivial distortion of the graphene lattice.

Graphene on Ir(111). The anisotropy of the graphene and moiré lattices is also encountered when the 
graphene-substrate interaction is much weaker, e.g. in the case of gr/Ir. Similarly to gr/Re, the FFT-image of 
Fig. 5b shows the graphene spots do not superimpose with the extrapolated reciprocal lattice paved with 
−k kgr Ir1 1

 and −k kgr Ir2 2
, which means the moiré comprises more than a single beating (N >  1). In addition, the 

position of the graphene spots with respect to the moiré reciprocal lattice is not the same in each main direction, 
which means the structure is sheared. Actually, along the close-to-horizontal direction in reciprocal space 
(center-right in Fig. 5b), the set of harmonics around kgr1

 are for instance found right at the center of mass of the 
triangles defined by the extrapolated lattice. On the contrary, for the second direction (top-right in Fig. 5b), the 
set of harmonics around kgr2

 lies in between two nodes of the extrapolated reciprocal lattice. This translates into 
the commensurability relation as:

=
−

=
−

= − = −( ) ( ) ( ) ( )M M M M29 2
3 32 and 26 2

3 29 so 29 3
2 32 and 26 3

2 29gr
T

Ir
T

gr Ir

This description of the superlattice can be summarized with (i, j, k, l, m, n, q, r) =  (29, − 3, 2, 32, 26, − 3, 2, 29),  
as interpreted in Fig. 5a. Such a moiré comprises three beatings in each direction (Equation (3)), in total  
1,868 carbon atoms. In the extended Wood’s notation, this superlattice is described with (P1 RΦ 1 ×  P2 RΦ 2),  
with  = + − + × .∼P 26 ( 3) 26 3 27 621

2 2 ,  = + − × .∼P 2 29 2 29 28 052
2 2 ,  Φ = −arctan( 3 3 /55)1

− . °∼ 5 40 , and Φ = − − . °∼arctan( 3 /28) 3 542 , as deduced from Equations (5a–d). This is very close but still 
different from the so-called incommensurate (9.32 ×  9.32) R0° structure36. The graphene structure is  
similarly described with (p1 Rϕ1 ×   p2 Rϕ2), with = + − − × − .∼p 838 ( 9) 838 ( 9) /934 0 9021

2 2 , 
= + − × .∼p 6 847 6 847 /934 0 9042

2 2 ,  ϕ = − − . °∼arctan( 9 3 /1685) 0 531 ,  a n d  ϕ = arctan2
− − . °∼( 3 3 /844) 0 35 , as deduced from Equation (4a–d). These values are in excellent agreement with the 0.903 

ratio recently measured by means of surface X-ray scattering67.
Using Equation (S21a,b), this shearing translates into a combination of biaxial compression εb ~ − 0.29% and 

uniaxial compression εu ~ − 0.41% (expressed using HOPG as a reference for unstrained graphene). Shear and 
strain of such extents have already been reported before49, but no quantitative analysis was provided.

Discussion
Three support lattices have been considered so far, revealing that a moiré structure can be rotated, strained and 
sheared. It also demonstrates that moiré superlattices comprising more than one beating are commonly encoun-
tered. Three equivalent ways have been presented to describe moiré superlattices with ease:

Figure 5. STM analysis of gr/Ir: (a) (13.5 ×  7.4 nm2) STM topograph (Itunnel =  20 nA, Vbias =  60 mV) with 
highlighted graphene lattice (black), and lattice vectors of graphene and N =  9 moiré (red and blue arrows 
respectively). Moiré cell (blue line) with the coordinates of its corners in the graphene basis, and its closest 
unsheared approximation (green dashed line). It should be noted the contrast is inverted compared to Fig. 4, so 
hills appear as dark. (b) FFT-image obtained from a 15.6 ×  30 nm2 STM topograph, and overlaid with the lattice 
paved with −k kgr Ir vectors, and lattice vectors of moiré, graphene and Ir (blue, red and green respectively). 
Inset shows moiré spots surrounding the center of the FFT-image with improved contrast.
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•	 Using an extended Wood’s notation for a pictorial description using two scaling factors and two angles,
•	 In more physical terms with rotation angles, and uniaxial and biaxial strains,
•	 With eight integers that decompose independently the two moiré lattice vectors onto those of graphene and 

of its support.

The use of such eight integers proves necessary for a universal description of all moiré superlattices, in par-
ticular of N >  1 beatings superlattices, and of sheared superlattices, which both display specific properties. N >  1 
beatings superlattices indeed exhibit inequivalent moiré hills52, whose different geometrical configurations result 
in differences in the local doping level of ~100 meV, which corresponds to ~1012 cm−2 (see ref. 32). Additionally, 
the geometrical description of a moiré superlattice has a direct link with the position of its replica bands and 
mini-gaps in reciprocal space. Angle-resolved photoemission spectroscopy20,23 and Raman spectroscopy68,69 
probe the former, while conductance measurements25–27 are a precise mean to measure the latter. If sufficiently 
sensitive and resolved, these techniques will detect the fundamental component of N >  1 beatings superlattices.

As for sheared superlattices, their broken three-fold symmetry imposes a Brillouin zone with shifted K and 
K’ points (with respect to pristine graphene), hence with shifted Dirac cones70. Upon large shear strains, they are 
predicted to merge, so a band gap opens. Additionally, even marginal shear strain should shift the wave-vector 
position of the superlattice mini-gaps. As a consequence, for twisted bilayer graphene, this broken-symmetry 
is predicted to give rise to multiple Van Hove singularities in the electronic density of states71. The geometrical 
analysis presented here is thus a tool towards the quantitative prediction of such effects.

The notation relying on eight integers enables to enumerate all the possible structures by combining every 
possible value for each integer. The system can also be treated by addressing two independent directions sepa-
rately, i.e. by considering two sets of four integers, (i, j, m, n) and (k, l, q, r), which obey the same equations. Below, 
we introduce these equations in the case of (i, j, m, n) from Equations (1) and (2):

=



− −




 = − − =





−
−



 = −

−( ) ( )M
i j
j i j M m n

n m n M
i j
j i j M m n

n m n, and ,
(6)

gr s gr
T

s
T

Out of these two equivalent equations, and using only the support lattice constant as, one can express the moiré 
lattice constant am, the biaxial strain ε (assuming the lattice parameter of HOPG as a zero-strain situation), and 
the twist angle ϕ between graphene and its support (see Supplementary information):

ε

ϕ
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The link with their Wood’s notation (p ×  p) Rϕ can be established straightforwardly (see Supplementary infor-
mation) as:

ϕ= =
+ −
+ −

= =





−
+ − +






p
a
a

m n mn
i j ij

in jm
im jn in jm

a aand ( , ) arctan ( ) 3
2( ) ( ) (8)

s gr
gr

s

2 2

2 2

With increasing values of (i, j, m, n), it is then possible to enumerate every possible structure. Using a limited set 
of parameters such as those defined by Equation (8) allows for a graphical representation of the strain of every 
possible moiré superlattice in a given direction. Figure 6 gives this representation in the case of graphene on 
dense-packed surfaces of Ir and Pt (see Supplementary information for Re). Figure 6 also displays parametrized 
curves accounting for a definition of a moiré superlattice with no assumption on commensurability, correspond-
ing to the one-dimensional formula Nkm =  kgr −  ks. The representation of these curves is given by:

ϕ
=

− +
a a N

p p1 2 cos (9)
m s 2

where ε= = +p ( 1)
a

a
a

a
gr

s

HOPG

s
 and N the number of beatings given by Equation (3) with N1 =  N2.

This series of parametrized curves highlights moiré superlattices with increasing numbers of beatings N (see 
Supplementary information). The above-described results, as well as data extracted from the literature in the case 
of gr/Pt and gr/Ir, are displayed on Fig. 6.

In the case of gr/Pt (Fig. 6b), the interpretation in terms of sub-3 nm period superlattices corresponds to sus-
piciously high strains for a system with such a weak interaction between graphene and the metal. For instance, the 
phases of gr/Pt indexed as 11, 19, 20 and 21 on Fig. 6b have been interpreted as moiré superlattices with respec-
tively ε =  2.51% (11), ε =  − 1.73% (19) and ε =  3.45% (20), and ε =  − 2.38% (21). Higher number of beatings are 
in fact probable for such structures. Such a high number of beatings was determined in the case of the so-called 
R30 phase of gr/Ir (see ref. 43). A combined micro-spot low energy electron diffraction (μ-LEED) and STM study 
showed that within a moiré unit cell of ~3.02 nm lattice parameter, N =  37 beatings separated by ~0.47 nm occur 
= =N N( 37 )1 2 . This N =  37 moiré is described with (i, j, m, n) =  (14, 9, 12, 2) (indexed as 9 on Fig. 6a), which 

corresponds to ε =  − 0.04%. This moiré was also described as a N =  1 moiré46 with (i, j, m, n) =  (2, 0, 2, 1) (indexed 
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as 10 on Fig. 6a), for which ε =  − 4.48%, which is questionable. Similarly, the so-called R18.5 of gr/Ir was inter-
preted as either (i, j, m, n) =  (13, 1, 13, 5), ε =  − 0.02% (ref. 43), or (i, j, m, n) =  (3, 0, 3, 1), ε =  − 2.73% (ref. 72), 
respectively labelled as 6 and 7 on Fig. 6a.

The analysis performed here demonstrates the rich variety of moiré superlattices to be expected for graphene 
on a substrate, well beyond the simple case of N =  1 unsheared cases. Although many structures are possible from 
the geometrical point of view, few of them have actually been reported in the literature. This state of fact can be 
interpreted in two different ways: either differentiating some very similar structures has not been considered or is 
not possible due to too limited space resolution, or only a few of them are stable enough to actually exist.

Gr/Ir and gr/Pt are typical of the first situation. Numerous moiré phases have been reported for them, as 
shown on Fig. 6a,b. The majority of them is identified as N =  1 moiré superlattices, nevertheless, this description 
appears sometimes unrealistic. For gr/Re, like gr/Ru and gr/Ni, graphene tends to align its zigzag rows to the 
close-packed rows of the metal (ϕ ~ 0°), even in growth conditions quite far from thermodynamic equilibrium. 
Presumably, the strong bonds of covalent character between carbon and metal atoms inside the growing flake are 
not readily broken, as would be required for twisting.

Although large-angle graphene twists are almost prohibited for gr/Re, slightly twisted graphene phases of  
gr/Re coexist. These numerous very similar structures can be assumed to be local minima in the energy landscape 
of gr/Re. Their coexistence then implies a high activation energy between each of them, so the formation of a 
large-scale uniform graphene phase is kinetically limited. In other words, graphene needs to be heated to high 
enough temperature to rearrange into the most stable phase of gr/Re. However, at high temperature, graphene 
growth competes with bulk dissolution and carbide formation, so the growth is performed by annealing cycles58. 
Over each cycle, graphene’s crystallinity progressively improves, which supports this simple kinetic scenario. To 
go further, one can compare this situation with that of gr/Ru, where domains slightly rotated around ϕ ~ 0° can be 
grown, as observed in STM73 and μ-LEED74. By tuning the growth to higher temperature, large domains of one 
specific structure tend to form61,73, which has been analysed as a N =  4 (N1 =  N2 =  2) superlattice ((i, j, m, n) =  (25, 
0, 23, 0)) using surface x-ray diffraction51. Such similar behaviours may lead to the conclusion that the mechanism 
presented here is common to every system where graphene is in strong interaction with its substrate.

Graphene on C-face SiC grows with rotational disorder between the adjacent graphene layers75, so the termi-
nal layers exhibit many possible twisted phases76. Even though all kinds of twists are encountered in experiments, 
it seems that certain twist angles are preferential. We surmise that these twist angles correspond to commensurate 
moiré superlattices such as the one that we report. Since both graphene layers share the same lattice parameter, 
the situation can be depicted with two integers (i, j), such that (i, j, m, n) =  (i, j, − j, i− j). For instance, (i, j) =  (4, 7)  
in the present work, and (i, j) =  (4, 1) in ref. 75. We note that the observation, with diffraction techniques, of a 

Figure 6. Moiré lattice constant am versus angle ϕ between graphene and its support. Each point 
corresponds to a commensurate superlattice of given am and ϕ, with its colour indicating the strain level of 
graphene. The full lines indicate the superlattices containing N beatings within the moiré cell. The coloured 
ones add a strain information, and for clarity are only shown for the N =  1 case. (a) gr/Ir, (b) gr/Pt (with lattice 
parameters aIr =  2.7147 Å and aPt =  2.7744 Å, see ref. 18). Black stars index reported unsheared structures (see 
Supplementary information for detailed references).
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continuum of twist angles (e.g. see ref. 75) does not necessarily imply that the twist angle can take random values. 
Indeed, the existence of a multitude of commensurate superlattices discretely spanning the 0 −  60° twist range 
could as well account for the observation due to the finite size of the diffraction spot (set by the domain size or the 
instrumental resolution) that they yield.

In conclusion, different supported graphene systems have been studied with STM. A consistent analysis of 
moiré superlattices involving both direct and FFT STM images has been presented. The geometry of the super-
lattices, as apparent in STM images, has been rationalized by calculating electronic density maps derived from 
DFT calculations. A spatial precision of a tenth of 1 pm is achieved, revealing that graphene lying on a substrate 
is actually twisted, strained and sheared, which breaks its rotational symmetry. A geometrical model enables to 
classify all moiré superlattices. This model gives a global picture assuming commensurability between graphene 
and its substrate (and consequently between graphene or the substrate, and the moiré), yielding various numbers 
of beatings. While a very large number of structures is possible, only a few have actually been reported. In the 
case of strong graphene-substrate interaction, it is unlikely that all predicted superlattices are discovered, since for 
instance phases corresponding to a substantial rotation of graphene with respect to the substrate do not tend to 
form. For low interaction graphene-substrate systems, the complexity of the moiré superlattices has been unde-
tected or overlooked, leading to possibly simplified interpretations. We anticipate that moiré superlattices with 
N >  1 number of beatings will produce rich electronic modulations in graphene.

Methods
Preparation of multilayer gr/SiC. Graphene has been grown on undoped double-polished 4H-SiC(0001), 
purchased from Novasic and cut into 5 ×  5 mm2 pieces. The growth has been performed in a RF-furnace following 
the recipe in ref. 77. SiC surface was first cleaned in H2 and Ar atmosphere at 1,560 °C, and subsequently annealed 
in Ar atmosphere at the same temperature.

Preparation of gr/Re. Re single crystal cut in the (0001) surface purchased from Surface Preparation 
Laboratory was cleaned in a ultrahigh vacuum (UHV) chamber (base pressure ~10−10 mbar) by cycles of Ar+ ion 
bombardment at 2 keV at 750 °C and subsequent annealing at ~1,300 °C. The gr/Re was prepared following the 
recipe presented in ref. 58, by saturating the Re(0001) surface with C2H4 at room temperature (introduced with a 
3 · 10−8 mbar pressure), and two subsequent cycles of flash-annealing/cooling at 750 °C with a 5 · 10−7 mbar C2H4 
pressure.

Preparation of gr/Ir. An Ir single crystal cut in the (111) surface purchased from Surface Preparation 
Laboratory was cleaned in the same UHV chamber as for gr/Re, by cycles of Ar+ ion bombardment at 1 keV 
and subsequent annealing at 1,200 °C. The gr/Ir was prepared by exposing to 10−8 mbar of C2H4 at 1,000 °C for 
15 minutes.

STM measurements. For multilayer gr/SiC, STM measurements were performed at 4 K in a home-made 
He-cooled STM, using a commercial Pt/Ir tip bought from Bruker. For gr/Re and gr/Ir, STM measurements were 
performed at room temperature under UHV, using a commercial Omicron UHV-STM 1, with a W chemically 
etched tip. Before analysing STM images, thermal drift and miscalibrations have been corrected.

DFT calculations. DFT calculations were performed using the VASP code, with the projector augmented 
wave (PAW) approach78,79. The exchange correlation interaction is treated within the general gradient approxima-
tion parameterized by Perdew, Burke and Ernzerhof (PBE)80. The Methfessel Paxton method is used to calculate 
the total energy with a smearing of 0.2. The cut-off energy is of 400 eV. The supercell consists in four Re layers 
and one C layer with an empty space of 9 Å to avoid spurious interactions. Re atoms are kept fixed in the bottom 
second Re layer, all other atoms are allowed to relax. Due to the size of the supercell, calculations are performed 
using the K point only. After convergence, residual forces are lower than 0.03 eV/Å.
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