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Abstract

Francisella tularensis (Ft) causes a frequently fatal, acute necrotic pneumonia in humans

and animals. Following lethal Ft infection in mice, infiltration of the lungs by predominantly

immature myeloid cells and subsequent myeloid cell death drive pathogenesis and host

mortality. However, following sub-lethal Ft challenge, more mature myeloid cells are elicited

and are protective. In addition, inflammasome-dependent IL-1β and IL-18 are important for

protection. As Nlrp3 appears dispensable for resistance to infection with Francisella novi-

cida, we considered its role during infection with the virulent Type A strain SchuS4 and the

attenuated Type B live vaccine strain LVS. Here we show that both in vitro macrophage and

in vivo IL-1β and IL-18 responses to Ft LVS and SchuS4 involve both the Aim2 and Nlrp3

inflammasomes. However, following lethal infection with Francisella, IL-1r-, Caspase-1/11-,

Asc- and Aim2-deficient mice exhibited increased susceptibility as expected, while Nlrp3-

deficient mice were more resistant. Despite reduced levels of IL-1β and IL-18, in the

absence of Nlrp3, Ft infected mice have dramatically reduced lung pathology, diminished

recruitment and death of immature myeloid cells, and reduced bacterial burden in compari-

son to wildtype and inflammasome-deficient mice. Further, increased numbers of mature

neutrophil appear in the lung early during lethal Ft infection in Nlrp3-deficient mice. Finally,

Ft infection induces myeloid and lung stromal cell death that in part requires Nlrp3, is

necrotic/necroptotic in nature, and drives host mortality. Thus, Nlrp3 mediates an inflamma-

some-independent process that restricts the appearance of protective mature neutrophils

and promotes lethal necrotic lung pathology.

Author Summary

The Nlrp3 inflammasome is critical for various innate and adaptive immune responses

through elaboration of IL-1β and IL-18. In contrast to the anticipated minimal, or perhaps

absent, role of Nlrp3 in the pathogenesis of pulmonary tularemia, we find that Nlrp3 is a

host susceptibility factor. Likely through promoting necrotic/necroptotic cell death, Nlrp3
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contributes to the immature myeloid response and necrotic pathology that characterize

lethal infection with Francisella tularensis.

Introduction

Pulmonary tularemia is an acute, necrotizing, and highly lethal pneumonia caused by the

highly pathogenic zoonotic bacterium Francisella tularensis (Ft) [1]. The Type A (F. tularensis
tularensis) and Type B (F. tularensis holarctica) strains cause disease in both animals and

humans [2]. Type A strains (e.g. SchuS4) are highly pathogenic to humans and animals and

inhalation of as few as 10 cfu of SchuS4 causes lethal disease in humans and mice [1]. Thus,

Type A strains are classified as category ‘A’ biothreat agents by the CDC [3]). Although used to

model pulmonary tularemia in mice, the attenuated Type B live vaccine strain (Ft LVS) is not

pathogenic to humans. Another strain, Francisella novicida (Fn) is closely related to Ft and

highly pathogenic in rodents, but nonpathogenic in humans [3].

During lethal pulmonary tularemia, Ft infects lung phagocytes and replicate intracellularly

[1–2]. Instead of eliciting effective innate immune responses capable of controlling bacteria,

immature myeloid cells/myeloid-suppressor cells are recruited [4]. These immature cells are

ineffective phagocytes, but prone to necrosis resulting in necrotic lung damage and subsequent

death of mice. In contrast, during sublethal infection, infiltrating mature neutrophils and

inflammatory monocytes/macrophages outnumber immature myeloid cells and are essential

for protection of surviving mice. Thus, the necrotizing inflammation and extensive tissue dam-

age associated with lethal disease during pulmonary tularemia can be attributed to this dysre-

gulated myeloid cell response [4]. How these immature myeloid cells are recruited, how they

die, and how dying cells result in lung pathology during pulmonary tularemia is not known.

Previous studies have suggested apoptosis as a mode of myeloid cell death through active Cas-

pase-3 in myeloid cells in the spleen, liver, and lungs of Type A strain KU49 infected mice [5,

6]. In contrast, another study reported that activated Caspase-3 or AnnexinV expression was

rarely observed at 3 days post-infection in lungs of mice infected with SchuS4 [7]. However,

while we observed that Ft induces necrotic changes in myeloid cells including immature cells

in the lungs [4], how these cells die and how that death contributes to lethal lung damage is

unknown.

Although production of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα is delayed

during tularemia [8–10], mice deficient for these cytokines or the relevant receptors are more

susceptible to Ft infection [11–13]. Previous studies have also clearly shown a protective role

for IL-1β in mice during Fn infection [14–16]. A recent study examined intranasal Ft LVS

infection of IL-1-/- and IL-18-/- mice, revealing increased susceptibility of IL-18 deficient mice

and a critical role for IL-1β in the early production of protective anti-Ft LPS IgM by B1a B cells

[13]. These studies suggest that early inflammatory cytokine responses, such as that of IL-1β
and IL-18 are important for survival.

Several studies have investigated the protective role of the Aim2/Asc/Caspase-1 inflamma-

some axis in resistance to subcutaneous infection with Fn [14–19]. Aim2 binds dsDNA which

assembles an Aim2 inflammasome via oligomerization of ASC and recruitment/activation of

proCaspase-1 to enzymatically process proIL-1β and proIL-18 [17, 20, 21]. The Aim2 inflam-

masome also promotes Caspase-1-dependent cell death (pyroptosis) [17, 20]. Indeed, recogni-

tion of Fn dsDNA by Aim2 appears solely responsible for Fn elicited inflammasome activation

as mouse Nlrp1, Nlrp3, and Nlrc4 do not respond to Fn [14, 15]. In contrast, in human cells

both Aim2 and NLRP3 inflammasomes respond to Fn and Ft LVS [22]. NLRP3 also seeds
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inflammasome formation, but is activated by a wide array of stimuli and likewise can promote

pyroptotic and Asc-dependent, but Caspase-1-independent (pyronecrotic) death of myeloid

cells during infection [21, 23–26]. Although two Ft LVS studies using the LVS mutants

LVSΔripA and FTL-0325 report that IL-1β responses enhanced by these mutants are indepen-

dent of Nlrp3 [27, 28], whether Nlrp3 is involved in the inflammasome response to Ft LVS or

SchuS4 in mice is unclear. However, the in vivo response of Nlrp3-/- mice to infection with the

Ft LVS or SchuS4 strain, most relevant to human disease, is essentially unexplored.

Here, we report that Nlrp3-/- mice exhibit resistance to Ft infection through mature myeloid

cell response in lungs and decreased myeloid and lung cell death during pulmonary tularemia.

Consistent with previous reports, IL-1r-/-, Asc-/-, Casp-1/11-/-, and Aim2-/- mice were more

susceptible to Ft infection, but a significant proportion of Nlrp3-/- mice survive. Despite limited

IL-1β and IL-18 production, Ft-infected Nlrp3-/- mice had reduced lung pathology, lower bac-

terial burden, and fewer dead lung myeloid and stromal cells when compared to wildtype and

inflammasome-deficient mice. A mature population of neutrophils appearing in the lung on

day 1 post-infection is necessary for protection. We also demonstrate that Ft-elicited cell death

is likely due to a necrotic/necroptotic mechanism involving Nlrp3, but Asc/Caspase-1 inflam-

masome-independent. Our results suggest that while Asc and Caspase-1-mediated IL-1β and

IL-18 play protective roles, Nlrp3 is a host susceptibility factor detrimental during Ft infection.

Results

F. holarctica (LVS) and F. tularensis (Schu S4) activate the Nlrp3

inflammasome

A variety of gram negative bacteria activate the NLRP3 inflammasome [26]. However, it is

well-established that protective innate immunity to F. novicida requires activation of the Aim2

inflammasome and that the Nlrp3 inflammasome is not required [14, 17–19, 29]. Further,

elaboration of IL-1β by Fn infected macrophages requires neither Nlrp3 nor Nlrc4, while Asc

is indispensable [29]. We previously reported that in human macrophages, both AIM2 and

NLRP3 mediate the inflammasome response to F. novicida and Ft LVS [22]. Nevertheless, the

role of Nlrp3 in Ft infection has not been well studied. Further, LVS and SchuS4 are the Fran-

cisella strains most relevant to epidemics of human tularemia [3]. To establish whether Nlrp3

is involved in the inflammasome response to LVS and SchuS4, BMDM from C57BL6J wildtype

and Nlrp3-/- mice were infected with Ft LVS, SchuS4 or Fn and their IL-1β and IL-18 responses

measured. The corresponding responses of Casp1/11-/-, Asc-/-, and Aim2-/- BMDM were

evaluated as controls. As expected, IL-1β and IL-18 elaboration by these cells is dramatically

reduced in the absence of Casp1/11 and Asc (Fig 1). Interestingly, IL-1β production was signif-

icantly reduced following Ft LVS or SchuS4 infection of cells from Nlrp3-/- mice (Fig 1A).

Curiously, macrophages from Aim2-/- mice produced more IL-1β than wildtype cells in

response to LVS infection but IL-1β production following SchuS4 infection was limited (Fig

1A). In contrast, IL-1β production following Fn infection was not reduced by deficiency in

Nlrp3, but was abrogated without Aim2 as previously reported [17–19]. Surprisingly, the IL-18

response pattern differed. In the absence of Nlrp3 or Aim2, the macrophage IL-18 response to

Ft LVS or SchuS4 infection was reduced by about 50% (Fig 1B). Infected Asc-/- and Casp-1/

11-/- macrophages produced little IL-18 (Fig 1B). However, IL-18 processing by Nlrp3-defi-

cient macrophages following Fn infection was significantly reduced, but still robust, while that

of cells-deficient for Aim2, Asc or Casp-1/11 was similar to negative controls (Fig 1B). These

observed changes in IL-1β and IL-18 are likely due to inflammasome-specific differences in

the response to the bacterial strains, as other inflammasome-independent pro-inflammatory

cytokines, including IL-6 (Fig 1C) and others (S1 Fig) were unaffected indicating that TLR
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responses are unaffected. Further, none of these genetic deficiencies altered macrophage infec-

tion by the Francisella strains used in this study, nor were proIL-1β protein levels substantially

altered (S1 Fig). These results suggest that the specific Francisella strains differ in their utiliza-

tion of the Nlrp3 and Aim2 inflammasomes for macrophage IL-1β and IL-18 responses.

Further, Nlrp3 and Aim2 dependent LDH release was also observed for Ft LVS (S1 Fig). Col-

lectively, our data reveal that Nlrp3 is responsive to Francisella strains other than Fn and thus

Nlrp3 may have an important role in immunity and pathogensis of pulmonary tularemia.

Nlrp3-/- mice are less susceptible to lethal pulmonary Ft infection

The Aim2 inflammasome response is critical for resistance to intradermal infection with F.

novicida [14–19]. Further, IL-1β and IL-18 are also important for resistance to pulmonary

challenge with LVS [13]. Since Nlrp3 is required for LVS and SchuS4 elicited IL-1β/IL-18

response, we considered whether Nlrp3 is important for resistance to pulmonary Ft infection.

Wildtype and Nlrp3-/- mice were infected intranasally with a lethal dose of Ft LVS (1000 cfu)

and monitored for survival. All wildtype mice succumbed to lethal LVS infection between

8–10 days (Fig 2A). Surprisingly, a large percentage (~50%) of Nlrp3-/- mice survived lethal

LVS infection. Compared to lethally infected wildtype mice, Nlrp3-/- mice had reduced bacte-

rial burden in lungs (Fig 2A), spleen and liver (S2A Fig) that was evident at 3 dpi and became

significant at 5 dpi. Approximately 15% of Nlrp3-/- mice survived infection with a four-fold

higher challenge dose, but all succumbed with a 20-fold higher challenge dose (S2B Fig). Thus,

resistance to Ft LVS observed in Nlrp3-/- mice is challenge dose-dependent. Periodic clinical

observations including weight loss and decreased activity indicated that all the mice were

infected with Ft (S2C Fig). Ft LVS-infected wildtype mice exhibit overt pathological changes

characterized by necrotizing inflammation in lungs, spleen and liver that correlates with a loss

of pulmonary function and death [4]. In the lungs, this inflammation is characterized by pro-

gressive mixed cellular infiltration, serous to fibrinous exudates with cellular debris, and

Fig 1. F. tularensis and F. novicida activate both Nlrp3- and Aim2-inflammasomes. (A-C) Levels of IL-1β, IL-18 or IL-6 measured in

culture supernatants of BMDM infected with Ft LVS, SchuS4 or F. novicida at MOI = 100 for 24 h (mean ± SD of three independent

experiments, Student’s t-test, *p<0.05, **p<0.01 or ***p<0.001 indicates the significant difference from wildtype BMDM).

doi:10.1371/journal.ppat.1006059.g001
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necrosis culminating in loss of airway space and function. Consistent with increased survival,

the lungs of Nlrp3-/- mice exhibited less necrosis and more preserved airway space in compari-

son to wildtype mice (Fig 2B).

Remarkably, while all wildtype mice succumbed to infection with the highly virulent and

clinically relevant Type A strain SchuS4 (10 cfu) by 6–7 days, a small, but significant propor-

tion (20%) of Nlrp3-/- mice survived (Fig 2C). Similar to LVS infection, lung bacterial burdens

were significantly reduced in Nlrp3-/- mice at 5 days post-SchuS4 infection (Fig 2C). However,

upon challenge with a larger inoculum (150 cfu), all Nlrp3-/- mice succumbed to infection

(S2D Fig). Curiously, although previous studies have shown that Asc-/-, Casp-1/11-/- and

Aim2-/- mice are susceptible to intradermal Fn infection [13, 17, 18, 29], a significant propor-

tion of Nlrp3-/- mice (25%) survived intranasal infection with a lethal dose of Fn (20 cfu)

compared with wildtype mice which all died by 6–7 days (Fig 2D). As with LVS and SchuS4

infection, the lungs of Nlrp3-/- mice displayed reduced bacterial burdens at 3 and 5 days post-

Fn infection (Fig 2D). Together, these data demonstrate a Francisella strain-independent, det-

rimental role for Nlrp3 in the pathogenesis of pulmonary tularemia.

Fig 2. Nlrp3-/- mice are less susceptible to lethal pulmonary Ft infection. (A) Survival of mice following

lethal Ft LVS (1000 cfu) infection (% survival of three independent experiments, n = 18 mice, Log-rank

(Mantel-Cox) test, ***p<0.001) and lung bacterial burden (mean ± SD of three independent experiments,

n = 9 mice, Student’s t-test, *p<0.05). (B) Histological section of lung from wildtype mice infected with Ft LVS

shows inflammatory foci and massive necrosis (‘necrotizing inflammation’) at 6 dpi, while these pathological

changes were less extensive in lung section of Nlrp3-/- mice (HE, 400x). (C) Survival of mice following Ft

SchuS4 (10 cfu) infection (% survival of three independent experiments, n = 15 mice, Log-rank test, *p<0.05)

and lung bacterial burden (mean ± SD of two independent experiments, n = 6, Student’s t-test, *p<0.05). (D)

Survival of mice following lethal F. novicida (20 cfu) infection (% survival of two independent experiments,

n = 12 mice, Log-rank test, *p<0.05) and lung bacterial burden (mean ± SD, n = 5 mice, Student’s t-test,

*p<0.05).

doi:10.1371/journal.ppat.1006059.g002
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NLRP3-mediated pathogenesis is inflammasome independent

IL-1 family cytokines mediate inflammatory processes essential for innate and adaptive immu-

nity [30]. IL-1β and IL-18 are critical for protective immunity against subcutaneous Fn infec-

tion [14–16] as well as pulmonary Ft LVS infection [13]. Although Fn elicited IL-1β responses

are Nlrp3-independent, we observed significant protection against pulmonary Fn infection in

Nlrp3-deficienct mice. However, the diminished IL-1β/IL-18 response of Nlrp3-deficient

macrophages after Ft infection suggests that this response could be significantly impaired in

Nlrp3-/- mice, yet sufficient to provide protection against Francisella. Alternatively, Nlrp3

might play an inflammasome-independent role in the pathogenesis of pulmonary tularemia in

wildtype mice. Interestingly, levels of IL-1β and IL-18 in the lung are markedly reduced in

Nlrp3-/- mice with slower kinetics over the initial 6 days of infection with LVS (Fig 3A) or

SchuS4 (S3A Fig) infection, but are not completely ablated. Lung IL-1β and IL-18 levels in Ft

infected mice deficient in Casp-1/11, Asc, and Aim2 were largely comparable to those of

Nlrp3-/- mice, with the exception of Aim2-/- mice which had more IL-18 in their lungs at 6 dpi

(Fig 3B). Lung IL-6 and TNFα responses were similar in all the mouse strains compared to to

those of wildtype mice following Ft LVS infection (Fig 3C) or SchuS4 infection (S3B Fig). Pro-

tection of Nlrp3-/- mice despite greatly reduced IL-1β/IL-18 responses, similar to those of

Casp-1/11-/- mice, was unexpected. Further, these results are seemingly contradictory to

reports demonstrating the importance of IL-1β and IL-18 for protection against Francisella.

We therefore considered whether other inflammasome-deficient mice were similarly pro-

tected. Unlike Nlrp3-deficient mice, Aim2-/-, Caspase-1/11-/-, Asc-/-, and IL-1R-/- mice died

within 8–11 dpi after lethal Ft LVS infection (Fig 3D) or between 6 and 7 dpi after SchuS4

(S3C Fig). In addition, lung bacterial burdens in these mice were approximately twice those of

wildtype mice at 5 dpi (Fig 3E), but bacterial loads in the spleen and liver were similar to wild-

type (S3D Fig). Further, following intransal instillation of a 50% lethal dose of Ft LVS nearly all

Nlrp3-/- mice survived while all of the IL-1R-/- or other inflammasome component-deficient

mice succumbed to infection (Fig 3F). After Ft LVS infection IL-1β and IL-18 levels are similar

between Aim2- and Nlrp3-deficient mice, yet mice deficient in Aim2, ASC, or caspase-1/11 do

not reproduce the survival phenotype of Nlrp3 mice. These levels are insufficient to protect

Aim2-deficient mice, and do not account for the increased survival of Nlrp3-deficient mice.

Thus, the detrimental impact of Nlrp3 is unlikely to be inflammasome-dependent.

The Nlrp3 inflammasome inhibitor MCC950 specifically blocks Nlrp3:Asc interaction and

downstream caspase-1 activation without impacting the Aim2 inflammasome [31]. Wildtype

mice infected with a lethal dose of Ft LVS and treated with MCC950 were not protected (Fig

3G). However, MCC950 treatment of wildtype mice receiving a 50% lethal dose of Ft LVS

resulted in a complete loss of protection (Fig 3H). Although these mice are Nlrp3-sufficient,

inhibition of the Nlrp3 inflammasome results in a phenotype similar to mice lacking ASC and

caspase-1. Collectively, these results demonstrate that the detrimental role of Nlrp3 during pul-

monary Ft infection is independent of the inflammasome. Our results also suggest that the

diminished levels of IL-1β and IL-18 in the lungs of Nlrp3-/- mice may be sufficient to support

their critical protective function during pulmonary tularemia.

NLRP3 deficiency does not alter Ft-specific IgM antibody levels during

tularemia

A recent study reported that Ft-specific IgM produced by B1a B cells was significantly reduced

in Il-1b/-, Il-1b-/-/Il-1a-/-, or Il-1r1-/- mice compared to C57BL/6J wildtype or Il-1a-/- mice and

implicated as an explanation for susceptibility of IL-1β-deficient mice to pulmonary Ft LVS

infection [13]. This study also demonstrated the importance of IL-18 for resistance to Ft
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infection [13]. Our results with Nlrp3-deficient mice appear to contradict these findings. How-

ever, while the serum level of IL-1β is reduced systemically in Nlrp3-/-, Asc-/-, Casp1/11-/- and

Aim2-/- mice, IL-18 is only moderately reduced in Nlrp3-/-, Asc-/- and Casp1/11-/- mice, and is

elevated in Aim2-/- mice (Fig 4A and 4B). Although the serum IL-1β/IL-18 response follows a

similar trend to that in the lungs, the magnitude of the systemic response is quite low by com-

parison (compare with Fig 3A and 3B). Further, no difference could be detected in the innate

Ft LPS-specific IgM level (Fig 4C). Thus, reduced serum levels of IL-1β/IL-18 in mice deficient

for inflammasome components does not appear to impact Ft LPS-specific IgM and does not

correlate with their pattern of survival/mortality, suggesting that sufficient IL-1β/IL-18 is avail-

able to facilitate production of these antibodies. There was also no difference in IgG or IgA

Fig 3. Nlrp3 mediates pathogenesis of pulmonary tularemia in an inflammasome-independent

manner. (A) Levels of IL-1β and IL-18 measured in lung homogenates at indicated days post-Ft LVS infection

(mean ± SD of two independent experiments, n = 6 mice, Student’s t-test, **p<0.01 indicates difference from

wildtype mice). (B) Levels of IL-1β and IL-18 measured in lung homogenates at indicated days post-Ft LVS

infection (mean ± SD of two independent experiments, n = 6 mice, Student’s t-test, *p<0.05 or ***p<0.001

indicates difference from wildtype mice). (C) Level of IL-6 and TNFαmeasured in lung homogenates at

indicated days post-Ft LVS infection (mean ± SD of two independent experiments, n = 6 mice, Student’s t-

test). (D) Survival of mice following lethal Ft LVS (1000 cfu) infection (% survival of two independent

experiments, n = 12, Log-rank test). (E) Lung bacterial burden (mean ± SD of two independent experiments,

n = 6 mice, Student’s t-test, **p<0.01). (F) Survival of mice following with sub-lethal Ft LVS (500 cfu) infection

(% survival of two independent experiments, n = 12, Log-rank test). (G) Survival of mice following with lethal

(1000 cfu) Ft LVS infection and treatment with MCC950 (250μg/mouse daily at 2–7 dpi) or with Glyburide

(500μg/mouse daily at 2–6 dpi) by i.p route (% survival of two independent experiments, n = 12 mice, Log-

rank test). (H) Survival of mice following with sub-lethal Ft LVS (500 cfu) infection and MCC950 treatment

(250μg/mouse daily at 2–7 dpi) by i.p route (% survival of two independent experiments, n = 10 mice, Log-

rank test).

doi:10.1371/journal.ppat.1006059.g003
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antibody levels in serum (Fig 4D) or BAL fluid (S4 Fig) of these mice at 6 dpi. As levels of anti-

Ft LPS antibodies in serum and BAL fluid were comparable between Nlrp3-deficient and wild-

type mice, it is unlikely that differences in the Ft-LPS-specific IgM antibody response play a

critical role in the survival of Nlrp3-deficient mice.

Nlrp3 prevents an early, protective neutrophil response during

pulmonary tularemia

During Ft infection, both myeloid (PMN and macrophages) and lymphoid (T and B cells) cells

are thought important for protection [32–36]. However, we recently reported that necrotic

lung damage and host death during lethal pulmonary tularemia is accompanied by predomi-

nating infiltration of the lung by death-prone immature myeloid cells with myeloid-derived

suppressor cell (MDSC) phenotypes and function, specifically immature “band” neutrophils/

PMN-MDSC (pMDSC) and monocytic-MDSC (mMDSC) [4]. Accordingly, Ly6Ghi neutro-

phils and F4/80+ macrophages capable of controlling bacteria are not prevalent in the lungs of

lethally infected mice. We also showed that while eliciting mature neutrophils and macrophage

is protective, neutrophils are essential [4]. Thus, the resistance of Nlrp3-/- mice to Ft LVS

might result from a change in the type or extent of the myeloid cell response. The total number

of lung cells recovered and the frequencies of T and NK cells were similar between wildtype,

Casp1/11-/-, and Nlrp3-/- mice over the course of infection (S5 Fig). Interestingly,the number

of lung CD11b+ myeloid cells in Nlrp3-/- mice was also comparable to that in Casp1/11-/- and

wildtype mice until 6 dpi (Fig 5A), demonstrating that myeloid cell influx is largely unaffected.

However, Ly6Ghi (i.e. mature) neutrophils were notably more abundant in the lungs of

Nlrp3-/- mice than that of wildtype mice at 1 dpi, similar to wildtype mice at 3 dpi, and only

somewhat less abundant at 6 dpi (Fig 5B). The Ly6Ghi mature neutrophils were lower in Asc-/-,

Casp1/11-/- or Aim2-/- mice than that of Nlrp3-/- mice at 1 dpi (S5 Fig). Further, numbers of

Fig 4. Innate antibody response is dispensable for protection during acute phase of tularemia. (A-B)

Levels of IL-1β and IL-18 measured in serum (mean ± SD of two independent experiments, n = 6 mice,

Student’s t-test, *p<0.05 or **p<0.01 indicates the difference from wildtype mice at 6 dpi). (C) Level of anti-Ft

LPS IgM antibody titer measured in serum (mean ± SD of OD450 from two independent experiments, n = 6

mice, Student’s t-test). (D) Levels of anti-Ft IgG and IgA antibodies measured in serum (mean ± SD of OD450

from two independent experiments, n = 6, Student’s t-test).

doi:10.1371/journal.ppat.1006059.g004
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Fig 5. An early neutrophil response in Nlrp3-/- mice is protective during pulmonary tularemia. (A-E) Total numbers of CD11b+ myeloid cells,

Ly6G+ neutrophils, polymorphonucleated-MDSC (pMDSC), F4/80+macrophages or mono-nucleated-MDSC (mMDSC) in LVS-infected lungs

(mean ± SD of two independent experiments, n = 6 mice, Student’s t-test, *p<0.05 indicates difference from wildtype mice at specific dpi). (F)

Survival of mice following Ft LVS (1000 cfu) infection and treatment with anti-Gr-1 antibody (200μg/mouse, i.p route) at -1 and 1 dpi (% survival of

two experiments, n = 6 mice, Log-rank test, *p<0.05). (G) Total numbers of Ly6Ghigh neutrophils in lungs of mice following i.n. instillation of LPS and

infected 48 h later with Ft LVS (1000 cfu) (mean ± SD of three mice, Student’s t-test, *p<0.05 and **p<0.01 indicate the difference from those mice

receiving no LPS but infected with LVS). (H) Survival of mice following Ft LVS (1000 cfu) infection. Naïve mice were first adoptively transferred with

PMN (1 x106 cells/mouse; isolated from bone marrow cells) or CD3+ T cells (1 x106 cells/mouse; isolated from spleen) by intratracheal intubation

and infected with Ft LVS on the following day. Other groups of naïve mice were treated with LPS (100 or 10 μg/mouse, i.n instillation) to elicit PMN/

myeloid cell response, infected with Ft LVS after 48 h, and monitored for survival and mortality (% survival of two independent experiment, n = 10

mice, Log-rank test, *p<0.05 or ***p<0.001 indicates difference from naïve mice infected with LVS alone). (I) Lung bacterial burden in mice

receiving i.n. instillation of LPS and infected 48 h later with Ft LVS (1000 cfu) (mean ± SD of four mice, Student’s t-test, *p<0.05 and **p<0.01

indicate the difference from those mice receiving no LPS but infected with LVS). (J) Lung bacterial burden in mice receiving PMN or CD3+ T cells

post-infection with Ft LVS (1000 cfu) (mean ± SD of four mice, Student’s t-test, *p<0.05 and **p<0.01). (K) Levels of IL-17, KC and MCP-1 in lung

homogenates (mean ± SD of two independent experiments, n = 6 mice, Student’s t-test). (L) Survival of mice following Ft LVS (1000 cfu) infection

and treatment with anti-IL-17 antibody (200μg/mouse, i.p route) at 1 and 3 dpi (% survival of two independent experiments, n = 8 mice, Log-rank

test). (M) Total numbers of Ly6Ghigh neutrophils in lungs of wildtype and IL-1r-/- mice infected with lethal (1000 cfu) Ft LVS (mean ± SD of two

independent experiments, n = 6 mice, Student’s t-test, *p<0.05 and **p<0.01).

doi:10.1371/journal.ppat.1006059.g005
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detrimental pMDSC were also decreased in lungs of Nlrp3-/- mice at 1 dpi (Fig 5C), whereas

the number of these cells in Casp1/11-/- and wildtype mice were similar. Numbers of F4/80+

macrophages were unchanged between Nlrp3-/- and Casp1/11-/- mice through day 3 post-

infection, but declined by day 6 (Fig 5D). Immature and ineffective mMDSC were somewhat

less abundant in the lungs of Nlrp3-/- mice compared to Casp1/11-/- and wildtype mice at 6 dpi

(Fig 5E). Thus, the resistance of Nlrp3-/- mice to lethal Ft infection is unlikely to result from

improved numbers or function among mature macrophages or a reduction in immature, inef-

fective mMDSC, but instead correlates with increased numbers of mature neutrophils in the

lung at 1 dpi.

The appearance of neutrophils in the lung on day 1 precedes reduced bacterial burden over

the course of infection in Nlrp3-/- mice, suggesting that Nlrp3 promotes host lethality in wild-

type mice by restricting the appearance of these cells. Ft infected Nlrp3-/- mice were therefore

depleted of neutrophils with anti-Gr-1 antibody. Ft infected Nlrp3-/- mice depleted of Gr-1+

cells succumb to infection (Fig 5F), indicating that the neutrophils observed at 1 dpi are critical

for protection. We previously observed that lung recruited myeloid cells in the neutrophil line-

age are mostly immature in Ft-infected mice [4]. As such, the immature neutrophils (pMDSC)

and mMDSC population appear lower in Nlrp3-/- mice, suggesting that eliciting mature neu-

trophils may be sufficient for protection. To further evaluate this idea, mice were administered

a low dose of E. coli LPS (10 or 100 μg/mouse) by the intranasal route (Fig 5G). LPS-treatment

elicited a mature neutrophil response with predominant neutrophils and some macrophages

at 48 h post-treatment, but prior to infection (S5E Fig). Neutrophil numbers remained high in

these mice at day 1 post-infection, but declined at later time points (Fig 5G), while the magni-

tude of the macrophage response, although higher at day 3, is similar to those seen in wildtype

and Nlrp3-/- mice infected with Ft LVS. As an alternative approach, we adoptively transferred

neutrophils isolated from the bone marrow cells of the naïve wildtype mice. LPS stimulation

prior to infection was completely protective and transfer of BM neutrophils protected approxi-

mately 30% of infected mice (Fig 5H). Further, Ft LVS was effectively controlled in the lungs

of low-dose LPS treated mice (Fig 5I) and those receiving transferred neutrophils (Fig 5J).

Thus, we conclude that Nlrp3 prevents lung recruitment, maturation, or survival of mature

neutrophils, that are otherwise capable of promoting clearance of Ft which preserves lung

architecture and increases the survival of mice during pulmonary infection.

The protective neutrophil response in Nlrp3-/- mice may result from improved neutrophil

recruitment. The cytokines/chemokines IL-17, mouse KC, and MCP-1 are important for

myeloid cell recruitment and maturation [37]. We evaluated their expression in the lungs of

wildtype and Nlrp3-/- mice with Casp1/11-/- mice as a control representing inflammasome-

deficient mice. IL-17 was increased in Nlrp3-/- mice at 1 dpi, was equivalent at 3 dpi, but

reduced at 6 dpi compared to wildtype mice (Fig 5K), but levels of KC and MCP-1 did not dif-

fer between Ft infected Nlrp3-/- and wildtype mice. Except for reduced IL-17 and slightly ele-

vated KC levels at 6 dpi, the levels of these soluble mediators in the lungs of Ft infected Casp1/

11-/- mice were essentially identical to wildtype controls (Fig 5K). Since IL-17 levels increase

concomitantly with the appearance of neutrophils in the lungs of Nlrp3-/- mice at 1 dpi, IL-17

may be negatively regulated by Nlrp3 early during infection. In this case, neutralization of IL-

17 is expected to reverse the protective phenotype leading to increased mortality. However,

administration of anti-IL-17 did not alter the survival of Nlrp3-deficient mice (Fig 5L). Thus,

although neutrophils are essential for protection against Ft in Nlrp3-/- mice, IL-17 is dispens-

able during this protection. IL-1 also recruits neutrophils and IL-1r-deficient mice are suscep-

tible to sublethal infection with Ft LVS. Accordingly, neutrophil recruitment to the lungs was

significantly reduced in Ft LVS infected mice lacking the IL-1r (Fig 5M). As Nlrp3-deficient

mice have reduced IL-1β production, the increased neutrophil numbers in the lung occur
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despite diminished IL-1β levels. These observations suggest that improved neutrophil recruit-

ment may not account for their increased numbers and that other mechanisms should be

considered.

Nlrp3-mediated, inflammasome-independent, cell death contributes to

lung pathology

Our data suggest that Nlrp3 prevents an early neutrophil response that effectively controls Ft

replication and potentially restricts overt cellular inflammation that contributes to tissue

pathology and acute death. Consistent with the preservation of airway space (see Fig 2), overall

lung pathology scores are lower in Nlrp3-/- mice when compared to wildtype or Casp1/11-/-

mice (Fig 6A). However, a further analysis of individual criterion used for pathology scoring

revealed that the site of inflammation (mostly at peri-bronchiolar, peri-vascular and alveolar

regions) with involvement of neutrophil (PMN)/macrophages infiltration was essentially iden-

tical between wildtype and Nlrp3-/- mice (Fig 6B). In contrast, Nlrp3-/- mice had fewer inflam-

matory foci (mostly small and patchy) versus many large inflammatory foci seen in wildtype

or Casp1/11-/- mice (Fig 6C). Importantly, the extent of necrosis was also less severe in Nlrp3-/-

mice with fewer and smaller necrotic foci in the lung epithelial parenchyma (Fig 6D). Consis-

tently, in the absence of Nlrp3, lung damage is significantly reduced as reflected by signifi-

cantly lower LDH release in BAL fluid (Fig 6E) and in situ assessment of LDH release in lung

tissue by immunohistochemistry (Fig 6F). Indeed, necrotizing inflammation is a hallmark of

pulmonary tularemia and is associated with the death of myeloid cells which constitute the

lethal pulmonary inflammatory response to Ft [4]. Next, we quantified the number of dead

cells (7-AAD+) among the recoverable fraction of the single cell suspension obtained from

lungs by flow cytometry and in situ histological evaluation of inflammatory/necrotic foci by

microscopy. At day 3 post-infection, although limited, PMN death was evident and compara-

ble between wildtype, Asc-/-, and Casp1/11-/- mice, but reduced in Nlrp3-/- mice as assessed by

7-AAD staining (Fig 6G). While macrophage death was also reduced in Nlrp3-/- and Asc-/-

mice at day 3, death of macrophages from Casp1/11-/- mice was comparable to wildtype. At

day 6, approximately 30% of lung infiltrating PMN cells and macrophage from wildtype mice

were dead. In contrast, death of these cells was reduced in Nlrp3-/-, Asc-/-, and Casp1/11-/-

mice. At day 6 when necrotic changes are most evident on histological observation, all inflam-

masome component-deficient strains had reduced numbers of dead PMN cells and macro-

phages (Fig 6H and S5 Fig). Consistent with lung necrosis scores (Fig 6D), only Nlrp3-/- mice

had significantly fewer dead lung epithelial cells. These results suggest that Nlrp3 drives the

death of myeloid and epithelial cells and contributes to necrotic injury in the lung, yet various

mechanisms including ASC and caspase-1-dependent processes also occur. However, unlike

Nlrp3-deficient mice, ASC- and caspase-1/11-deficient mice show no protection against Ft

LVS infection, no protective early neutrophil response, and no reduction in lung pathology.

These observations are consistent with an inflammasome-independent role for Nlrp3 in pro-

moting host mortality perhaps via Nlrp3-mediated myeloid cell death.

Nlrp3 is involved in two distinct forms of cell death, caspase-1 dependent pyroptosis [23,

38–42] and Asc-dependent, but caspase-1 independent pyronecrosis [23, 38, 43]. However,

while apoptosis (caspase-3-mediated) and pyroptosis (caspase-1-mediated) have been impli-

cated in Ft or Fn-induced macrophage death [5, 6, 14, 18, 29, 44], it is unclear whether Nlrp3 is

involved. On in vitro infection, Ft induced necrosis in BMDM in a dose- and time-dependent

manner at an MOI of 100 or greater at 24 hours post-infection (hpi) as measured by LDH

release. At an MOI of 1 or 10, no cell death was observed up to 24 hpi (Fig 6I). As macrophages

can also undergo necroptosis, a form of regulated/programmed necrotic cell death [45], we
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sought to distinguish between an apoptotic, pyroptotic, pyronecrotic, or necroptotic mecha-

nism of Nlrp3-mediated cell death. While Ft-induced death of BMDM from Casp-1/11- and

Asc-deficient mice was indistinguishable from wildtype controls, significantly less cell death

was observed in Nlrp3-/- BMDM (Fig 6J). Further, caspase-3 inhibitor (z-DEVD-fmk) treat-

ment did not reduce Ft-induced cell death in BMDM from any of these mouse strains. This

result suggests a novel Nlrp3-mediated form of cell death independent of caspase-3, caspase-1

Fig 6. Tissue pathology and necrotic death of myeloid cells is reduced in Ft infected Nlrp3-/- mice. (A) Lung pathology score for mice infected

with lethal Ft LVS (1000 cfu). Pathology score was calculated by analysis of lung sections (n = 6 mice) for location/type/and extent of inflammation

and necrosis (see Methods) (mean ± SD of two experiments, Mann-Whitney test, *p<0.05 indicates difference from wildtype mice). (B)

Individualized pathology scores for inflammatory site and cellular types (mean ± SD of two experiments as shown in panel A). (C-D) Individualized

pathology scores for number/size of inflammatory foci and extent of necrosis (mean ± SD of two experiments, n = 6 mice, Mann-Whitney test,

*p<0.05). (E) LDH level in BAL fluid following LVS-infection (mean ± SD of two independent experiments, Student’s t-test, **p<0.01). (F) Positive

immunoreaction for localization of LDH (asterisk), as an indicator of necrosis, in representative lung section at 6 dpi (IHC with hematoxylin

counterstaining, 400x). (G) Per cent 7-AAD+ neutrophils (PMN) and macrophages (MØ) in Ft-infected lungs at 3 and 6 dpi (mean ± SD of two

independent experiments, Student’s t-test, *p<0.05 indictaes difference from wildtype mice). (H) Total number of 7-AAD+ cells in Ft-infected lungs at

6 dpi (mean ± SD of two independent experiments, Student’s t-test, *p<0.05). (I) Per cent necrotic cells calculated by LDH release in BMDM infected

with Ft LVS at increased MOI for different time points (mean ± SD of three independent experiments, Student’s t-test, **p<0.01 indicates difference

from 3 and 6 h at specified MOI). (J) Per cent necrosis (LDH release) of BMDM pre-treated (30 min) with z-DEVD-fmk (50 μM) or Nec-1 (50 μM) and

then infected with Ft LVS (MOI = 100) for 24 h (mean ± SD of three independent experiments, Student’s t-test, *p<0.05 indicates difference from

LVS-infected cells treated with DMSO). (K) Per cent necrosis (LDH release) of PMN or lung macrophages infected with Ft LVS (MOI = 100) for 24 h

(mean ± SD of two independent experiments, Student’s t-test, *p<0.05 indicates difference from wildtype cells). (L) Per cent necrosis (LDH release)

of LA-4 cells infected with Ft LVS (MOI = 100) for 24 h (mean ± SD of three independent experiments, Student’s t-test, *p<0.05 indicates difference

from LVS-infected cells treated with DMSO).

doi:10.1371/journal.ppat.1006059.g006
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and Asc. Interestingly, pre-treatment with necrostatin-1 (Nec-1), an inhibitor of RIP1/3-medi-

ated necroptosis, reduced cell death in wildtype, Casp1/11-/-, and Asc-/- BMDM, but did not

further reduce the death of Nlrp3-/- BMDM. Further, necrosis was reduced in cultured alveolar

macrophages (MØ) and PMN from Nlrp3-/- mice, but was comparable for cells isolated from

wildtype or Casp1/11-/- mice (Fig 6K). Necrotic damage was also observed in lung epithelium

in Ft-infected mice and reduced in the absence of Nlrp3. To examine whether Ft kills epithelial

cells, we infected the LA-4 lung epithelial cell line with Ft LVS and examined LDH release at

24 hours. As with myeloid cells, death of these cells was inhibited by Nec-1, but was insensitive

to caspase-3 inhibition (Fig 6L), suggesting that Ft elicits lung epithelial cell necrosis. Collec-

tively, these data suggest that Nlrp3-dependent, but Asc, caspase-1/11, and caspase-3-indepen-

dent cell death, which is likely necrosis/necroptotic, contributes to death of lung myeloid and

epithelial cells during pulmonary tularemia.

As the deficiency of Nlrp3 limits neutrophil cell death early during infection and lung epi-

thelial cell death later in infection, Nlrp3-dependent necroptosis might help explain the pathol-

ogy and host mortality accompanying pulmonary tularemia. Ft-induced necrosis is blunted in

myeloid cells from Nlrp3-/- mice and Nec-1 protects cultured cells for Ft-elicited cell death,

but the behavior of mature cells in vitro may not reflect the mechanism contributing to tissue

damage and death.

Necrostatin recapitulates the survival phenotype of Nlrp3-deficient mice

Following lethal LVS infection, 25% of mice treated with Nec-1 survived (Fig 7A) and necrotic

lung damage was also reduced (Fig 7B), while wildtype control mice and those treated with a

caspase-3 inhibitor were not protected and had comparable pathology. As Casp1/11-/- mice

also showed no protection (Fig 3), these data suggest that Nec-1 sensitive necroptotic cell

death contributes to host mortality and that caspase-1- or caspase-3-dependent forms of cell

death do not. During the course of these studies, we learned that in addition to RIPK1, Nec-1

also inhibits inhibits IDO [46], which could complicate our results. However, the Nec-1 deriv-

ative Nec-1s retains RIP1K specificity but does not inhibit IDO [46]. Therefore we repeated

our survival experiments using Nec-1s. As with Nec-1 treatment, approximately 25% of mice

treated with Nec-1s survived lethal Ft LVS infection (Fig 7C). Importantly, Nec-1s treatment

of Nlrp3-deficient mice did not significantly improve the resistance of these mice to lethal Ft

infection (Fig 7C), strongly suggesting that Nlrp3 and RIPK1 are acting on the same pathway.

Further, Nec-1s treatment of wildtype mice resulted in improved bacterial control (Fig 7D),

Fig 7. Necrostatin-1s treatment protects Ft infected mice. (A) Survival of wildtype mice infected with Ft LVS and then treated i.

p. with z-DEVD-fmk (200 μg/mouse) or Nec-1 (200 μg/mouse) daily between 2–6 dpi (%survival of two independent experiments,

n = 10 mice, Log rank test). (B) Lung pathology scores wildtype mice infected with Ft LVS and then treated i.p. with z-DEVD-fmk

(200 μg/mouse) or Nec-1 (200 μg/mouse) as above (mean ± SD of two experiments, n = 4 mice, Student’s t-test, *p<0.05. (C)

Survival of wildtype and Nlrp3-/- mice infected with Ft LVS and then treated i.p. with and without Nec-1s (200 μg/mouse) daily

between 2–6 dpi (% survival of two independent experiments, n = 10 mice, Log rank test, n.s. = p>0.5). (D). Lung bacterial burden in

wildtype mice infected with Ft LVS and then treated i.p. with Nec-1s as above (mean ± SD of four mice, Student’s t-test**p<0.01).

doi:10.1371/journal.ppat.1006059.g007
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similar to that seen with Ft LVS infected Nlrp3-deficient mice. These data support the hypoth-

esis that Nlrp3 mediates a necroptotic program that contributes to irreversible damage of the

lung during lethal pulmonary tularemia. Overall, our findings support the conclusion that dur-

ing pulmonary tularemia Nlrp3 drives host mortality in an inflammasome-independent fash-

ion that prevents an early neutrophil response important for host protection by promoting

myeloid cell death. Moreover, the pathologic effects of Nlrp3 can be inhibited by the RIP1

inhibitor, Nec-1s, strongly implicating Nlrp3-dependent cell death as a key determinant of

host susceptibility to Francisella.

Discussion

Pulmonary tularemia is a frequently fatal, acute necrotic pneumonia in humans and animals

caused by various sub-species of the environmental bacterium Francisella tularensis (Ft). Most

human cases of pulmonary tularemia result from infection with F. tularensis holarctica (the

parent strain of the live vaccine strain; LVS) or F. tularensis tularensis (e.g. SchuS4), while and

Francisella novicida (Fn) cause disease in rodents. As a vaccine strain, Ft LVS is non-patho-

genic to humans and Fn rarely causes human disease [1–3]. Despite intensive research efforts,

the mechanism by which Ft elicits fatal disease is poorly understood. Many studies have

reported that the Asc/Caspase-1 axis and, in particular, the Aim2, inflammasome which gener-

ates IL-1β and IL-18 is critical for resistance to Fn [14–19]. Owing to the emphasis on IL-1β
and the still unexplained inability of Fn to elicit an Nlrp3 inflammasome response in mouse

macrophages, the role of Nlrp3 during Ft infection has not been explored further. In addition,

with the exception of a few studies [13, 28], the roles played by Nlrp3, Aim2 or other inflam-

masomes during infection with Ft LVS and SchuS4 have not been investigated.

Given the extensive genetic similarity (97% nucleotide identity) between Ft and Fn [47], dif-

ferences in virulence and pathogenesis are thought to arise from differential regulation of

homologous genes and distinct roles for their products [3]. We have noted that both Fn and Ft

LVS are capable of utilizing the NLRP3 inflammasome in human cells [22]. Thus, the present

study sought to examine the role of Nlrp3 in the mouse model of pulmonary tularemia caused

by Ft LVS or SchuS4. Interestingly, despite Ft strain-specific differences in the IL-1β/IL-18

responses of bone marrow-derived macrophages and differential reliance upon Nlrp3 or Aim2

inflammasomes, Nlrp3-deficient mice exhibited various degrees of resistance (decreased sus-

ceptibility) to lethal pulmonary infection with Fn, Ft LVS, and SchuS4. This finding demon-

strates, for the first time, that Nlrp3 is activated by Francisella species in general, acting as a

host susceptibility factor driving the pathogenesis of pulmonary tularemia. Consistent with

improved resistance, lung bacterial burden and lung pathology were significantly reduced in

Ft-infected Nlrp3-/- mice. Mice deficient for Caspase-1/11, Aim2, or Asc, however, displayed

increased susceptibility despite levels of inflammatory cytokines similar to Nlrp3-deficient

mice, clearly indicating an inflammasome-independent role for Nlrp3 in the pathogenesis of

pulmonary tularemia. Our results confirm that Asc and Caspase-1 contribute to protection,

while Nlrp3, independent of inflammasome, is detrimental during Ft infection [14–19, 38–43].

We find that Nlrp3-deficient mice exhibit an early, protective, mature neutrophil response

accompanied by reduced numbers of immature myeloid cells, a response that is absent in wild-

type mice and mice lacking Caspase-1. Our results suggest that Nlrp3 prevents this mature

response, perhaps via Nlrp3-dependent cell death, and that Nlrp3 contributes to a dysregulated

myeloid cell response that drives necrotic pathology and host susceptibility during pulmonary

tularemia.

Prior to this study, the role of inflammsome activating proteins important for IL-1β/IL-18

responses in mice following infection with Ft strains other than Fn was essentially unknown.
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Unlike Fn which relies almost exclusively upon Aim2 inflammasome for macrophage produc-

tion of both IL-1β and IL-18, Ft LVS and SchuS4 utilize both Aim2 and Nlrp3. However, we

noted an interesting difference between Ft LVS and SchuS4 in their activation of Aim2 and

Nlrp3 in macrophages. While the IL-1β response to SchuS4 strictly required Nlrp3, Aim2 was

only partially required. However, Ft LVS required Nlrp3 for IL-1β responses, which were

approximately 2-fold higher in the absence of Aim2. IL-18 responses to either Ft LVS or

SchuS4, however, were dependent upon both proteins. Curiously, Aim2-independent produc-

tion of IL-1β following Ft LVS infection was not observed in vivo. This disparity suggests that

aspects of inflammasome activation in macrophages may differ based on in vivo versus in vitro
context or may reflect the phenotypic response of mature macrophages versus the immature

cells found in the lungs of Ft infected mice [4]. Despite these differences, how the Nlrp3-in-

flammasome is engaged in Ft infection and how Fn relies entirely upon the Aim2 inflamma-

some in macrophages remain unknown. Consistently both Aim2 and Nlrp3 require the Asc

adapter protein [20, 48], suggesting the possibility of negative regulation via competition for

Asc. Fn replicates faster intracellularly and causes macrophage cell death more rapidly than Ft

LVS. It is possible that release of bacterial and cellular dsDNA following cell demise could

engage the Aim2-inflammasome. Interestingly, with Ft LVS macrophages, Aim2 seems to

negatively regulate the Nlrp3 response, as Aim2-/- cells generate higher amounts of IL-1β.

Although we do not further pursue the mechanism responsible for increased IL-1β release in

Aim2-/- mice following Ft LVS infection in this report, this effect was consistently observed in

all our experiments.

The increased susceptibility of Casp1/11-/-, Asc-/-, and IL-1r1-/- mice to Ft LVS infection in

this study and IL-1β-/- mice in a previous study [13] clearly underscore the critical require-

ment of IL-1β/IL-18 for protective immunity. Consistently, Casp1/11-/- and Asc-/- mice had

reduced level of processed IL-1β/IL-18. In contrast, while Nlrp3-/- and Aim2-/- mice had levels

of IL-1β and 1L-18 similar to those of Caspase-1/11 and Asc-deficient mice; only mice lacking

Nlrp3 were protected from lethal Ft infection. Further, the Nlrp3 inflammasome inhibitor

MCC950 did not result in any protection. This clearly indicates an inflammasome and IL-1/

IL-18-independent mechanism for Nlrp3 that promotes susceptibility. As IL-1β/IL-18 levels

are reduced in Ft LVS infected Nlrp3-/- mice, the amounts of these cytokines required for pro-

tection during pulmonary tularemia may be much lower than previously thought. Alterna-

tively, higher levels of IL-1β or IL-18 in the absence of Nlrp3 might afford greater protection.

Consistent with this alternative, IL-1r1 is thought to be important for the generation of protec-

tive Ft-LPS specific IgM [13], however we observed no significant alterations in anti-Ft-LPS

IgM in inflammasome component-deficient mice. Moreover, MCC950 treatment increased

the susceptibility of wildtype mice receiving a 50% lethal dose of Ft LVS, presumably due to

reduced IL-1β/IL-18 production. Thus, the precise role that IL-1β and IL-18 play in the

absence of Nlrp3 as well as the levels required for protection remain to be addressed.

Infiltration of the Ft-infected lung by immature myeloid cells/myeloid-derived suppressor

cells (MDSC) is associated with necrotic lung damage and host death, as we recently reported

[4]. Appearance of these immature cells was comparable between wildtype controls and

Capase-1/11-deficient mice lacking intact Nlrp3 and Aim2 inflammasome function. Indeed,

Caspase-1/11- and Aim2-deficiency is associated with ineffective clearance of Ft, as evidenced

by bacterial burdens comparable or higher than control mice later in infection. Thus, the

immature myeloid response appears to be inflammasome-independent. However, improved

clearance of Ft in Nlrp3-deficient mice correlates with a necessary early (day 1) mature neutro-

phil (PMN) response that appears critical for inhibiting further replication of Ft in the lungs

and a corresponding decrease in PMN-MDSC at 6 dpi. This is consistent with our recent dem-

onstration that a mature neutrophil response in sub-lethal Ft LVS infection supports bacterial
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clearance and survival [4] and with the protection against Ft LVS infection provided by elicit-

ing mature neutrophils with low dose intranasal instillation of LPS or by direct transfer of

neutrophils. Immature monocytic cells (mMDSC) declined late during Ft LVS infection of

Nlrp3-/- mice, but at the same time point, mature F4/80+ macrophages were also decreased.

Yet, although similar in magnitude, macrophage numbers were higher with low-dose LPS

instillation. In contrast to the clear role of neutrophils, whether mature macrophages or

reduced numbers of mMDSC also contribute to bacterial control and resistance in these mice

is unknown.

Recently, it has been reported that Nlrp3 regulates chemokine-mediated functions and

recruitment of neutrophils contributing to hepatic ischemia-perfusion injury independent of

inflammasome [43]. In this previous study, Nlrp3 regulates the function of KC and thereby

reduced neutrophil recruitment in Nlrp3-/- mice when compared to Asc-/- or Casp1-/- mice.

However, excluding a significant, but seemingly unnecessary increase in IL-17 levels at day 1

post-infection in Nlrp3-/- mice, differences in the level of KC or MCP-1 that might impact

myeloid cell recruitment were not discernable between Nlrp3-/-, Asc-/-, Casp1/11-/- and

Aim2-/- mice. This lack of difference suggests that the early, protective, neutrophil response is

independent of the actions of these chemokines as well as IL-17. This is somewhat surprising

as IL-17 has been implicated in promoting Th17 responses that appear to be protective in mice

infected with an Ft LVS mutant which fails to elicit PGE2 [49]. IL-1 is important for neutrophil

recruitment during Ft LVS infection, but Nlrp3-deficient mice have increased neutrophil

numbers despite diminished IL-1β. These early neutrophils may represent the lung-associated,

marginated pool of neutrophils which may be mobilized to the lung upon infection, but how

this might occur during infection has not been evaluated [50–51]. Whether Nlrp3 directly or

indirectly negatively regulates neutrophil maturation or recruitment is unclear. Alternatively,

death of neutrophils owing to Nlrp3 may be responsible for restricting the number of mature

neutrophils.

Acute necrotic lung injury correlates with dying myeloid cells, loss of pulmonary function,

and death during lethal Ft infection [4]. Consistent with sustained recruitment of immature

myeloid cells/MDSC, Casp1/11-/- mice exhibited severe necrotizing inflammatory changes in

the lung. However, the size and number of inflammatory foci in the lung and accompanying

necrotic damage was markedly lower in Nlrp3-/- mice resulting in notable preservation of lung

architecture. These changes point to an Nlrp3-mediated cell death mechanism. Curiously,

preservation of lung architecture has been observed previously in Nlrp3-deficient mice

infected with Klebsiella, but these mice nevertheless succumb due to insufficient IL-1β produc-

tion [39].

Nlrp3 is reported to induce two forms of cell death. The first is inflammasome-dependent

pyroptosis and requires caspase-1 activation [23, 38–42]. The second is Nlrp3- and Asc-depen-

dent, but Casp-1-independent and termed pyronecrosis [39, 43]. Importantly, both share

some features of classical necrosis and are appreciated as distinct forms of programmed cell

death [23]. It is unclear which forms of cell death mediate the necrotic damage evident during

lethal pulmonary tularemia. Intriguingly, severe necrosis during pulmonary tularemia requires

Nlrp3, but appears largely independent of caspase-1 and Asc in both myeloid and lung epithe-

lial cells. Our in vitro infection data suggest that Ft-induced BMDM cell death is non-apoptotic

(Caspase-3 independent), non-pyroptotic (Caspase-1-independent), and non-pyronecrotic

(Asc-independent). Our data also suggest that an Nlrp3-dependent necrosis/necroptotic (Nec-

1-sensitive) pathway likely predominates in myeloid cells dying during Ft infection. Although

Nlrp3 function in myeloid-lineage cells is well documented, Nlrp3 expression in epithelial

cells also plays a critical role during inflammation [52–56]. We also observe reduced lung

stromal cell death in Ft infected Nlrp3-deficient mice and Ft-infected epithelial cells die by a
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mechanism that is also sensitive to inhibition with Nec-1. While Francisella has been reported

to induce caspase-3 activation and apoptotic cell death in the lung [5, 6], our data suggests that

caspase-3 may be less important by implicating Nlrp3 in a form of cell death distinct from apo-

ptosis, pyroptosis, and pyronecrosis. Indeed, Ft LVS infected mice treated with a caspase-3

inhibitor are not protected, while treatment with the RIPK1 inhibitor Nec-1s is protective and

results in reduced bacterial burden. Whether RIPK1 is responsible for restricting the early

mature neutrophil response by promoting the death of these cells is unclear. Nec-1s treatment

does not result in an increase in lung neutrophils following Ft LVS infection, while macro-

phage numbers are higher at days 3 and 6 post-infection (S7 Fig), suggesting that the early

neutrophil response is restricted by Nlrp3, but not by RIPK1. However, DMSO is known to

diminish lung neutrophil numbers [57] and reduces both neutrophil and macrophage bacteri-

ocidal function without enhancing host susceptibility to infection [58], important caveats sug-

gesting that differences in neutrophil survival may be obscured. Such inhibition may also

account for the larger bacterial numbers and less pronounced bacterial control seen in the

Nec-1s experiment. Of note, Nec-1s treatment does not significantly improve the survival of Ft

LVS infected Nlrp3-deficient mice, suggesting that Nlrp3 activation of RIPK1, whether direct

or indirect, is likely. This supports the hypothesis that Nlrp3 promotes lethality through induc-

ing necroptosis, although the cell populations critically impacted in vivo and how necroptosis

contributes to the lack of an early, protective neutrophil response are still unknown. In addi-

tion, the precise mechanisms of cell death involved during infection remain unclear as at later

times post infection, myeloid cell death also appears to involve Asc and Caspase-1/11. Deci-

phering whether Nlrp3 is required for the apoptotic cell death observed during infection with

the Type A strain SchuS4 [5, 6], a caspase-3 independent mechanism, or both, will be of con-

siderable interest and require further study. More importantly, dissecting how Nlrp3 is

involved in epithelial cell death and whether dying myeloid cells or direct infection are respon-

sible for necrotic damage to the lung stroma will likely be of interest to those interested in the

pathogenesis of acute lung injury during acute necrotic pneumonias and others exploring the

functions of Nlrp3. Lastly, early infiltration of neutrophils is important for protection and

likely controls Ft numbers, which may ultimately reduce myeloid and epithelial cell death.

These cells may represent the pulmonary-associated marginated pool of neutrophils that are

thought to be poised to respond to infection. If demonstrated, susceptibly of these to

Nlrp3-mediated cell death would isolate a role for Nlrp3 in restricting a key step in the appear-

ance of neutrophils early during pulmonary infection.

Are there other inflammasome-independent mechanism involving Nlrp3 that may contrib-

ute to our observations? Recently, Nlrp3 was demonstrated to cooperate with IRF4 that drives

IL-4 transcription and positively regulate differentiation of Th2 cells [59]. In this system,

Nlrp3 deficiency increased Th1-dependent responses which exerted significant control of dis-

ease in mouse models of asthma and metastatic melanoma [59]. In contrast, during Leishman-

iasis, Nlrp3 also promotes Th2-biased adaptive immunity in an inflammasome-dependent

manner through IL-18 [60]. Although these two studies report divergent mechanisms by

which Nlrp3 favors Th2 immune responses, it is understood that Nlrp3 plays a critical role in

restricting Th1 responses. However, in the Ft infection model we observed no decrease in Th2

cytokines such as IL-4 or IL-10 in Nlrp3-deficient mice at any time following infection, but

IFNγ production was slightly elevated at 6 days post-infection (S3F Fig). Importantly, lung

necrosis is already moderated at 3 days post-infection in Nlrp3-/- mice, at which point bacterial

numbers in the lung also appear to be declining. Given the requirement for the mature neutro-

phils early in infection and the late appearance of elevated IFNγ, it is unlikely that resistance to

Ft in the absence of Nlrp3 results from transcriptional alterations in lung Th1/Th2 cytokines

during pulmonary tularemia.

Nlrp3 Restricts an Early Neutrophil Response

PLOS Pathogens | DOI:10.1371/journal.ppat.1006059 December 7, 2016 17 / 25



Collectively our data demonstrates that Nlrp3 acts as a host susceptibility factor during

Francisella infection. Independent of its role in the inflammasome, Nlrp3 prevents the appear-

ance of neutrophils in the lung early during Francisella infection and ultimately contributes to

lung damage and host mortality likely via necrotic/necroptotic death of myeloid and stromal

cells.

Materials and Methods

Mice

C57BL/6J wild-type, Aim2-/- (Aim2Gt(CSG445)Byg), Casp1/11-/- (Casp1tm1Flv), IL-1r-/- (Il1r1tm1Imx),

and CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ) congenic mice were purchased from Jackson laborato-

ries. Nlrp3-/- and Asc-/- mice were described previously [61]. All the mice were housed and bred

in the Animal Resources Facility at Albany Medical College. Experiments were conducted using

male and female mice (8–10 weeks).

Ethics statement

All animals were maintained in the animal resource facility at Albany Medical College and

handled in strict accordance with good animal practice as defined by the United States Public

Health Service and Department of Agriculture. All animal work was approved (ACUP #12–

04001, 12–04002 and 12–04003) by the Albany Medical College Institutional Animal Care and

Use Committee (IACUC) and adhered to the regulations of the Public Health Service (PHS)

policy on Humane Care and Use of Laboratory Animals.

Intranasal Ft infection

Ft SchuS4 and LVS were cultured in modified Muller Hinton (MH) or Brain Heart Infusion

(BHI) broth as described [62]. All experiments utilizing SchuS4 were conducted within the

Albany Medical College, CDC-certified BSL-3 facility. Bacterial inocula were prepared in ster-

ile PBS by serial dilution to defined cfu numbers. Mice were anesthetized by i.p injection of

80–100μl/mouse of Ketamine (20mg/ml) and Xylazine (1mg/ml) mixture. Anesthetized mice

were infected i.n with 40 μl of inoculum instilled in a single nare. An equal volume of inocu-

lum was plated on MH chocolate agar to confirm actual cfu numbers. Sham-inoculated con-

trols received an equal volume of PBS or appropriate vehicle medium.

Necropsy, tissue collection, histology and immunohistochemistry

Blood was collected by submandibular venipuncture [63] and mice were euthanized with a

mixture of Ketamine and Xylazine followed by cervical dislocation. Necropsy was performed,

gross lesions were noted, and organs (lungs, liver and spleen) were collected aseptically to pre-

pare tissue homogenate (for bacterial counting and/or cytokine measurements), single cell sus-

pensions (for immunophenotyping), or histology (for pathological assessment) as described

previously [4]. For lung homogenate preparation, either whole lungs or a half of the lungs con-

taining pieces (consistent size for each mouse) from middle lobe, post-caval lobe, the right

superior lobe and the left lung lobes were collected in sterile PBS. For histology, either the

entire lung lobes or representative pieces each from the right superior and inferior lobes and a

half of the left lung lobes were collected in 10% buffered formalin. Either all or half of the

spleen was collected in formalin for histology. As well, pieces of liver from left lateral lobe and

medial lobe were collected in formalin. Formalin fixed tissues were processed by standard his-

tological procedures and 4μm-thick sections were cut and stained with hematoxylin and eosin

(HE). Sections of lungs, spleen or liver were examined for the location of inflammatory foci,
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type of infiltrating cells and the extent of necrotic changes in parallel with sections from unin-

fected or Ft-infected lungs and scored using the criteria described previously [4]. Immunohis-

tochemical (IHC) analysis for identification of myeloid cell types (Ly6G+, Ly6C+, or CD11b+)

or localization of LDH was performed in formalin-fixed paraffin-embedded tissue sections, as

described previously [4].

Bronchoalveolar lavage (BAL) fluid collection

BAL fluid was collected from control and Ft-infected mice as described previously [4]. The

cell-free clear supernatants were used immediately for LDH assays or stored frozen at -80˚C

for protein estimation. LDH assay was performed following manufacturer’s instruction using

the Cytotox96 non-radioactive kit (Promega). The cell pellets were used for flow cytometry or

cytospin smear preparation for differential cell counting (Giemsa).

Bacterial burden estimation

Tissue homogenates prepared from whole or pieces of lungs/spleen/or liver were plated onto

MH chocolate agar as described previously [4]. After 2 days, colony counts were performed

and bacterial numbers (cfu) were calculated. Results are expressed as log10 cfu/ml/organ.

Cytokine/chemokine/eicanosoids measurement

By using Mouse Group I and II Luminex assay kits (BioRad), cytokines/chemokines were esti-

mated in clear tissue homogenates [4].

Immunophenotyping by flow cytometry

Myeloid and lymphoid cell types were evaluated by multi-color flow cytometry as described

previously [4]. Briefly, single cell suspensions from collagenase-digested lung or spleen were

surface stained with either lymphoid markers lymphoid markers (CD3, CD4, CD8, NK1.1,

B220, CD19, Terr119), myeloid markers (CD11b, CD11c, F4/80, Gr-1, Ly6C, Ly6G) and/or

cell activation markers (CD80, CD86, MHCII, PD-L1 or CD115) for 30 min. Cells were fixed

in 1% paraformaldehyde (PFA) and cytometry was performed on an LSRII (Becton Dickin-

son). For cell death analysis in lung cells, surface marker stained cells were stained with

7-AAD, washed twice and fixed in 1% PFA, prior to run in LSRII. Flow cytometry data were

analyzed using FlowJo software (v10.0.1). Specific cell populations are represented as a mean

percentage or total numbers for Ft-infected mice at various dpi in comparison to uninfected

control mice (0 dpi).

Isolation and culture of mouse macrophages

Bone marrow cells were isolated from the femurs and tibias of six to eight week-old mice to

enrich bone marrow-derived macrophages (BMDM) as described previously [58]. F4/80

+ lung macrophages were isolated from BAL fluid and Gr-1+ PMN cells were isolated from

bone marrow cells by using magnetic beads (Miltenyi) as described previously [4]. Cells were

cultured in DMEM containing L-cell supernatant and adherent cells were used for the infec-

tion studies.

In vitro infection of mouse macrophages

Cells were infected with Ft LVS at different MOI (1, 10, 100 or 200) and cell death analyses

were done at different time points (3, 6 or 24 h). In some experiments, cells were pre-treated

(30 min) with z-DEVD-fmk (50 μM, final concentration), Nec-1 (50 μM) or vehicle alone and
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infected with LVS at MOI = 100. After 24 h, cell culture supernatants were tested for LDH

activity as described [4].

Cell death analysis

For lung cells, single cell suspensions were stained with surface markers followed by 7-AAD

staining and analyzed in LSRII as described (P). Within myeloid cell subsets, the frequencies

of 7-AAD+ cells were identified. For in vitro cultured cells, medium was removed; cells were

harvested gently and stained with 7-AAD or TUNEL kit, or both, and then analyzed in an

LSRII to count dead cells. BAL fluid and cell culture supernatants were tested for LDH activity

as described [4].

Adoptive transfer of PMN, eliciting myeloid cell response, and LVS

infection

Mature Gr-1+ PMN cells were isolated from the bone marrow cells of CD45.1 donor mice and

the cells (1 x 106) were transferred to a group of naïve recipient CD45.2 mice by intra-tracheal

intubation as described previously [4]. As well, naïve CD3+ T cells isolated from spleen were

transferred to other group of recipient mice. The next day, these mice were infected with Ft

LVS (1000 cfu) and survival was monitored. In other experiments, to elicit mature myeloid cell

responses, naïve C57BL/6 mice were instilled i.n with LPS (E. coli, O55:B5) at 100μg or 10μg/

mouse. After 48 h, these mice were infected with Ft LVS (1000 cfu) and survival was moni-

tored. Two mice in each group were euthanized at 48 hr to analyze the BAL fluid cell counts

and were found to have more number of cells than naïve control mice.

Depletion of Gr-1+ PMN

For depletion of PMN cells, mice were i.p injected with anti-Gr-1 (RB8-8C5, BioXcell) or iso-

type control rat IgG2b mAb antibody (200μg/mouse) at 1 day prior and after Ft LVS infection.

Cell depletion antibodies were purchased from BioXcell (Lebanon, NH). Antibody depleted

mice were infected with Ft LVS (1000 cfu) and survival was monitored.

Cytokine neutralization

Mice were administered i.p with anti-IL-17 antibody (Rat IgG1, clone TC11-18H10.1; Biole-

gend) or its isotype control antibody (200μg/mouse) at 1 and 3 dpi. Following infection, these

mice were monitored for survival.

Treatment of mice with selective inhibitors

At indicated experiments, Ft-infected mice were treated i.p. with Casp3-inhibitor z-DEVD-

fmk (200 μg/mouse), Nec-1 (200 μg/mouse) or Nec-1s (200 μg/mouse) daily between 2–6 dpi.

Ft-infected mice were treated with MCC950 (250μg/mouse) or glyburide (500μg/mouse) daily

between 2–7 dpi and monitored for survival.

Statistical analysis

Statistical analysis and data compilation were done using GraphPad Prizm (ver 6). Student’s t-

test or a parametric ANOVA test with Tukey’s post-test was used for statistical comparisons

between groups. For survival analysis, Log-rank (Mantel-Cox) test was used. The p<0.05 was

considered significant.

Nlrp3 Restricts an Early Neutrophil Response

PLOS Pathogens | DOI:10.1371/journal.ppat.1006059 December 7, 2016 20 / 25



Supporting Information

S1 Fig. (related to Fig 1) F. tularensis and F. novicida activate both Nlrp3- and Aim2-infla-

mamsome. (A) Levels of IL-12p40, TNF, MCP-1 and IL-10 measured in culture supernatants

of wildtype and Nlrp3-/- BMDM infected with Ft LVS at MOI = 100 for 24 h (mean ± SD of

three independent experiments, Student’s t-test). (B) Intracellular bacterial burden after 4 h

infection (mean ± SD of two experiments). (C) Western blot for proIL-1β in cell lysate of

BMDM infected with Ft LVS. (D) Per cent cell death (LDH release) in BMDM infected with Ft

LVS or F. novicida (MOI = 100) for 24 h (mean ± SD of two independent experiments, Stu-

dent’s t-test, �p<0.05 indicates difference from wildtype cells).

(TIF)

S2 Fig. (related to Fig 2). Nlrp3-/- mice are less susceptible to lethal pulmonary Ft infection.

(A) Bacterial burden in spleen and liver following Ft LVS infection (mean ± SD of three inde-

pendent experiments, n = 9, Student’s t-test). (B) Survival of mice following 4 LD100 and 20

LD100 Ft LVS (1000 cfu) infection (% survival of two independent experiments, n = 12, Log-

rank (Mantel-Cox) test, �p<0.05) and. (C) Per cent body weight loss following Ft LVS infec-

tion (mean ± SD of three independent experiments). (D) Survival of mice following Ft SchuS4

(150 cfu) infection (% survival of two independent experiments, Log-rank test).

(TIF)

S3 Fig. (related to Fig 3). Nlrp3 mediates pathogenesis of pulmonary tularemia in an

inflammasome-independent manner. (A) Levels of IL-1β measured in lung homogenates at

indicated days post-Ft SchuS4 infection (mean ± SD of three mice, Student’s t-test, ��p<0.01

indicates difference from wildtype mice). (B) Levels of IL-6 and TNF measured in lung

homogenates at indicated days post-Ft SchuS4 infection (mean ± SD of three mice, n = 6, Stu-

dent’s t-test) (C) Survival of Ft SchuS4 (10 cfu) infected mice (% survival of two independent

experiments, n = 10, Log-rank test). (D) Bacterial burden in spleen and liver following Ft LVS

infection (mean ± SD of two independent experiments, n = 6, Student’s t-test). (E) Serum cyto-

kine levels in LPS-injected (10 mg/kg bwt) mice treated with MCC950 (1 mg/mouse (50mg/kg

bwt) or 0.25mg/mouse (12.5mg/kg bwt) daily at 2–7 dpi) (mean ± SD of three mice, Student’s

t-test, ��p<0.01). (F) Levels of IL-4, IL-10, and IFNɣ in lung homogenates at indicated days

post Ft LVS infection (mean ± SD of 6 mice).

(TIF)

S4 Fig. (related to Fig 4) Innate antibody response is dispensable for protection during

acute phase of tularemia. (A) Levels of anti-Ft IgG and IgA antibodies measured in BAL fluid

of wildtype mice infected with Ft LVS (mean ± SD of OD450 from two independent experi-

ments, n = 6, Student’s t-test).

(TIF)

S5 Fig. (related to Fig 5). An initial neutrophil response in Nlrp3-/- mice is protective during

pulmonary tularemia. (A) Total numbers of Ly6G+ neutrophils in LVS-infected lungs

(mean ± SD of two independent experiments). (B) Total numbers of cells recovered from LVS-

infected lungs (mean ± SD of two independent experiments, n = 6, Student’s t-test). (C) Fre-

quency of CD11b+ myeloid cells, Ly6G+ neutrophils, and F4/80+macrophages in LVS-infected

lungs (mean ± SD of two independent experiments, n = 6, Student’s t-test. (D) Total numbers

of CD3+ T cells and NK1.1+ cells in LVS-infected lungs (mean ± SD of two independent experi-

ments, n = 6, Student’s t-test. (E) Total numbers of PMN and MØ in LPS-treated lungs after 48

hours without Ft LVS infection (mean ± SD of three mice, Student’s t-test, �p<0.05, ��p<0.01).

(TIF)
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S6 Fig. (related to Fig 6). Nlrp3-/- mice had less dead cells in lungs. (A) Histological sections

of lungs from LVS-infected mice at 6 dpi show inflammatory foci, massive necrosis and

clumps of dead cells (arrow). Note abundant dead cells with degenerated nuclei as clumps

(arrow) in lung sections from wildtype, Casp1/11-/- and Aim2-/- mice, while moderate num-

bers in Asc-/- mice and less number in Nlrp3-/- mice (HE, 400x).

(TIF)

S7 Fig. (related to Fig 7). Necrostatin-1s treatment protects Ft infected mice. Total numbers

of PMN and MØ in LVS-infected mice treated with DMSO or Nec-1s (mean ± SD of three

mice, Student’s t-test, �p<0.05, ��p<0.01).

(TIF)
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