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Functional magnetic resonance imaging studies have significantly expanded the field’s

understanding of functional brain activity of healthy and patient populations. Resting state

(rs-) fMRI, which does not require subjects to perform a task, eliminating confounds of

task difficulty, allows examination of neural activity and offers valuable functional mapping

information. The purpose of this work was to develop an automatic resting state network

(RSN) labeling method which offers value in clinical workflow during rs-fMRI mapping by

organizing and quickly labeling spatial maps into functional networks. Here independent

component analysis (ICA) and machine learning were applied to rs-fMRI data with the

goal of developing a method for the clinically oriented task of extracting and classifying

spatial maps into auditory, visual, default-mode, sensorimotor, and executive control

RSNs from 23 epilepsy patients (and for general comparison, separately for 30 healthy

subjects). ICA revealed distinct and consistent functional network components across

patients and healthy subjects. Network classification was successful, achieving 88%

accuracy for epilepsy patients with a naïve Bayes algorithm (and 90% accuracy for

healthy subjects with a perceptron). The method’s utility to researchers and clinicians is

the provided RSN spatial maps and their functional labeling which offer complementary

functional information to clinicians’ expert interpretation.

Keywords: resting state fMRI, resting state networks, independent component analysis, machine learning,

classification

INTRODUCTION

With the use of task and resting state fMRI (rs-fMRI), much progress has been made describing
typical and atypical human brain activity at the group level. The main clinical applications of task
fMRI have been in mapping motor, language, and memory networks in presurgical planning of
patients with brain tumors, vascular lesions, and epilepsy (Detre, 2004; Laufs and Duncan, 2007;
Zijlmans et al., 2007; Greicius, 2008). An active area of research is the use of rs-fMRI for presurgical
mapping of functional tissue in individual patients, analogous to task fMRI (Lang et al., 2014).
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Rs-fMRI measures synchronous activations between regions
that are spatially distinct, occurring while a subject is not
constrained to perform a task and is given no stimulus.
It has demonstrated reliable, large-scale coherent networks
(Damoiseaux et al., 2006; Shehzad et al., 2009; Van Dijk et al.,
2010; Song et al., 2012), and importantly for neurosurgery, a
sensorimotor network and various language networks have been
consistently replicated (Lang et al., 2014). Even during this period
of rest it has been shown that functional networks, also utilized
by the brain while performing a task, are continuously and
dynamically active (Biswal et al., 1995; Fox and Raichle, 2007;
Smith et al., 2009). Rs-fMRI has been shown to be able to identify
several key networks in patients (Kokkonen et al., 2009; Liu
et al., 2009; Shimony et al., 2009). Leading researchers in the field
have shown that rs-fMRI can provide spatial maps that closely
correspond to task activation maps (Kokkonen et al., 2009; Smith
et al., 2009) and intraoperative cortical stimulation maps (Liu
et al., 2009; Zhang et al., 2009;Mitchell et al., 2013). It can provide
valuable presurgical information in many patients who cannot
perform traditional task-based fMRI, and has several advantages
over task fMRI. Rs-fMRI scans offer quick scan time capturing all
of the networks at once (≈7min as compared to the time required
for many scans during task fMRI presurgical mapping), have no
task performance requirements (often many trials are required
to adequately perform a task), and can be acquired alongside
routine clinical MR scanning of the patient (Zhang et al., 2009;
Lee et al., 2013; Lang et al., 2014).

Several methods have been developed to study such neural
connectivity: voxel based (Ashburner and Friston, 2000), region
of interest (ROI) based (Poldrack, 2007), graph theory (Van
Den Heuvel and Hulshoff Pol, 2010), independent component
analysis (ICA; Calhoun et al., 2001; van de Ven et al.,
2004; Beckmann et al., 2005), and machine learning methods
(Dosenbach et al., 2010; Cohen et al., 2011). The work described
in this article combines two established methods, ICA and
machine learning, to develop an automatic process of extracting
and identifying (classifying) network maps in the context of
clinical workflow. For the task of localizing functional network
spatial maps, the method of ICA is a natural choice (De Martino
et al., 2007; Tohka et al., 2008; Smith et al., 2009). ICA spatial
maps have been consistently replicated in many studies (Smith
et al., 2009; Biswal et al., 2010; Allen et al., 2011) and shown
to closely correspond to task activation maps (Kokkonen et al.,
2009; Liu et al., 2009; Smith et al., 2009; Zhang et al., 2009). A
recent study by Mitchell et al. (2013) used machine learning to
extract spatial network maps from rs-fMRI scans and showed
a close correspondence between these maps and electrocortical
stimulation maps for the language and motor networks in
epilepsy patients.

A study by Salimi-Khorshidi et al. (2014), relevant to this
article’s classification task, presented excellent performance (over
95% accuracy) in the task of distinguishing between noisy and
true signal rs-fMRI IC maps. This showed that resting state ICA
classification is not only feasible but can be highly accurate. For
specific component labeling, Demertzi et al. (2014) used ICA and
a univariate template matchingmethod with an additional step of
“neuronality” classification to label ICmaps into specific network

components from a 10-component model but without evaluating
its performance.

ICA is a data-driven method which uses no a priori
information about the brain and has been a popular approach
in the analysis of fMRI data (Salimi-Khorshidi et al., 2014). It
has the advantage of not requiring a priori, outside knowledge
like functional ROI atlases as in seed based analysis, or parameter
and measure selections as in graph theory analysis and it can be
used complementarily with machine learning. Another difficulty
of seed-based correlation mapping, not present in ICA, is that
sometimes it is necessary to manually adjust the coordinates
of a seed to see a specific network (Zhang et al., 2009). The
spatial maps output from ICA have a clear functional and
anatomical interpretation: they are the anatomical locations of
brain tissue which act synchronously and with the same activity
pattern. One difficulty in the process of localizing network maps
using ICA is that it outputs many unordered spatial maps
(see Figure 1) which requires time consuming interpretation
and labeling by a scientist or clinician that manages them
(Zhang et al., 2009).

The motivation for developing this classification method
was to create a clinical tool that can aid in the presurgical
mapping workflow by labeling and organizing the output ICA
information. This work’s method provides a fast way to extract,
coarsely interpret and organize the raw output spatial maps in
a standardized, algorithmic way (Figure 1). With respect to the
study by Demertzi et al. (2014), this work adds the investigation
of the performance of different, complementary multivariate
machine learning algorithms for IC spatial map labeling and the
evaluation of the labeling method. The potential and accuracy of
the method was tested for feasibility using a preliminary set of
ICA resting state networks (RSN; auditory, visual, default-mode,
sensorimotor, and executive control) from epilepsy patients.
Although not functionally complete, these networks are clinically
important since their preservation is valuable for minimizing
post treatment or resection deficits. To improve clinical utility,
language and memory networks must be included (which are
partly captured by the fronto-parietal IC maps of Smith et al.,
2009). The focus of the paper was the epilepsy population and a
healthy subject dataset was used to gain some context for which
to compare the epilepsy classifier performance. Machine learning
was applied to the task of classifying the extracted spatial maps
because of its robustness, ability to handle very high dimensional
data and impressive performance (Schölkopf and Smola, 2002;
Ben-Hur et al., 2008; Pereira et al., 2009; Meier et al., 2012;
Vergun et al., 2013). The extraction and classification method
was tested for feasibility on rs-fMRI data from epilepsy patients
to investigate its performance on a patient population which
benefits from fMRI presurgical mapping.

METHODS

Participants
Rs-fMRI data from 30 healthy individuals and 23 epilepsy
patients, who underwent fMRI as part of presurgical planning,
were collected at the University of Wisconsin Hospital and
Clinics. The studies were conducted in accordance with protocols
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FIGURE 1 | ICA map labeling and organization. Example patient unlabeled and labeled ICA maps with rest scan underlay (most representative axial slices shown).

(H2008-0142, H2013-1559) approved by the Health Sciences
Institutional Review Boards at UW Madison and written,
informed consent from all healthy subjects and epilepsy patients
was obtained.

Data Sets
The analyses in this work were performed on two datasets
separately: healthy subjects and epilepsy patients. The same
preprocessing and machine learning algorithms were applied to
both datasets independently, and no information from one group
was used in the analysis of the other group. Note that the study is
focused on the single patient level prediction of ICs and a group
level investigation (normal vs. epilepsy discrimination) was not
performed.

Data set 1 consisted of 30 healthy subjects (age 18–67, mean=
39.5, 16 M/14 F) and data set 2 consisted of 23 epilepsy patients
(age 18–63, mean = 36.5, 10 M/13 F). The patients had no
gross structural abnormalities and the resultant brain registration
to standard space was satisfactory. All but one of the epilepsy
patients were on an epileptic medication routine (one or more
drug) during the time that scans were acquired. Most patients
were using levetiracetam and zonisamide in combination with
other epileptic medications. See Table 1 for a detailed description
of the 23 patients (age, gender, epilepsy type, lesion type, epilepsy
focus are listed).

Data Acquisition
Resting data were acquired with GE MR750 3T scanners
using an axial echo planar imaging (EPI) pulse sequence.
The images of healthy subjects consisted of 231 continuous

resting state volumes (matrix size = 64 × 64; 40 axial slices;
3.75× 3.75× 4mm; TR 2.6s; TE 0.022s), and for epilepsy patients
of 150 volumes (matrix size = 64 × 64; 28 axial slices; 3.75
× 3.75 × 5mm, TR 2s; TE 0.03s). Subjects and patients were
given ear plugs and asked to keep their eyes closed but remain
awake and alert during the scan. For spatial normalization and
localization, a T1-weighted high resolution anatomical image was
acquired using a gradient echo pulse sequence (healthy subjects:
IR-prepared FSPGR, matrix size = 256 × 256, 156 axial slices, 1
× 1 × 1mm, Flip Angle 12◦, TR 8.16s, TE 3.18s, TI.45s; epilepsy
patients: IR-prepared FSPGR, matrix size = 256× 256, 140 axial
slices, 1 × 1 × 1.2 mm, Flip Angle 12◦, TR 8.68s, TE 3.46s, TI
0.45s).

Data Preprocessing
Data were preprocessed using AFNI (http://afni.nimh.nih.gov/
afni, version: AFNI_2011_12_21_1014) and FSL (http://www.
fmrib.ox.ac.uk/fsl, version: v5.0) open source software. To be
consistent with the RSN independent component (IC) templates
used in one classification algorithm, the method’s preprocessing
followed the standard procedure reported by Allen et al. (2011).
The steps were: (1) discarding the first four resting scan volumes
to remove T1 equilibrium effects, (2) motion and slice-timing
correction, (3) skull stripping, (4) spatial normalization to
standardMontreal Neurological Institute (MNI) brain space with
resampling to 3 × 3 × 3 mm voxels, (5) spatial smoothing
with a Gaussian kernel with a full-width at half-maximum
(FWHM) of 10 mm, and (6) removing slices of no signal
to match the matrix size of the used templates. Note that
the spatial normalization step is used only for classification
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TABLE 1 | Epilepsy patient characteristics.

Age, Gender Epilepsy type Specific lesion type (Temporal vs. extra T.) Location

Patient 1 42, F Complex partial that can secondarily generalize Mesial temporal sclerosis Temporal Left

Patient 2 34, F Complex partial, rare secondary generalization Mesial temporal sclerosis Temporal Left

Patient 3 39, M Partial with secondary generalization Mesial temporal sclerosis Temporal Left

Patient 4 53, M Partial with complex partial and secondary generalization Mesial temporal sclerosis Temporal Left

Patient 5 53, F Partial with rare secondary generalization Parietal cortical dysplasia Parietal Right

Patient 6 51, M Complex partial Mesial temporal sclerosis Temporal Left

Patient 7 25, F Partial with secondary generalization Left temporal hypometabolism Temporal Left

Patient 8 42, F Partial Asymmetry of right temporal lobe Temporal Right

Patient 9 28, F Complex partial with rare secondary generalization Mesial temporal sclerosis Temporal Left

Patient 10 44, M Complex partial L temporal cavernoma, 3mm diam. Temporal Left

Patient 11 33, M Partial with secondary generalization R > L fronto-temporal polymicrogyria Fronto-Temporal Right

Patient 12 19, F Partial with secondary generalization Mesial temporal sclerosis Temporal Left

Patient 13 26, F Partial, localization related Mesial temporal sclerosis Temporal Right

Patient 14 31, F Partial Partial seizures Temporal Left

Patient 15 34, M Partial with secondary generalization Frontal lobe encephalomalacia Frontal Right

Patient 16 27, F Simple partial, complex partial Cystic temporal Encephalomalacia Temporal Right

Patient 17 37, F Partial and partial complex, one that secondarily generalized Mesial temporal sclerosis Temporal Right

Patient 18 53, M Partial, associated with impairment in consciousness Mesial temporal atrophy Temporal Right

Patient 19 41, M No EEG correlation R Temporal neoplasm, 4mm diam Temporal Right

Patient 20 63, F Partial complex Gliosis likely post-traumatic Temporal Left

Patient 21 25, F Partial complex L temporal astrocytoma, 3mm diam. Temporal Left

Patient 22 18, M Partial localization related with intractable epilepsy May be cortical irritability, genetic Occipital Left

Patient 23 21, M Generalized epilepsy Unknown General General

purposes and that each patient’s ICA maps are available in
their original “patient space.” The preprocessing script is
publicly available from https://dl.dropboxusercontent.com/u/
33755383/algorithms_scripts.7z. A flowchart of the steps of the
entire method from preprocessing to classification is shown in
Figure 2.

Independent Component Analysis
After initial processing, each subject’s (and patient’s) resting scan
was input into ICA open source software (GIFT toolbox, http://
icatb.sourceforge.net/groupica.htm, version: v3.0a) identical to
that which generated the RSN IC templates (see Spatial
Correlation Classifier section below). For a detailed description of
ICA in fMRI see (McKeown et al., 1998). Data were decomposed
into independent components using individual, spatial ICA
(Infomax algorithm). An intermediate model order (number of
components = 28) was chosen to achieve a balance between
robustness of component spatial maps and the number of
components extracted (Jafri et al., 2008; Smith et al., 2009;
Biswal et al., 2010; Allen et al., 2011; Damoiseaux et al.,
2012). Components for each patient for the auditory, visual,
default-mode, sensorimotor, and executive control networks
were visually identified by two expert viewers. The resulting
component maps and associated labels were used in the machine
learning analysis as the testing and training sets. A point to be
aware of is that this method used network-level labeling like Allen
et al. (2011) and not component-level identification like Demertzi
et al. (2014).

Machine Learning
As a first attempt, and as a baseline reference, automated IC map
network identification was investigated with a simple correlation
classifier by calculating spatial correlation to a template (Greicius
et al., 2004; Damoiseaux et al., 2008; Greicius, 2008).

More advanced classifiers included standardmachine learning
multi-class algorithms for the task of classifying individual
components as auditory, visual, default-mode, or sensorimotor
network components. These were: decision trees, perceptrons
(one layer neural networks), naïve Bayes classifiers, and support
vector machines (SVMs; included as a baseline machine learning
classifier, see Supplementary Material). The above classifiers
provide complementary methods of managing the classification
task. A decision tree dichotomizes feature space by splitting at
specific feature values, a perceptron finds separating hyperplanes
in feature space, and the naïve Bayes classifier is a probabilistic
approach that estimates conditional probability distributions.
The classifiers are described in more detail below, in their
respective sections and in the Supplementary Material. These
algorithms are chosen because they produce interpretable models
and are able to classify more than two labels at a time (multi-class
classification). The decision tree and SVM algorithms used were
from the open source Spider Machine Learning library freely
available from http://people.kyb.tuebingen.mpg.de/spider/. The
perceptron and naïve Bayes algorithms were coded by the authors
and are publicly available from https://dl.dropboxusercontent.
com/u/33755383/algorithms_scripts.7z. The metric used for
measuring classification performance was a matching percentage
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FIGURE 2 | Extraction and Classification process. Flowchart of the steps involved in ICA map extraction and classification.

(accuracy) to an expert viewer’s manual network identification.
The results of two expert viewers were averaged for the final
accuracy.

Feature Space
The input to the correlation, decision tree, perceptron, and
naïve Bayes classifiers was a full brain t-statistics map of the
components output from GIFT ICA software. The input feature
vector is one of t-statistics with dimension equal to the number of
voxels in the three-dimensional field of view of the brain image. A
dimension reduction and tuning step was performed (excluding
the spatial correlation classifier) to select a resizing parameterR of
the three-dimensional image (i.e., from the original 53× 63× 46
matrix size to R × R × R by averaging neighboring voxel
intensities, see the Feature Dimension Reduction section below).

Feature Dimension Reduction
Due to the high dimensionality of resting state brain volume data
and IC map spatial information distribution, this method sought
to improve the feature representation of the IC network map
examples by resizing the image volume matrix.

Prior to running ICA, the resting data was smoothed with
a 10mm FWHM Gaussian kernel (standard in resting state
analysis). This smoothing acted like a low pass spatial filter,
retaining the low spatial frequency information but suppressing
the high spatial frequency information. In Figure S1, it is seen
that most of the information in the original component image is
located in the low frequency range of k-space. Since an accurate
approximation of the original can be made by using only the low
frequency range, a smaller matrix size (or larger voxels) can be
equivalently used to adequately represent the image.

The initial matrix size was 53 × 63 × 46, which contained
153,594 voxels (features). The parameter R was tuned in the
algorithms by varying matrix sizes from 5 × 5 × 5 to 20 × 20 ×
20, which reduced the number of features to 125 at the minimum
and 8000 at the maximum (see Figure S1).

Spatial Correlation Classifier
Each component output from ICA was spatially correlated
(Pearson correlation coefficient) with ICs of the templates
which were grouped into auditory, visual, default-mode, and
sensorimotor RSNs from a previous study (Allen et al., 2011). A
ranking by correlation was used for the classification step (coded
inMATLAB 2013a, TheMathWorks, Inc., Natick,Massachusetts,
United States): the template component which had the highest
spatial correlation to the input subject component was chosen
and its network was inherited as the predicted network label.

Perceptron
A perceptron is a one layer neural network that is simple in
structure and computation and robust to noise present in data.
It takes in a real-valued vector as input (e.g., t-statistics map),
calculates a linear combination of the vector components (by
multiplication with learned weights) and outputs 1 or -1 if
the result is above or below a threshold. In this work’s case,
a set of four weight vectors was learned, each corresponding
to a RSN label (auditory, visual, default-mode, sensorimotor,
or executive control). Classification was done by taking the
maximum of the following dot products: <input vector, weights
of auditory class>, <input vector, weights of visual class>,
<input vector, weights of default-mode class>, <input vector,
weights of sensorimotor class>, and <input vector, weights of
executive control class>. The learning rule chosen to update
weights was the standard stochastic gradient descent (weights are
updated when the error of the current example in the iteration is
calculated, not when the error over all examples is calculated).
The reader is directed to the work by Mitchell (1997) for a
detailed description of the algorithm.

Naïve Bayes
Bayesian learning methods provide a probabilistic approach to
inference in machine classification. The naïve Bayes classifier
explicitly computes probabilities for hypotheses and is one of
the most practical algorithms for various types of problems.
Michie et al. (1994) provide a detailed analysis of the naïve
Bayes classifier, compare it to other algorithms (decision trees,
neural networks) and show that it performs as good as and
in some cases better than the others. Naïve Bayes learning
involves estimating conditional probabilities from the training
data features (attributes) and classes (labels). The estimates
are calculated by counting the frequency of feature and class
combinations. Classification is done by applying Bayes rule
(using the derived probability estimates) to an input vector’s
feature values, with the assumption that each feature is
conditionally independent given the class.

Since learning with the naïve Bayes classifier is best done
on discrete valued features, inputs were transformed from a
continuous to a discrete range (integers 1...11) before use in the
algorithm. A Z-transformation was applied to each whole brain
component intensity map and the values were binned into 11
Z-score intervals: (−∞,−1.2], [−1.2,−0.9], [−0.9,−0.6], [−0.6,
−0.3], [−0.3, 0], [0, 0.3], [0.3, 0.6] [0.6, 0.9], [0.9, 1.2], [1.2,
1.5], [1.5, ∞). As a result of the binning the possible values that
a feature can have were reduced to the integers 1 through 11,
and learning by frequency counting was made tractable. Eleven
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intervals were chosen to intermediately partition the Z-score
range which had most of its values between−1.2 and 1.5.

Training, Tuning, and Testing Sets
The tuning set for the above three standard machine learning
classifiers (as well as for the SVM) was a randomly chosen set
of 15 subjects out of the original 30 for the healthy dataset and
a randomly chosen set of 12 patients out of the original 23 for
the epilepsy dataset. Training and testing (and tuning) were done
using leave-one-out cross-validation (LOOCV) to best estimate
the model accuracy (Hastie et al., 2001) on a future, not-seen-
before subject or patient who is required to be from the same
population distribution as was sampled by the training set. This
training and testing approach simulates a clinical scenario, where
all known epilepsy patients are used to train a classifiermodel and
one unknown patient is predicted using the model.

Figure 3 (and Figure S4) shows how the tuning parameter was
selected on the tuning sets. Usually it is unknown how the value

of the parameter will affect performance for different classifiers—
this is specific to the data and type of algorithm. Standard practice
is to pick the parameter that maximizes a classifier’s tuning set
accuracy. Figure 3’s accuracy function may change if a different
number of components are used, however, the tuning procedure
of Figure 3 will remain the same. The purpose of the tuning step
is to select the optimum classifier parameter after training on a
tuning or validation set. The decision to select a particular model
for ICA order comes from the domain experts.

RESULTS

Functional network component extraction with ICA revealed
distinct, consistent spatial maps of known networks for healthy
subjects and epilepsy patients (see Figures S2, S3). Each healthy
subject and patient possessed approximately 8 ICmaps belonging
to the five networks examined.

The classification method achieved high performance
accuracy: IC maps derived from rs-fMRI data of epilepsy

FIGURE 3 | Tuning set classifier accuracy. Tuning set classifier accuracy as a function of the resizing parameter R for healthy subjects (column 1) and epilepsy

patients (column 2). The value of R that maximized tuning set accuracy was selected for LOOCV training and testing.
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patients were classified into five different functional networks
with an accuracy of 88% (average of two viewer labels, p <

0.001, binomial test; Table 2, Tables S1, S2). The p-values were
calculated to be the probability that the classification accuracy
would result if the classifier was guessing RSN labels at random
(1/5 chance; Pereira et al., 2009), using a binomial distribution.
For comparison, a Naïve Bayes classifier without tuning was
trained using the full resolution of 53× 63× 46 and the accuracy
was 86%, which was comparable to the tuned classifier but less
accurate. This similar performance is reasonable for the Naïve
Bayes classifier when considering the stable region in tuning
accuracy for the higher resolutions as shown in Figure 3 (note
that the accuracy of the decision tree classifier quickly degraded
as the resolution was increased).

The focus of the study was the epilepsy dataset—the healthy
dataset was used to gain some context for which to compare the
epilepsy classifier performance and to inspect ICmap consistency
between the groups. A perceptron classifier was able to classify
healthy subject IC maps with 90% accuracy (Table S1; p < 0.001,
binomial test).

Some network components, if spatially dissimilar enough
from others, were classified with high accuracy as was seen
with the visual network (100% for epilepsy) for both healthy
subjects and epilepsy patients (Table 3, Table S3). Tables S4, S5
list the sensitivity, specificity, and positive and negative predictive
values for the perceptron classifier (healthy) and naïve Bayes
classifier (epilepsy). Additionally, a separate analysis using only
18 temporal lobe epilepsy patients was carried out to verify the
method’s validity and performance on a homogeneous epilepsy
set (see Table S6). Patient 19 who had no EEG correlation
was excluded. The accuracy was 86.2%, which closely matched
the 23 patient accuracy of 88%. This consistent result using
the homogeneous group gives strong evidence supporting the
performance of the classification method.

Relatively simple, but standard, machine learning algorithms
proved successful in this clinically oriented multi-class
classification task (Table 2). The method’s performance and
utility in clinical workflow are discussed in more detail in the
discussion section.

Examining the weights of the perceptron and the
conditional probability estimates of the naive Bayes classifier
revealed that the concept learned by the algorithms was
an anatomical, spatial representation of the four networks.
The weights that most influenced classification were located

TABLE 2 | Accuracies of the four classifiers used on the epilepsy patient

dataset.

Algorithm Accuracy (average of Viewer1 and 2)

Epilepsy (%)

Correlation classifier 69

Decision tree 70

Perceptron 81

Naïve bayes 88

Note that for the correlation classifier the executive control network was not included.

at the functional and anatomical regions of each of the
four (executive control not shown) respective networks
(Figures 4, 5).

The benefits of automating this mapping and labeling task
were clearly seen when the run time of the algorithms was
considered. Once trained, they were able to classify a single
subject’s components in a tenth of a second (on an Intel Core
2 CPU, 3Ghz, 8 GB RAM), much less than the time required
(30+min) for manual examination and labeling where nearly 30
ICA volumes are examined slice by slice.

DISCUSSION

The purpose of this work was to develop a RSN labeling method
which has utility in clinical rs-fMRI mapping. The method
provides a fast way to extract, label, and organize IC maps.
This offers value in the clinical workflow by reducing the time
consuming task done by researchers or clinicians of applying ICA
and searching throughmany unordered ICmaps for components
belonging to relevant networks. The output of the method was
an ordered list of IC maps with network-level labels (Figure 1),
which the clinician can use as an organizational tool that provides
complementary functional network information and probable
network identification. It is important to note that the method’s
brief interpretation of the maps must still be clinically verified
in the workflow. The study by Mitchell et al. (2013) provided
evidence about the specific clinical validity of rs-fMRI and
machine learning derived network maps, showing that the maps
corresponded to cortical stimulation mapping of the motor and
language networks. The motivation for this article’s work was
to incorporate the RSN classification method to complement
and reinforce existing procedures as analyzed by Zhang et al.
(2009). Whereas, the study by Mitchell et al. (2013) trained their
classifier on a set of normal subjects and then tested on a set
of six epilepsy patients, this study both trained and tested the
classifiers on epilepsy patients which provided more consistency
in the method and more meaningful results of accuracy with
respect to the viewer labels. Using a healthy subject classifier for
epilepsy patients would not be clinically acceptable (see below).

In resection treatment for epilepsy, vascular lesions and
tumors it is important to preserve healthy functional tissue.
Presurgical mapping involves identifying healthy functional
tissue that should be preserved during resection. Damage to
the default-mode network, for example, may affect cognitive
functions such as planning for the future, navigation of social
interactions, and memory retrieval (Buckner et al., 2008) and
damage to the motor network may lead to motor deficits.
Functional connectivity analysis of rs-fMRI in neurosurgery has
shown promise as a tool for diagnosis and surgical planning
when used preoperatively to localize areas of eloquent cortex,
to provide prognostic information by suggesting the degree of
morbidity resulting from removal of specific areas of brain tissue,
and to inform the surgeon of safe maximal resection boundaries
(Lang et al., 2014).

The naïve comparison of the healthy normal (90%) and
epilepsy classifier accuracy (88%) suggests that a high level of
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TABLE 3 | Confusion matrices for the naïve Bayes classifier on epilepsy patients’ components for Viewer 1 and 2.

Predicted auditory Predicted visual Predicted default-mode Predicted motor Predicted executive control Accuracy (%)

CONFUSION MATRIX FOR VIEWER 1 LABELS

Auditory 34 0 1 3 0 89.5

Visual 0 43 0 0 0 100

Default-mode 2 0 36 3 0 87.8

Motor 7 1 8 44 0 73.3

Executive control 0 0 0 3 15 83.3

CONFUSION MATRIX FOR VIEWER 2 LABELS

Auditory 24 0 0 2 0 92.3

Visual 0 41 0 0 0 100

Default-mode 1 2 36 1 0 90

Motor 6 0 3 47 0 83.9

Executive control 0 0 0 3 15 83.3

Note that accuracy is defined for each class (network) as a matching rate to the viewer identified labels.

accuracy can be achieved with both populations. Note that a
group comparison was not performed and the group difference
was not rigorously tested. The near 90% accuracy for the
patient sample is excellent considering that the classification
problem itself is not binary but multi-class (5-class in this
case, with a random guessing chance of ≈20%). These results
support consequent work with a more diverse patient sample
(different epilepsy types, seizure burdens, and anatomy) and
more functional network coverage to better represent the true
clinical epilepsy population and improve clinical relevance.

Figure 6 shows an example patient’s IC maps labeled by
the classifier, with only a single (out of ten) misclassified
component with regard to the expert viewers. It is motivating
to see such high accuracy results for a multi-class classifier on a
dataset of 23 patients. Mathematically and statistically speaking,
the performance will improve as the amount of training data
increases—the classifier will be able to learn a better model
representation of the task. Also, improvement of the functional
accuracy or appropriateness of the provided, labeled RSNs (e.g.,
higher model order for more spatial detail) will improve the
clinical utility of the method.

The accuracy for future patient maps, or the true risk on
the population, depends on how well the training set represents
the clinical population. The main statistical principle behind the
applicability of the method to clinical populations is the use of a
training sample that is independently and identically distributed
(i.i.d.) and drawn from the clinical population distribution. With
such a training sample, the classifier can learn the task and use
it for a new patient also from the same clinical population and
drawn i.i.d. from it (see Appendix in the Supplementary Material
Text; Shalev-Shwartz and Ben-David, 2014). Because of this,
using a healthy subject classifier for epilepsy patients would not
acceptable in machine learning and clinically. This work followed
the standard method for regression and classification and for the
purpose of showing feasibility, only considered a limited epilepsy
population sample.

A desirable property of this analysis is that no assumptions,
constraint, or domain knowledge has to be specified beforehand

about the clinical population distribution (one does not need to
require that epilepsy patient networks are inherently different
from healthy subjects, and also does not need to require that
they are inherently similar). This is because the training sample
set encodes the population distribution—the functional network
information is contained in the population sample itself. The
machine learning algorithm learns the pattern of the spatial maps
from the distribution (Figures 4, 5) and can use it for future, new
patients from the same distribution.

The naïve Bayes probability values and perceptron weights
calculated using the trained ICA model (Figures 4, 5) and can be
used to suggest the level of confidence of a classification. A map
that is distributed as expected (in the population) should have
only one large probability value (the classification step is done
by taking the label with a maximum probability). The presence
of several large, similar probabilities can reveal that a patient’s
ICA map spans several learned networks and can suggest a lower
level of confidence for the classification. These probability values
will be available along with the output label by the classifier as an
indicator of the confidence of the result.

The healthy and epilepsy IC spatial maps showed clear
network differentiation and were comparable tomaps of previous
intermediate model order ICA studies (Beckmann et al., 2005;
Damoiseaux et al., 2006; Calhoun et al., 2008; Smith et al.,
2009; Biswal et al., 2010; Allen et al., 2011). IC maps for each
subject consisted of artifactual components, functional networks,
and sometimes a superposition of networks. Approximately
8 components per subject were identified to be signal from
the auditory, visual, default-mode, sensorimotor and executive
control networks (Figures S2, S3, executive control not shown).
The original data contains all of the acquired resting scan
functional information and all extracted components in “patient
space” will be available to the clinician to view when examining
the rs-fMRI scan, along with the set of the labeled components.

An intermediate model order was chosen for the purposes
of extracting robust spatial maps and to be consistent with the
ICA studies in the literature (see ICA section above). This ICA
model order has been shown to closely correspond to task fMRI
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FIGURE 4 | Learned weights for the perceptron. Learned weights for the perceptron classifier (healthy) are shown for each predicted network (executive control

not shown). This reveals that the most influential areas correspond anatomically to their respective network location.

activation maps by Smith et al. (2009), who investigated a model
order of 20 (as well as 70). In general, if a higher model order
is used then some networks may be split into subcomponents
(Smith et al., 2009). A high model order is more clinically
demanding and requires that many more maps be inspected but
can offer finer detail of relevant network maps (Zhang et al.,
2009).

For showing feasibility of the method, the auditory, visual,
default-mode, sensorimotor, and executive control networks
were used (this excluded the fronto-parietal and cerebellar
networks as in Smith et al., 2009). Note that the visual,
sensorimotor and default-mode networks in this study contained
multiple ICs. For this organization, the authors used the
terminology analogous to that of ROIs being grouped into

different functional networks (e.g., ROIs as in Dosenbach et al.,
2010).

A limitation of this work is that a complete functional network
coverage of patients was not used. This study did not directly
use a language network component map. A complementary
language network IC map that covers the frontal lobe regions
(see Smith et al., 2009), Figure 1, IC 10) can be a valuable
addition to the ICA extraction and classification method
and would improve clinical relevance. Additional networks
to include are the salience and cerebellum networks covered
by fronto-parietal maps IC 9 and 10 and IC 5, respectively,
in Figure 1 of Smith et al. (2009). To develop this method
for clinical-grade performance, a complete RSN coverage is
required.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2016 | Volume 10 | Article 440

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Vergun et al. RSN ICA Map Classification

FIGURE 5 | Influential features and areas for naïve Bayes. Most likely values (learned conditional probabilities) for the naïve Bayes classifier (epilepsy) are shown

for each predicted network (executive control not shown). The most influential areas correspond anatomically to their respective network location. Note that the values

were shifted to be centered at zero (from the original [1,11] range) to match the perceptron weight appearance.

The method and its performance are discussed below in
more detail. It is seen from the confusion matrix (Table S3)
that for healthy subjects the perceptron classifier had a tendency
to misclassify the auditory components to be sensorimotor
components and vice-versa (e.g., subject row 2 IC15 and subject
row 4 IC3 in Figure S2). Similarly, the perceptron mismatched
mostly the visual and default-mode network components (e.g.,
subject row 4 IC5 and subject row 5 IC22 in Figure S2).
This is understandable since these pairs of networks had some
components that had spatial extents very near one another and
visually appeared similar to a human viewer.

For epilepsy patients the naïve Bayes classifier showed
the same tendency for the auditory-sensorimotor pair

(e.g., subject row 1 IC23 and subject row 5 IC10 in
Figure S3). An interesting note is that the visual network
components were perfectly classified for epilepsy patients
(Table 3).

Advantages of the machine learning method in this study over
the Demertzi et al. (2014) component matching method are the
model tuning and validation (which improves accuracy) as well as
the multivariate capabilities. Another advantageous property of
the chosenmachine learning classifiers is that the learned concept
models are readily interpretable. For the perceptron, features
with high weight values are more influential to classification and
for the Bayesian classifier, most probable feature values influence
classification toward the respective class. As seen in Figures 4, 5,
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FIGURE 6 | Example epilepsy patient’s IC maps classification. IC spatial maps (t-statistics > 2.0) identified into networks by the viewers and classified by the

Naïve Bayes algorithm. IC #22 is the only one misclassified for this patient. The underlay is a standard MNI_avg152T1 AFNI template.

the two classifiers learned the spatial, anatomical ICmap network
location for the four networks. The classifiers learned the RSN
patterns of the sampled patients well and were then able to
classify networks accurately using the learned model. Note that a
group comparison (healthy vs. epilepsy) of the classifiers was not
performed and the ICmaps and resulting classifiermodel weights
were inspected between groups to provide some insight into the
consistency of networks.

CONCLUSION

Research studies are providing increasing evidence of the value
rs-fMRI offers to neurosurgery through functional mapping
(Lee et al., 2013; Lang et al., 2014). Interpretation and labeling
of RSNs provides important information about a patient’s
functional status, with advantages over task fMRI mapping.
Machine learning classification, trained on the gold standard of
a clinician’s labeling, has potential to aid the clinical workflow
and reduce the time demand faced by clinicians in manually
inspecting many ICA maps.

This work showed the excellent performance of ICA
network classification for healthy subjects and epilepsy patients
and proposed a clinical use for aiding investigation and
evaluation of functional networks done during presurgical
mapping. Consistent and reliable automation is a desirable
addition that can reduce investigator bias inherent in visual
labeling. The authors believe that neuroimaging interpreters
can benefit from complementary machine learning methods
which provide automatic labeling and organization of rs-fMRI
maps. This clinician and machine learning combination takes
advantage of the strengths of both humans and computers:
human expert interpretation and high-level cognition and the
computer’s ability to quickly and reliably handle many variable
calculations.

This work provided evidence of a successful single patient
RSN labeling method and with a larger, more diverse
training sample, expanded functional network coverage,
and incorporation of new classifier features (demographics,
clinical variables, anatomical image features) its performance
and clinical utility can be improved.
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