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Papini AM and Latajka R (2021)

Triazole-Modified Peptidomimetics: An

Opportunity for Drug Discovery and

Development.

Front. Chem. 9:674705.

doi: 10.3389/fchem.2021.674705

Triazole-Modified Peptidomimetics:
An Opportunity for Drug Discovery
and Development
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Peptidomimetics play a fundamental role in drug design due to their preferential

properties regarding natural peptides. In particular, compounds possessing

nitrogen-containing heterocycles have been intensively studied in recent years.

The triazolyl moiety incorporation decreases the molecule susceptibility to enzymatic

degradation, reduction, hydrolysis, and oxidation. In fact, peptides containing triazole

rings are a typical example of peptidomimetics. They have all the advantages over

classic peptides. Both efficient synthetic methods and biological activity make

these systems an interesting and promising object of research. Peptide triazole

derivatives display a diversity of biological properties and can be obtained via

numerous synthetic strategies. In this review, we have highlighted the importance of the

triazole-modified peptidomimetics in the field of drug design. We present an overview on

new achievements in triazolyl-containing peptidomimetics synthesis and their biological

activity as inhibitors of enzymes or against cancer, viruses, bacteria, or fungi. The

relevance of above-mentioned compounds was confirmed by their comparison with

unmodified peptides.

Keywords: 1,2,3-triazole, 1,2,4-triazole, CuAAC, antibacterial triazoles, antifungal triazoles, antiviral triazoles,

disulphide bond mimetic, enzyme inhibitors

INTRODUCTION

Peptide-based treatments play a fundamental role in the drug market as a matter of their plentiful
properties. Peptides are a group of compounds possessing limited immunogenic activity and due
to the small size are able to penetrate tissues and organs. Moreover, their synthesis is relatively
easy and inexpensive. However, peptides exhibit reduced metabolic stability and bioavailability
in vivo (Baharloui et al., 2019). Therefore, the development of chemically modified peptides,
generically defined peptidomimetics, gained increasing importance in recent years (Sun et al.,
2015). Peptidomimetics are molecules able to mimic natural peptides and proteins. Structures of
peptidomimetics can preserve the capability for interactions with the biological targets and display
identical in vivo effects of the corresponding unmodified peptides (Mabonga and Kappo, 2020).

Nowadays, pharmaceutical companies are focused on research and development of novel and
harmless drugs into themarket. Thus, researchers are stimulated to design novel structures, making
an effort to redeem these issues. The chemistry of peptides and heterocycles is challenging in this
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FIGURE 1 | Structures of the two isomeric forms of triazoles.

(A) 1,2,3-triazole; (B) 1,2,4-triazole (Souza and Miranda, 2019).

field. In particular, nitrogen-containing heterocycles became
popular in the past years (Sun et al., 2015) and therefore, they
are present in numerous drug molecules.

Triazoles are five-membered aromatic heterocyclic moieties,
which possess three nitrogen and two carbon atoms in the
structure (Costa et al., 2017). They occur in two tautomeric
forms: the 1,2,3-triazole or the 1,2,4-triazole (Figure 1)
depending on the position of the NH group in the ring
(Souza and Miranda, 2019).

It was previously reported that compounds including triazolyl
moieties in the structure display interesting properties in
medicine, pharmacology, and medicinal chemistry. Triazoles
are structures stable to hydrolysis, oxidation, and reduction
conditions. They attracted the attention of researchers
because of their low toxicity and relatively easy synthesis
in high yields (Costa et al., 2017). The 1,4-disubstitued
1,2,3-triazolyl core structure is mimetic of trans-amide bond
regarding to planarity, dipole moment, comparable size, and
capability to hydrogen bond formation (Valverde et al., 2013).
According to the literature, the triazole derivatives retain a
variety of biological functions. They can act against cancer,
microorganisms, including bacteria, fungi, and viruses, e.g.,
human immunodeficiency virus (HIV).

In this review, we will focus on the triazole-modified
peptidomimetics, which were investigated as potential drugs and
therapeutics in the past.

CHEMICAL BACKGROUND

The Triazole Ring Mimicking the Disulphide
Bond in Cyclic Peptides
The disulphide bond plays a relevant role in the folding process
of peptides and proteins. The S-S bridge can stabilise and
rigidify the 3D structure through the macrocycle formation
(Holland-Nell and Meldal, 2011; Testa et al., 2018a). Moreover,
disulphide bonds can play a relevant role in the biological activity,
enhancing selectivity and metabolic stability of proteins (Liu
et al., 2019). Protein conformation is sometimes constrained
by one or multiple S-S bonds, which improve enzymatic
and chemical stability. Nevertheless, the disulphide bridge is
prone to redox reactions in the presence of thiol-containing
compounds, such as oxidoreductases, serum albumin, and

glutathione. The loss of conformational constraint can lead
to metabolic degradation, peptide inactivation, and decreased
drug efficacy (White et al., 2020). Accordingly, several methods
have been examined in order to replace the disulphide bridge
with metabolically stable surrogates, for instance, diselenide,
tioether, hydrocarbon-based linkers, and triazoles (Cui et al.,
2013). Triazoles display chemical orthogonality and ensure high
stability against proteases and isomerases. Moreover, the triazolyl
moieties can be obtained via two-component reaction, which
is comparable to forming the disulphide bond starting from
two cysteine residues. The triazole can be generated from an
alkyne and an azide by copper-catalysed Huisgen cycloaddition
(CuAAC) (Holland-Nell and Meldal, 2011).

Based on these concepts, CuAAC strategy has been also used
to form triazolyl side chain-to-side chain bridge(s) to introduce
conformational constraints in linear peptides, aimed to stabilise
their bioactive conformation. The first attempt to stabilise the
α-helical conformation of a model peptide by side chain-to-
side chain cyclisation, CuAAC was applied by Cantel et al. to a
parathyroid hormone-related peptide (PTHrP) analogue (Cantel
et al., 2008). Several subsequent studies from the same group
(Scrima et al., 2010) and other laboratories, followed similar
approach to different bioactive peptides, as recently reviewed
(Testa et al., 2018b).

Preparation and Synthesis of
Triazole-Modified Peptides Including the
Triazolyl Core
The substituted 1,2,4-triazoles and their analogues are common
structural modifications in many organic and bioactive
molecules. According to the literature, diverse approaches
have been developed for the synthesis of the triazole motif
(Xu et al., 2015).

Overall, it is known that two synthetic techniques can be
applied in the framework of the triazole moieties design. One
of them is Huisgen cycloaddition catalysed by copper(I) ions, as
further described in this chapter. This method is characterised
by an intramolecular 1,5-electrocyclisation of β-substituted α-
diazocarbonyl compounds. The conditions of subsequent process
are less restricted and require mainly commercially available
starting materials. Based on this methodology, two pathways
have been characterised by Jordão et al. (2011), starting from:
(i) β-amino-α,β-unsaturated ketones or esters, followed by a
diazo transfer reaction (pathway I) and (ii) α-diazocarbonyl
compounds, followed by α-diazoimino formation (pathway II)
(Figure 2).

The diazo-donor reagents can be sulfonyl azides, for
instance, p-carboxylbenzenesulfonyl azide, methanesulfonyl
azide, tosyl azide, and 3-diazo-1,3-dihydro-2H-indol-2-one
(Jordão et al., 2011).

Nagasawa et al. have developed the first method for the
transition metal catalysed preparation of 1,2,4-triazoles. They
used the effective copper-catalysed synthesis of the 1,2,4-
triazole analogues by coupling nitriles with amidines (Ueda
and Nagasawa, 2009). Moreover, the research group of Beifuss
discovered the efficient and novel copper-catalysed cascade
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FIGURE 2 | Methods to prepare the triazoles from α-diazoimines (Jordão et al., 2011).

reaction between ammonium carbonate and imidates for
the preparation of symmetrically substituted 3,5-diaryl-1,2,4-
triazoles (Sudheendran et al., 2014). The procedures presented
above were effective but most of them considered the substrates,
such as imidates or amidines synthesised from nitriles (Creary
and Sky, 1990). Zhang et al. have described the catalytic
transformation of alkynes and azides mediated by ruthenium(II)
ion (RuAAC), which gives selective admission to 1,5-disubstitued
1,2,3-triazoles as a structural variation (Zhang et al., 2005).

The CuAAC reaction was the first to be carried out to
create the five-membered heterocycle compounds, including
the triazole moiety, without the use of complex reagents. The
azide-alkyne cycloaddition was rapidly recognised as the most
effective strategy to conjugate two or more structural motifs
(Ganesh et al., 2011).

The foremost method for the triazolyl core synthesis was
described by Huisgen (1963). The cycloaddition of alkynes and
azides is an extremely atom-economical reaction, leading to the
formation of the 1,2,3-triazoles. Nevertheless, the thermal process
is not regioselective and the result is the formation of both
1,4 and 1,5-disubstituted 1,2,3-triazoles (Akula and Lakshman,
2012). The reaction was performed between an acetylene and

the azide under reflux conditions in toluene, leading to a
mixture of 1,4 and 1,5-regioisomers of 1,2,3-triazoles (Souza
and Miranda, 2019). In 2002, Meldal and Sharpless and their
colleagues independently reported the most extensively used
click chemistry method (Rostovtsev et al., 2002; Tornøe et al.,
2002). The cycloaddition catalysed by copper(I) ions leads to
1,4-disubstitued 1,2,3-triazoles under undemanding conditions
(Figure 3; Struthers et al., 2010).

The copper-catalysed azide-alkyne cycloaddition is efficient,
selective, and is performed in a mild reaction environment.
This method may be conducted both in organic solvents and
in water with almost comprehensive conversion and selectivity
(Struthers et al., 2010). The cycloaddition requires Cu(I) or
Cu(II) salts in amixture of tert-butyl alcohol and water or organic
solvents at room temperature (Totobenazara and Burke, 2015).
The above-mentioned technique is one of the examples of click
reaction proceeding with high yield and purity, regioselectivity,
and comprehensive chemical conversion (Kaushik et al., 2015).
The 1,2,3-triazole is well-known as a versatile peptidomimetic
moiety (Valverde et al., 2012).

Kuang et al. have designed the reaction in non-reductive
conditions, involving N-containing additional ligands and

Frontiers in Chemistry | www.frontiersin.org 3 May 2021 | Volume 9 | Article 674705

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
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FIGURE 3 | The Huisgen cycloaddition. (A) Under thermal conditions and (B) catalysed by Cu(I) ions.

Cu(OAc)2. Then the azide chelation enhances meaningfully the
reaction rate (Kuang et al., 2010).

Homogeneous silver(I) catalysed azide-alkyne cycloaddition
(AgAAC) was studied by McNulty et al. due to the toxicity
of redox-active copper(I) ions for many biological functions.
The reaction between a thermally stable phosphane ligand and
silver acetate was carried out at room temperature. However,
heating up to 90◦C was demonstrated to increase the yield
(McNulty and Keskar, 2012).

Smith et al. reported a zinc mediated azide-alkyne
cycloaddition forming 1,5 and 1,4,5-substitued 1,2,3-triazoles at
room temperature. The reaction was conducted with a catalytic
amount of N-methylimidazole, which is obligatory to create the
zinc acetylide (Smith and Greaney, 2013).

The research group of Fokin has reported the first
transition metal-free catalytic azide-alkyne cycloaddition
for the synthesis of 1,5-diaryl-1,2,3-triazoles. The triazolyl
moiety was formed between terminal alkynes and aryl
azides at room temperature in the presence of a catalytic
amount of hydroxide, in high yield. This reaction is easy and
insensitive to moisture or atmospheric oxygen (Kwok et al.,
2010).

Moreover, the techniques involving ultrasounds have
the benefit of allowing to perform the reactions in both
homogeneous and heterogeneous systems (Totobenazara and
Burke, 2015). Cintas et al. presented the synthesis of 1,4-
disubstitued 1,2,3-triazole analogues via metallic copper under
ultrasounds without the addition of any ligand (Cintas et al.,
2010).

The triazole core is considered as a common peptidomimetic
moiety, able to accommodate any peptide secondary
structure. The synthesis of triazole amide surrogates
by a peptidomimetic ligation approach requires N-
and C-terminally modified peptides with α-azido acids
and α-amino alkynes, respectively. The synthesis of
chiral α-amino alkynes can be performed in a few
steps starting from the protected parent amino acids.
The incorporation of 1,4-disubtitued triazoles into the
backbone of a long peptide chain was achieved by classical
solid-phase peptide synthetic strategies (SPPS), involving

triazole-containing pseudo-dipeptides as building blocks
(Valverde et al., 2012).

The preparation of low molecular weight triazolyl
cyclopeptidomimetics is generally carried out by peptide
synthesis in solution, via the precursor followed by CuAAC
(Figure 4A). In case of longer sequences, the triazole moiety
can be easily incorporated into the chain during peptide
elongation by conventional SPPS coupling method (Figure 4B).
Differently, the heterocycle structures can be attached on the
solid support by the copper catalysed azide-alkyne cycloaddition
of the azide with the alkyne precursor (Figure 4C). The peptide
fragments after CuAAC, performed from alkyne and azide,
can be conjugated in solution. This method is useful for large
proteins as well (Valverde andMindt, 2012; Figure 4D). Anyway,
the synthesis of the building blocks N(alpha)-Fmoc-protected
omega-azido and omega-ynoic-alpha-amino acids (Le Chevalier
Isaad et al., 2008) was demonstrated to be instrumental to set
up valuable synthetic protocols (Le Chevalier-Isaad et al., 2009)
to develop a large variety of “Clickable” peptides (Testa et al.,
2014).

Microwave-assisted click chemistry has also been studied.
The microwave irradiation reduces the reaction time, enables
effective internal heat transfer, and consequently the yield
is increased. High temperature is reached rapidly, therefore
polymerization and decomposition are prevented (Totobenazara
and Burke, 2015). Ma et al. have reported a microwave-
assisted copper-mediated one-pot three-component synthesis
of symmetrically substituted 1,2,4-triazoles from aryl nitriles
and amines. This synthetic method requires two equivalents
of copper salts and the reaction yield was ∼12-55% (Xu
et al., 2015). D’Ercole et al. have developed an effective
and reproducible microwave-assisted approach to the synthesis
of side chain-to-side chain cyclopeptides. In the context of
the synthesis of clicked H1-relaxin analogues containing the
binding cassette, the azide-alkyne cycloaddition catalysed by
copper(I) ions was performed in solid-phase. All the crucial
parameters, for instance solvent, type of resin, catalytic system,
reaction time, and microwave energy were optimised by a
systemic one factor at a time method. This technique is
a profitable tool to prepare libraries of conformationally
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FIGURE 4 | Synthetic strategies of triazolyl containing cyclopeptidomimetics. (A) CuAAC in solution-phase peptide synthesis; (B) incorporation of triazole during

SPPS; (C) attachment of triazole to the solid support by CuAAC; (D) conjugation of peptide fragment after CuAAC in solution (Valverde and Mindt, 2012).

constrained derivatives of relaxin peptide analogues (D’Ercole
et al., 2020).

Moreover, 1,4-disubtitued 1,2,3-triazoles are similar to
substituted imidazoles due to their coordinative properties,
and also to amide bonds in terms of planarity and molecular
dimension. The triazole motifs are prospectively universal
ligands providing donor sites for diverse metal ions coordination
(Struthers et al., 2010). Synthetic techniques to obtain molecular
structures containing triazolyl moieties reported in this review
are summarised in the Table 1.

THE TRIAZOLES AS AGENTS AGAINST
MICROORGANISMS

It is not surprising that the CuAAC has been applied in various
fields of chemistry, for instance, organic synthesis and medicinal
chemistry (Souza and Miranda, 2019). The structures containing
the triazole motif have been extensively investigated for
pharmaceutical applications. The 1,2,3-triazole analogues show

various bioactive properties, such as antifungal or antibacterial
ones (Nasli-Esfahani et al., 2019). These peptidomimetics with
antimicrobial properties displayed host defence functions. They
are able to interact with biological membranes and modulate the
immune system (Junior et al., 2017).

Tachyplesin I (TPI-1), a β-hairpin antimicrobial peptide, is a
17-residues bicyclic peptide with high antimicrobial activity. The
conformation of TPI is stabilised by two cross-strand disulphide
bonds. The bioactivity of TPI-1 analogues was studied against
gramme positive bacteria, such as Bacillus subtilis, Staphylococcus
epidermidis, and three negative controls: Salmonella enterica,
Pseudomonas aeruginosa, and Escherichia coli. Some bacterial
strains were grown in the presence of high concentrations of
the TPI-1 analogues (Cui et al., 2013). In the Table 2, are
presented the structures of TPI derivatives including the triazolyl
modifications and the results obtained in biological assays.

Despite the fact that the values obtained for TPI-2 and TPI-3
analogues were deviated from the ones for the ordered β-pleat
sheet structures, it was observed that they were still efficient
inhibitors of bacterial growth (MIC values 2 to 16-fold lower than
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TABLE 1 | Synthetic techniques to obtain molecular structures containing triazolyl moieties reported in this review.

Method of synthesis Yield [%] References

Metal catalysed reaction CuAAC

RuAAC

AgAAC

Zinc-catalysed azide-alkyne cycloaddition

Copper-catalysed cascade reaction

Transition metal catalysed reaction

Ultrasound copper-catalysed reaction with

no ligands

–

–

68–99

49–76

64–68

52–85

≈80

Huisgen, 1963

Zhang et al., 2005

McNulty and Keskar, 2012

Smith and Greaney, 2013

Sudheendran et al., 2014

Ueda and Nagasawa, 2009

Cintas et al., 2010

SPPS Pseudo-dipeptide containing

building blocks

– Valverde et al., 2012

Microwave-assisted

reaction

Copper-mediated one-pot

three-component synthesis

Side chain-to-side chain cyclisation

12–55

25.5

Xu et al., 2015

D’Ercole et al., 2020

Others 1,5-electrocyclisation of β-substituted

α-diazocarbonyl compounds

Non-reductive conditions

Metal free azide-alkyne cycloaddition

47–93

76–99

37–92

Jordão et al., 2011

Kuang et al., 2010

Kwok et al., 2010

TABLE 2 | The structures of TPI analogues with minimal inhibitory concentrations (MIC) values by the standard 2-fold dilution protocol in µg × mL−1 (Cui et al., 2013).

Compound X1 X2 Y1 Y2 Bacillus

subtilis

Staphylococcus

epidermidis

Salmonella

enterica

Pseudomonas

aeruginosa

Escherichia

coli

TPI-1 S S S S 4 4 8 16 8

TPI-2 CH2 CH2 CH2 CH2 8 32 64 256 16

TPI-3 S CH2 S CH2 16 16 64 128 16

TPI-4 CH2 CH2 S S 8 16 32 64 16

TPI-5 S S CH2 CH2 8 16 64 64 16

TPI-6 S CH2 S S 8 8 64 64 64

TPI-7 S S S CH2 8 4 32 16 8

TPI-8 S S CH2 S 16 16 32 64 32

TPI-9 CH2 S S S 4 4 16 16 8

TPI-triazole 5.5 8 – – 10

TPI-triazole’ 4.5 10.5 – – 7

for TPI-1). Moreover, it was reported that neither the incorrectly
cyclised nor the linear analogues of TPI-1 showed significant
antimicrobial activity (Cui et al., 2013).

Antibacterial Properties of Triazole Peptide
Derivatives
Among many bioactive properties, the 1,2,3-triazolyl
derivatives can act as antibacterial agents. Liu et al. have
used the click chemistry to convert the Polybia-MPI (MPI),
a natural antimicrobial peptide (AMP) isolated from the
venom of the social wasp Polybia paulista. It possesses weak
haemolytic features and activity against gramme positive and

negative bacterial strains. The authors have synthesised two
intramolecular cyclic analogues containing the 1,2,3-triazolyl

moiety, C-MPI-1 and C-MPI-2, with different bridge orientation

with the goal of enhancing the MPI stability (Liu et al., 2017b).
The study outcomes are presented in the Table 3.

The structure C-MPI-1, cyclised at the i to i+4 positions,

presents an improved helical tendency in H2O, 50%
trifluoroethyl alcohol (TFE), 30mM sodium dodecyl sulphate
(SDS), and enhanced stability against trypsin in comparison
to MPI (parent peptide). On the other hand, the analogue
C-MPI-2, cyclised at the i to i+6 positions, lost helical structure
in the same environment. Therefore, the importance of the
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Staśkiewicz et al. Triazole-Modified Peptidomimetics

TABLE 3 | Amino acid sequence and antibacterial activities of MPI and its analogues with MIC values given in µM (NA, no antimicrobial activity) (Liu et al., 2017b).

Peptide Sequence Escherichia

coli

Staphylococcus

aureus

Bacillus

subtilis

Pseudomonas

aeruginosa

MPI 32 32 8 NA

C-MPI-1 64 64 8 NA

C-MPI-2 128 256 128 NA

TABLE 4 | The structures of anoplin and its analogues with antibacterial activities with MIC values given in µM (Liu et al., 2017a).

Peptide Sequence Escherichia

coli

Staphylococcus

aureus

Pseudomonas

aeruginosa

Bacillus

subtilis

Anoplin 64 64 16 16

J-AA 4 8 16 2

J-RR 8 4 16 4

J-AR 8 4 16 4

peptides helicity in antimicrobial activity was confirmed
(Liu et al., 2017b).

Moreover, Lui et al. described an efficient click chemistry
strategy to enhance in vivo and in vitro antimicrobial activity
of several peptides. Anoplin and cross-linked sequences, such as
anoplin analogue J-AA, the hexapeptide J-RR (RRWWRF), and
their chimaera J-AR were examined. All the designed analogues
remarkably increased the antimicrobial activity against bacteria
strains, such as E. coli, S. aureus, P. aeruginosa, and B. subtilis
(Table 4).

Furthermore, these peptides cross-linked by a triazole bridge,
forming an α-helical structure in 50% TFE conditions, were
able to kill the bacteria rapidly by membrane disruption. The
toxicity study of all analogues presented that J-AR and J-RR
did not display any toxicity in case of mature mice exposed to
concentration up to 120 mg/Kg and the 50% lethal dose (LD50)
of J-AA (53.6 mg/Kg). Additionally, the mice treated with these
peptidomimetics had lower degree of bacterial load than the
control group in the mouse model infected by Escherichia coli.
The structure J-RR exhibited high efficiency in decreasing blood

Frontiers in Chemistry | www.frontiersin.org 7 May 2021 | Volume 9 | Article 674705

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
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bacterial counts infected by Methicillin-resistant Staphylococcus
aureus (MRSA) strain in the mouse model. These results can be
the starting point for the development of drug candidates in the
future (Liu et al., 2017a).

Antifungal Activity of Peptides Including
1,2,3-Triazolyl Moieties in the Structures
Pathological states caused by pathogenic fungi are among the
most serious diseases (Zhang et al., 2016). In the last years, fungal
infections became a severe medical task because of many clinical
challenges, such as transplantation, HIV infections, application
of immunosuppressive agents, and cancer (Sadeghpour et al.,
2017). Structures containing the 1,2,3-triazolyl core play an
important function due to the wide therapeutic applications in
antifungal therapy. For this reason, the triazole-containing drugs
have been effectively developed and applied in the treatment of
numerous microbial infections for years (Yu et al., 2015). An
expanding resistance to the present antifungal treatments led
to the development of novel triazole derivatives with advanced
therapeutic indexes and enhanced antifungal spectrum (Wang
et al., 2014).

The azoles possess an activity against fungi by inhibition
of cytochrome P450 14α-demethylase (CYP51). This enzyme is
relevant in the pathway of ergosterol biosynthesis from lanosterol
in fungi and yeasts (Sadeghpour et al., 2017). The CYP51
contains an iron protoporphyrin unit situated in the active
site. It catalyses the oxidative removal of the 14α-methyl group
of lanosterol through characteristic activity of monooxygenase.
The azole nitrogen compounds as antifungal agents can block
the fungal ergosterol biosynthesis by binding to the iron ion
of the porphyrin. This action is performed by preventing the
penetration of the lanosterol to the active site of the enzyme.
The decrease of the 14α-methylated sterols aggregation with
the ergosterol adjusts the fluency of membranes, reduction
of extended penetrability, and activity of membrane-associated
enzymes. This phenomenon leads to the inhibition of fungal cells
growth (Sadeghpour et al., 2017) and replication (Yu et al., 2014).

The glycotriazole-peptide derivatives, proposed by Junior
et al., consist of the 1,2,3-triazolyl and monosaccharide
moieties attached to amino acid residues (Figure 5). They
proposed the glycotriazole-peptide from hylaseptin-P1 (HSP1),
an antimicrobial peptide characterised by a 14-amino acid
sequence C-terminal amide (HSP1-NH2). In this context, the
peptide chain was linked by the stable triazolyl bridge to the
saccharide moiety (Junior et al., 2017).

The antibacterial properties of HSP1-NH2, [p-Glc-
trz-G1]HSP1-NH2, [p-GlcNAc-trz-G1]HSP1-NH2, and
[trz-G1]HSP1-NH2 were tested against gramme positive
(S. aureus, S. agalactiae) and gramme negative strains (P.
aeruginosa, E. coli) and compared with chloramphenicol. Except
the S. agalactiae, almost all structures presented an antibacterial
activity against the investigated species. Noteworthily, these
assays indicated that the glycosylation promotes slight
antibacterial activity. However, the glycotriazole-peptides
and the [trz-G1]HSP1-NH2 displayed enhanced antifungal
abilities compared to HSP1-NH2. The peptide HSP1-NH2 has

FIGURE 5 | The glycotriazole-peptide derivatives (Junior et al., 2017).

no activity against Candida spp. strains. The triazole derivatives
presented visibly higher antifungal activity, suggesting the
importance of the triazole moiety in this process (Junior et al.,
2017).

Structures Containing the Triazole Motifs and Used

as Treatments in HIV
Lack of vaccines against human immunodeficiency virus type 1
(HIV-1) is a serious problem for public health. There is an urgent
need to develop novel antiretroviral agents for HIV-1 treatment.
Currently inhibitors applied in antiretroviral therapies target the
viral enzymes: protease, integrase, and transcriptase (Rosemary
Bastian et al., 2015). The virus attacks T-cells and macrophages
by fusion of the viral membrane with target cell membrane. In
this context, the entry of the virus into host cells is a good drug
target. In this process, an important role is displayed by the
glycoprotein from viral envelope, derived from the proteolytic
cleavage of a gp160 precursor into the gp120 surface protein
and the gp41 transmembrane protein. McFadden et al. proposed
the peptide triazole derivative of 12p1, HNG-156, including a
ferrocenyl triazole-substituted conjugate and binding to gp120
with an equilibrium dissociation constant of 7 nMKD, in contrast
to the 2,600 nM KD value for 12p1. The study demonstrated
that the HNG-156 is non-cytotoxic and has anti-HIV type 1
activity. The triazole peptide reacts well with all tested inhibitors
(McFadden et al., 2012). Rashad et al. examined the peptide
triazoles that inhibit HIV-1 cell infection and suppress gp120
receptor binding. The peptide triazole derivatives were stable to
chymotrypsin and trypsin (Rashad et al., 2015).

Triazole-Modified Peptidomimetics With
Anticancer Properties
Cancer is one of the most dreaded disease, characterised by
metastasis, invasion, and uncontrolled cell growth (Megally
Abdo and Kamel, 2015). Chemotherapy, radiation, and surgery
are the major techniques among many, contemporarily applied
for cancer treatment. Chemotherapy, the most used method
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(Shi et al., 2013), is regularly chosen in cancer cases where it
has metastasised in the organism. The discovery of innovative
anticancer drugs, presenting selectivity, and diminished side
effects for regular cells, is a challenge (Ajmal et al., 2019). Sun et al.
designed two cyclopeptide mimetics of second mitochondria-
derived activator of caspase (Smac) with replacement of two
amide bonds with two triazole moieties (Sun et al., 2010;
Figure 6).

Two above-mentioned peptidomimetics bind to cIAP-1,
cIAP-2 (inhibitor of cancer necrosis), and XIAP (blocking
apoptotic pathways by binding with low nanomolar affinities
and inhibiting caspases activity). Moreover, they can reclaim the
activity of caspase-3/-7 and caspase-9, inhibited by XIAP. The
structure 2 is ∼5-8 time more efficient inhibitor of cell growth
in two cell lines than compound 1 (Sun et al., 2010). For more
caspase inhibitors, please see the dedicated chapter in this review.

According to the literature surveys, substituted 1,2,4-
triazole, such as Anastrozole, Letrozole, and Vorozole are
significant chemotherapeutics used in the treatment of breast
cancer (Megally Abdo and Kamel, 2015). Baharloui et al.
have pointed that the two peptides GLTSK and GEGSGA,
including the triazolyl moieties, displayed significant anticancer
properties against breast and colon cancer cells. Moreover, the
peptidomimetics containing a triazole moiety presented higher
cytotoxic activity on MDA-MB-231 cells rather than on MCF-7
cells (Baharloui et al., 2019).

Tahoori et al. designed a molecule, which is highly active
against lung cancer cells (Tahoori et al., 2014; Figure 7).

The structure has revealed the prospective to be used in
tumour treatments by inducing apoptosis in some cancer cells
known to have transformed ras oncogene. The anticancer activity

FIGURE 6 | The cyclic peptidomimetic of Smac (structure 2: R = phenyl;

structure 3: R = benzyl) (Sun et al., 2010).

was examined in vitro and this peptidomimetic has shown a
significant activity against cancer cells withmutated ras oncogene
such as A549, C26, and PC3 cells. This study demonstrates the
role of the 1,2,3-triazole motif in the peptides bioactivity (Tahoori
et al., 2014).

Triazolyl-Containing Peptidomimetics as
Human Enzymes Inhibitors
Enzymes play a pivotal role in all living organisms. Their
dysfunctions and hyperactivity may lead to either disorders
and lethal diseases (Copeland, 2005). Drug design based on
enzyme inhibition mechanism is known for years and now
it is a broadly investigated area, including low-molecular
bioactive compounds (Hałdys et al., 2021), through macrocycles
(Mallinson and Collins, 2012), and peptides or peptidomimetics
on a final note (Gudapaty et al., 1985). Unfortunately, peptides
are highly susceptible to enzymatic degradation and due to
this obstacle, various modifications must be applied in order
to increase the structure stability in vivo (Errante et al.,
2021; Ledwoń et al., 2021). One of the most interesting
approaches to solve this problem is the triazole moiety
incorporation, leading to the peptidomimetic sequences with
specific structural assets and enhanced life-time in cells (Fabbrizzi
et al., 2014). In this review, we report a spectrum of scientific
papers concerning peptidomimetics including the triazole ring,
presenting significant inhibiting properties frequently supported
by enzymatic selectivity.

Arginine Deaminase-4
The protein arginine deaminase-4 (PAD-4) belongs to the
protein arginine deaminases (PAD) family, calcium-dependent
enzymes highly involved in cellular growth and differentiation.
Overactive PAD-4 leads to augmented citrullination process,
correlated with several pathologies, such as multiple sclerosis
(MS), Alzheimer’s disease, and rheumatoid arthritis. Therefore,
there is a remarkable requirement of chemicals able to decrease
the PAD-4 activity. Trabocchi et al. (2015) synthesised a library of
peptidomimetic compounds with an N- or C-terminal guanidino
group. All sequences were obtained via copper(I)-catalysed 1,3-
Huisgen cycloaddition and it resulted with 16 different 1,2,3-
triazole derivatives. In Table 5 we reported the data of in vitro
inhibition assays performed with two different concentrations
of each compound, and then compared with chloroamidine
(irreversible and commercially available inhibitor of PAD-4). Five
molecules were inactive, while the rest achieved 5-41% or 16-99%
inhibition at 1 and 10mM concentration, respectively. Besides,
the chloroamidine showed inhibitory effect of 24% (CM = 1mM)
and 36% (CM = 10mM). Molecular modelling calculations have
demonstrated that the bond formation between the 1,2,3-triazole
ring and Arg374 or Trp347 residues is particularly favoured,
and this preference depends on the lengths of the side chains
(Trabocchi et al., 2015).

Calpain-2
Calpains, a family of 15 neutral proteases, influence the wide
range of cellular functions. Their calcium-dependent mechanism
of action is not consistent for each one of the fifteen family
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FIGURE 7 | The peptidomimetic active against lung cancer cells, including a triazole moiety (Tahoori et al., 2014).

members, as some of them require lower or higher calcium
concentrations (Potz et al., 2016; Baudry, 2019). Increased release
of Ca2+ may result in calpain overactivation, then it promotes
cellular apoptosis and results in organ dysfunctions, e.g., brain,
eyes, heart, lungs, pancreas, kidneys, vascular system, and skeletal
muscles (Potz et al., 2016). As a consequence, calpains inhibitors
are contemporary investigated and among the recently described
molecules, a few contain the triazole ring.

In 2012, Pehere and Abell proposed an optimised procedure
for the macrocyclic peptidomimetics synthesis. Additionally,
they studied the impact of β-strand geometry on the calpain-2
inhibition efficiency (Pehere and Abell, 2012). It is proved that
linear peptides constrained into a well-organised conformation,
e.g., β-strand, can offer significant advantages relevant for
their bioactivity. In this framework, the Huisgen cycloaddition
is a very promising platform useful for the synthesis of
macrocycles, successfully mimicking the β-strand geometry.
These modifications improve peptide biostability and limit the
conformational mobility, that is exceptionally important in the
context of inhibitors design. Interestingly, the conformationally
preferred C-terminal aldehyde group, together with the
amino acid hydrophobicity were noticed and figured during
the synthesis.

A fluorescence-based assay was used to determine in vitro
activity of the obtained products. IC50 values of remarkably
potent molecules were calculated as 97 and 89 nM for two 21-
memberedmacrocyclic aldehydes. This was then explained by the
β-strand conformation adopted by these macrocycles. Notably,
two non-cyclic aldehydes also investigated in this research
were much less potent inhibitors than their cyclic analogues.
Thereby, the importance of the depicted structural modifications
was demonstrated.

Ghrelin O-acyltransferase
Ghrelin, a 28-residue acylated peptide with an n-octanoyl
(C8) group on Ser3, is primarily generated by the stomach

(Kojima et al., 1999). It is particularly implicated in processes
associated with nutrition, being able to stimulate appetite,
participating in insulin secretion and glucose regulation (Zhao
et al., 2015). However, ghrelin was found as an important factor
in other metabolic functions (Moulin et al., 2013). Ghrelin
O-acyltransferase (GOAT), identified in 2008, catalyses the
acylation of both proghrelin and the mature ghrelin (Yang et al.,
2008). The unique nature of this process creates an ideal target
for ghrelin activity inhibitors design.

Houghland and his group have designed 10 different, short
peptidomimetics bearing a 1,2,3-triazole-linked lipid (Zhao
et al., 2015). The previously mentioned hydrophobicity of
residues was respected also in this case. The performed
research has proven that the exchange of easily hydrolysed
ester or amide linkages with the biostable triazole linkage is
tolerated by the human GOAT. Additionally, the attachment
of hydrophobic groups gains the potency and provides visibly
better results in the context of GOAT inhibition (IC50 value of
0.7 µM).

Cysteine Proteases
The family of cysteine proteases is a well-described and
known for years group of enzymes, able to degrade
proteins (Chapman et al., 1997). However, their role in
human biology cannot be considered only in this category.
Cysteine proteases can also regulate apoptosis, immune
responses, and prohormone managing, with addition to
the processing of extracellular matrix (ECM) remodelling
pathway (Chapman et al., 1997). Thereupon, it has been
assumed that cysteine proteases can be partially responsible
for collagen degradation in cells. Two enzymes belonging
to the above-mentioned group, caspases, and cathepsins,
have been described in this chapter, as their inhibitors
containing the triazole moiety were recently defined
and examined.
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TABLE 5 | The most effective PAD-4 inhibitors: commercially available chloroamidine and three 1,2,3-triazole-modified peptidomimetics 8, 14, and 16 (Trabocchi et al.,

2015).

PAD-4 inhibitor Inhibitory effect on

PAD-4

Chemical structure

Chloroamidine 24% for CM = 1mM

36% for CM = 10 mM

(8) 39% for CM = 1mM

99% for CM = 10 mM

(14) 41% for CM = 1mM

99% for CM = 10 mM

(16)
18% for CM = 1mM

99% for CM = 10 mM

Caspases
An excellent and detailed review on different classes of caspases
was published in 2015 by Poreba et al. (2015), reporting
their properties, substrate specificity, and therapeutic strategies.
Mainly, caspases are involved in numerous biological cell
mechanisms, such as apoptosis, inflammation, differentiation,
and survival in general. The dysregulation of caspases leads to
many pathological states, e.g., connected to cardiovascular and
nervous systems or carcinogenesis. For example, caspase over
expression is supposed to be responsible for the non-regulated
proliferation and tumour cells migration, thus resulting in severe
illnesses or patients death (Gora and Latajka, 2015).

Disrupted apoptotic pathways occurring in different cancer
types can be explained, among others, by the increased
amount of inhibitors of apoptosis proteins (IAPs), which
deactivate proteolytic caspases (Le Quement et al., 2011).
The second mitochondria-derived activator of caspase, Smac
protein, is an inhibitor of one of the IAPs classes. In 2011,
Nielsen and co-workers described the solid-phase synthesis
of a Smac-derived library of tetrapeptides, based on the
AVPF sequence. Including, Smac peptidomimetics with
triazole-prolines and biarylalanine motifs in the structure. The
biological screening of the synthesised molecules, including
the diversification between cis and trans isomers, have shown
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promising bioactive properties. For example, in the case of
triazole-proline containing Smac mimetics, their cis analogues
were more potent than trans. Triazoloproline and biarylalanine
libraries revealed IAP inhibition, therefore proving the relevance
of the structural modifications.

Although this review is essentially focused on
peptidomimetics, relevant papers regarding triazole-containing
small molecules are described below. In 2015, Guo et al.
investigated three series of 1,4-disubstituted 1,2,3-triazoles as
inhibitors of caspase-3 and caspase-7 (Guo et al., 2015). Among
the most potent caspase-3 and caspase-7 inhibitors with IC50

values in nM range, it was found that the crucial role for their
activity was played by the N-terminal incorporation of the urea
group. Molecular docking studies have confirmed the formation
of hydrogen bonds in the binding site of caspase-3, relevant for
the inhibition mechanism.

Isosteric replacement of an amide bond by the 1,2,3-triazole
moiety was in the focus on another work by Corredor et al.
(2015). All the synthesised compounds were examined as
inhibitors of apopotosome-dependent activation of procaspase-9.
It was noted that the unexpected formation of β-lactams occurs
during the synthesis. Also, these analogues were chosen to
be tested with procaspase-9. The obtained IC50 values in the
nM range were satisfying enough. Moreover, for the isomeric
molecules, the β-lactam scaffold has shown better results.

Another detailed study on the caspases 1-3 and 6-9 was
performed by Leyva et al. (2010). The substrate activity screening
method (SAS) was applied to identify the substrates of caspase-6
and caspase-9. Then, the reporter groups in the most potent
substrates were replaced with the pharmacophore including
the 1,2,3-triazole moiety. The study led to three non-peptide
inhibitors with irreversible character, showing high deactivating
properties of caspases and weak or no inhibition of other
cysteine proteases.

Cathepsins
In 2012, Valverde et al. presented an interesting study reporting
for the first time the use of CuAAC reaction “for the assembly
of unprotected peptide fragments into a bioactive triazole-
containing protein” (Valverde et al., 2012). They indicated the
importance of the triazole moiety in forming a secondary
structure by hydrogen bonding and other stabilising interactions.

In the above-mentioned paper, the authors use cystatin A as
a potent inhibitor of cysteine proteases, including cathepsins.
It complies with requirements of a molecule well-suited into
the active site cleft, e.g., the N-terminal glycyl residue, the C-
terminal β-hairpin loop and, placed centrally, the β-hairpin loop
with the QXVXG motif. Therefore, the 97-amino acids sequence
of cystatin A has been divided into three shorter fragments.
Their SPPS was performed and the triazole linker was inserted
to connect them into one chain. The inhibition screening for
cathepsin B, H, and L was performed and inhibitory results in line
with these presented in the literature were observed (K i values
in nanomoles). The synthesised molecules adopt a 3D structure,
comparable to the native proteins. In addition, the triazole-
containing analogue displayed a proper interactions with the
protein, thereby indicating its role in the biological mechanism.

A follow-up to Pehere and Abell work (Pehere and Abell,
2012), presented in the chapter on calpain II inhibitors, is the
screening of 11 novel macrocyclic compounds against a panel
of proteases, including cathepsins and calpain II (Pehere et al.,
2013), compared to four acyclic analogues. All of them consisted
of C-terminal aldehyde, favouring the interaction with the active
cleft of the targeted protease. All peptidomimetics were efficiently
inhibiting cathepsin S, with IC50 values <5 nM. Eight out of
the fifteen tested compounds were also visibly active against
cathepsin L (IC50 between 10 and 50). Effect of macrocyclization
is supposed to enhance the potency of inhibition, due to the lower
IC50 values found for the cyclic mimetics.

A recently published article delineating triazole-containing
peptides and azapeptides as potential inhibitors of cathepsins K
and S is also worth to be noticed (Galibert et al., 2018). Lalmanach
and his group have synthesised four compounds, among which
the ones containing the 1,4-disubstituted 1,2,3-triazole moiety
or a semicarbazide bond were reported, thus replacing the
Cα of glycine by a nitrogen atom. The screening resulted
with noticeably better outcomes for aza-Gly analogues respect
to triazole-mimetics. However, both groups have shown an
interesting activity (K i around nM vs. mM range, respectively).
Indeed, molecular modelling studies explain the preference of the
semicarbazide bond, as found for the foremost analogues.

Serine Proteases
According to the detailed and undoubtedly valuable review
published in 2000 describing serine protease family, this
group of enzymes covers one-third of all classified proteases
(Hedstrom, 2002). Four subclasses, that are chymotrypsin,
subtilisin, carboxypeptidase Y, and Clp protease with the classic
catalytic triad (His, Asp, and Ser) can be distinguished (Rawlings,
2000). Afterwards, some additional subclasses have been found
(for more details, see the cited review). Overactive serine
proteases may lead to interrupted gastrointestinal physiology, as
they are secreted in the pancreas in order to be activated for
digestive purposes. Thus, this pathological state can be found
in Crohn’s disease or Ulcerative Colitis patients (Denadai-Souza
et al., 2018).

A different trypsin-like serine protease, the fibrinolytic
enzyme plasmin, takes part in the blood fibrin clots degradation
(Saupe and Steinmetzer, 2012).

In this chapter, we mention some new peptidomimetic
inhibitors of serine proteases, possessing the triazole bridge,
present in the structure.

Trypsin-Like Serine Proteases
There are a few relevant triazolyl-containing peptidomimetics,
that can be classified as trypsin-like serine proteases inhibitors.
Most of them have been designed on the grounds of the sunflower
trypsin inhibitor-1 (SFTI-1). Herein, we report several forms that
have been reported to decrease the enzyme activity in a relatively
efficacious way. In 2013, Fittler et al. designed, synthesised, and
tested a library consisting of 22 compounds, in order to enhance
the inhibitory activity of the parent STFI-1 structure. Among
these modifications, 16 compounds were represented as the
triazole-derivatives (Fittler et al., 2013). Apart the triazolyl bridge
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incorporation, other refinements were applied such as sequence
shortening and non-natural amino acids coupling. Nanomolar
activity of the synthesised molecules was then explained by in
silico experiments, thus indicating an additional proton donor-
acceptor interaction of basic ε2-N in histidine and acidic residues
in the protease active cleft.

Similar work focused on the introduction of 1,4-disubstituted
1,2,3-triazoles into the peptide sequences that were prepared
by Empting et al. (2011). They proposed the disulphide-bridge
replacement, with the idea in mind of conformation rigidity
enhancement leading to a more effective activity than the STFI-
1. The four analogues developed were then tested biologically.
One of the 1,5-disubstituted 1,2,3-triazole peptidomimetics
displayed nanomolar inhibitory power, in line with the results of
disulphide-bridged STFI-1.

Plasmin
Saupe and Steinmetzer described the synthetic strategy to
obtain potent and selective peptide inhibitors of plasmin (Saupe
and Steinmetzer, 2012). Plasmin, already mentioned in the
introduction of this section, is a non-specific trypsin-like serine
protease, participating in blood fibrin clots degradation. Hence,
inhibitors of plasmin can be employed in the hyperfibrinolysis
treatment, occurring for instance, in organ transplantation.

The copper-catalysed azide alkyne cycloaddition and solid-
phase peptide synthesis yielded 12 different peptidomimetics,
including rigid triazole rings in the side chains. All analogues
were examined against five different proteases, including
plasmin. The lowest and particularly interesting value obtained
for one of the structures, that is K i = 0.77 nM, indicated the
effectiveness in the inhibitory activity and the selectivity among
other proteases (thrombin, factor Xa, and aPC).

Dipeptidyl Peptidase IV
There is a wealth of patents filed in the area of dipeptidyl
peptidase IV (DPP IV) inhibitors. Major part of the structures
includes structural modifications to achieve higher stability and
selectivity. A highly applicative article reporting patents in the
field of DPP IV inhibitors featuring peptides, peptidomimetics,
and triazolyl moieties, was presented in 2011 by Mendieta et al.
and certainly is worth to be mentioned in the present review
(Mendieta et al., 2011).

Enzymes and corresponding peptidomimetic inhibitors with
triazole-modified sequences described in this review, are
summarised in the Table 6.

CONCLUSIONS

In this review we have highlighted the most relevant studies
concerning the synthesis of peptidomimetics containing the
1,2,3-triazolyl moiety and the corresponding biological activity.
Peptides containing triazolyl rings are a typical example of
peptidomimetics. They demonstrate all the advantages over
classic peptides. Both efficient synthetic methods and biological
activity make these systems interesting and promising object
of research.

TABLE 6 | Enzymes and corresponding peptidomimetic inhibitors with

triazole-modified sequences, described in this review.

Enzyme class Enzyme name References

Arginine

deiminases

Arginine

deiminase-4

Trabocchi et al., 2015

Neutral,

Ca2+-dependent

proteases

Calpain-2 Pehere and Abell, 2012

Acyltransferases Ghrelin

O-acyltransferase

Zhao et al., 2015

Cysteine

proteases

Caspases Le Quement et al., 2011

Non-peptide

triazole-derivatives:

Guo et al., 2015

Corredor et al., 2015

Leyva et al., 2010

Cathepsins Valverde et al., 2012

Pehere et al., 2013

Galibert et al., 2018

Serine proteases Matriptase Fittler et al., 2013

Empting et al., 2011

Plasmin Saupe and Steinmetzer,

2012

Dipeptidyl

peptidase IV Review on patents on DPP

IV inhibitors:

Mendieta et al., 2011

In particular, triazolyl-containing peptidomimetics can be
widely applied as anticancer, antibacterial, antifungal, and
antiviral agents. It is worth to notice that these modifications
provide higher bioactivity and stability compared to the
non-modified analogues. Our insights may be an interesting
summary for further investigations in drug design including
triazolyl moieties.
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Staśkiewicz et al. Triazole-Modified Peptidomimetics

field of Biotechnology and Nanotechnology, co-financed by the
European Union. The PhD of AS was performed in the context
of a Cotutorate between the PhD Schools in Chemical Sciences
of the University of Florence (XXXV Ciclo) and of the Wroclaw
University of Science and Technology (supervisors: AMP and

RL). The PhD of PL was performed in the context of a Cotutorate
between the PhD Schools in Drug Research and Innovative
Treatments of the University of Florence (XXXV Ciclo) and in
Chemical Sciences of the Wroclaw University of Science and
Technology (supervisors: PR and RL).

REFERENCES

Ajmal, M., Yunus, U., Graham, R. M., and Leblanc, R. M. (2019). Design,

synthesis, and targeted delivery of fluorescent 1,2,4-triazole–peptide

conjugates to pediatric brain tumor cells. ACS Omega 4, 22280–22291.

doi: 10.1021/acsomega.9b01903

Akula, H. K., and Lakshman, M. K. (2012). Synthesis of deuterated 1,2,3-triazoles.

J. Org. Chem. 77, 8896–8904. doi: 10.1021/jo301146j

Baharloui, M., Mirshokraee, S. A., Monfared, A., and Houshdar Tehrani,

M. H. (2019). Design and synthesis of novel triazole-based peptide

analogues as anticancer agents. Iran J. Pharm. Res. 18, 1299–1308.

doi: 10.22037/ijpr.2019.111722.13320

Baudry, M. (2019). Calpain-1 and Calpain-2 in the Brain: Dr.

Jekill and Mr Hyde? Curr. Neuropharmacol. 17, 823–829.

doi: 10.2174/1570159X17666190228112451

Cantel, S., Le Chevalier Isaad, A., Scrima, M., Levy, J. J., DiMarchi, R. D., Rovero,

P., et al. (2008). Synthesis and conformational analysis of a cyclic peptide

obtained via i to i+4 intramolecular side-chain to side-chain azide–alkyne

1,3-dipolar cycloaddition. J. Org. Chem. 73, 5663–5674. doi: 10.1021/jo800142s

Chapman, H. A., Riese, R. J., and Shi, G.-P. (1997). Emerging roles for

cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–88.

doi: 10.1146/annurev.physiol.59.1.63

Cintas, P., Barge, A., Tagliapietra, S., Boffa, L., Cravotto, G. (2010). Alkyne–azide

click reaction catalyzed by metallic copper under ultrasound. Nat. Protoc. 5,

607–616. doi: 10.1038/nprot.2010.1

Copeland, R. A. (2005). Evaluation of enzyme inhibitors in drug discovery. A

guide for medicinal chemists and pharmacologists. Methods Biochem. Anal.

46, 1–265.

Corredor, M., Garrido, M., Bujons, J., Orzáez, M., Pérez-Payá, E., Alfonso,

I., et al. (2015). Efficient synthesis of conformationally restricted apoptosis

inhibitors bearing a triazole moiety. Chem. Eur. J. 21, 14122–14128.

doi: 10.1002/chem.201502380

Costa, A. V., Oliveira, M. V. L., de, Pinto, R. T., Moreira, L. C., Gomes, E. M.

C., Alves, T., et al. (2017). Synthesis of novel glycerol-derived 1,2,3-triazoles

and evaluation of their fungicide, phytotoxic and cytotoxic activities.Molecules

22:1666. doi: 10.3390/molecules22101666

Creary, X., and Sky, A. F. (1990). Reaction of arylbromodiazirines with azide ion.

Evidence for N-azidodiazirine intermediates. J. Am. Chem. Soc. 112, 368–374.

doi: 10.1021/ja00157a056

Cui, H.-K., Guo, Y., He, Y., Wang, F.-L., Chang, H.-N., Wang, Y.-J., et al. (2013).

Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics.

Angew. Chem. Int. Ed. 52, 9558–9562. doi: 10.1002/anie.201302197

Denadai-Souza, A., Bonnart, C., Tapias, N. S., Marcellin, M., Gilmore, B.,

Alric, L., et al. (2018). Functional proteomic profiling of secreted serine

proteases in health and inflammatory bowel disease. Sci. Rep. 8:7834.

doi: 10.1038/s41598-018-26282-y

D’Ercole, A., Sabatino, G., Pacini, L., Impresari, E., Capecchi, I., Papini, A.

M., et al. (2020). On-resin microwave-assisted copper-catalyzed azide-alkyne

cycloaddition of H1-relaxin B single chain ‘stapled’ analogues. Peptide Sci.

112:e24159. doi: 10.1002/pep2.24159

Empting, M., Avrutina, O., Meusinger, R., Fabritz, S., Reinwarth, M., Biesalski,

M., et al. (2011). “Triazole bridge”: disulfide-bond replacement by ruthenium-

catalyzed formation of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed.

50, 5207–5211. doi: 10.1002/anie.201008142

Errante, F., Menicatti, M., Pallecchi, M., Giovannelli, L., Papini, A. M.,

Rovero, P., et al. (2021). Susceptibility of cosmeceutical peptides to

proteases activity: development of dermal stability test by LC-MS/MS

analysis. J. Pharm. Biomed. Anal. 194, 113775. doi: 10.1016/j.jpba.2020.

113775

Fabbrizzi, P., Menchi, G., Guarna, A., and Trabocchi, A. (2014). Use of click-

chemistry in the development of peptidomimetic enzyme inhibitors.Curr.Med.

Chem. 21, 1467–1477. doi: 10.2174/0929867321666131218093611

Fittler, H., Avrutina, O., Glotzbach, B., Empting, M., and Kolmar, H. (2013).

Combinatorial tuning of peptidic drug candidates: high-affinity matriptase

inhibitors through incremental structure-guided optimization. Org. Biomol.

Chem. 11:1848. doi: 10.1039/c3ob27469a

Galibert, M., Wartenberg, M., Lecaille, F., Saidi, A., Mavel, S., Joulin-Giet, A., et al.

(2018). Substrate-derived triazolo- and azapeptides as inhibitors of cathepsins

K and S. Eur. J. Med. Chem. 144, 201–210. doi: 10.1016/j.ejmech.2017.12.012

Ganesh, V., Sudhir, V. S., Kundu, T., and Chandrasekaran, S. (2011). 10 years

of click chemistry: synthesis and applications of ferrocene-derived triazoles.

Chem. Asian J. 6, 2670–2694. doi: 10.1002/asia.201100408

Gora, J., and Latajka, R. (2015). Involvement of cysteine proteases in cancer. Curr.

Med. Chem. 22, 944–957. doi: 10.2174/0929867321666141106115624

Gudapaty, S. R., Liener, I. E., Hoidal, J. R., Padmanabhan, R. V., Niewoehner, D. E.,

and Abel, J. (1985). The prevention of elastase-induced emphysema in hamsters

by the intratracheal administration of a synthetic elastase inhibitor bound to

albumin microspheres. Am. Rev. Respir. Dis. 132, 159–163.

Guo, Z., Yan, Z., Zhou, X., Wang, Q., Lu, M., Liu, W., et al. (2015).

Synthesis and biological evaluation of novel 1,2-benzisothiazol-3-one-derived

1,2,3-triazoles as caspase-3 inhibitors. Med. Chem. Res. 24, 1814–1829.

doi: 10.1007/s00044-014-1259-7

Hałdys, K., Goldeman, W., Anger-Góra, N., Rossowska, J., and Latajka,

R. (2021). Monosubstituted acetophenone thiosemicarbazones as potent

inhibitors of tyrosinase: synthesis, inhibitory studies, and molecular docking.

Pharmaceuticals 14:74. doi: 10.3390/ph14010074

Hedstrom, L. (2002). Serine protease mechanism and specificity. Chem. Rev. 102,

4501–4524. doi: 10.1021/cr000033x

Holland-Nell, K., and Meldal, M. (2011). Maintaining biological activity by using

triazoles as disufide bond mimetics. Angew. Chem. Int. Ed. 50, 5204–5206.

doi: 10.1002/anie.201005846

Huisgen, R. (1963). Kinetics and mechanism of 1,3-dipolr cycloadditions. Angew.

Chem. Int. Ed. Engl. 2, 633–645. doi: 10.1002/anie.196306331

Jordão, A. K., Ferreira, V. F., Souza, T. M. L., de Souza Faria, G. G.,

Machado, V., Abrantes, J. L., et al. (2011). Synthesis and anti-HSV-1

activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem. 19, 1860–1865.

doi: 10.1016/j.bmc.2011.02.007

Junior, E. F. C., Guimarães, C. F. R. C., Franco, L. L., Alves, R. J., Kato, K. C.,

Martins, H. R., et al. (2017). Glycotriazole-peptides derived from the peptide

HSP1: synergistic effect of triazole and saccharide rings on the antifungal

activity. Amino Acids 49, 1389–1400. doi: 10.1007/s00726-017-2441-2

Kaushik, C. P., Kumar, K., Singh, D., Singh, S. K., Kumar Jindal, D., and

Luxmi, R. (2015). Synthesis, Characterization, and Antimicrobial Potential

of Some 1,4-Disubstituted 1,2,3-Bistriazoles. Synth. Commun. 45, 1977–1985.

doi: 10.1080/00397911.2015.1056796

Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K.

(1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach.

Nature 402, 656–660. doi: 10.1038/45230

Kuang, G.-C., Michaels, H. A., Simmons, J. T., Clark, R. J., and Zhu, L. (2010).

Chelation-assisted, Copper(II)-acetate-accelerated azide–alkyne cycloaddition.

J. Org. Chem. 75, 6540–6548. doi: 10.1021/jo101305m

Kwok, S. W., Fotsing, J. R., Fraser, R. J., Rodionov, V. O., and Fokin, V. V. (2010).

Transition-metal-free catalytic synthesis of 1,5-Diaryl-1,2,3-triazoles.Org. Lett.

12, 4217–4219. doi: 10.1021/ol101568d

Le Chevalier Isaad, A., Barbetti, F., Rovero, P., D’Ursi, A. M., Chelli, M., Chorev,

M., et al. (2008). Nα-fmoc-protected ω-azido- and ω-Alkynyl-L-amino acids as

building blocks for the synthesis of “clickable” peptides. Eur. J. Org. Chem. 31,

5308–5314. doi: 10.1002/ejoc.200800717

Frontiers in Chemistry | www.frontiersin.org 14 May 2021 | Volume 9 | Article 674705

https://doi.org/10.1021/acsomega.9b01903
https://doi.org/10.1021/jo301146j
https://doi.org/10.22037/ijpr.2019.111722.13320
https://doi.org/10.2174/1570159X17666190228112451
https://doi.org/10.1021/jo800142s
https://doi.org/10.1146/annurev.physiol.59.1.63
https://doi.org/10.1038/nprot.2010.1
https://doi.org/10.1002/chem.201502380
https://doi.org/10.3390/molecules22101666
https://doi.org/10.1021/ja00157a056
https://doi.org/10.1002/anie.201302197
https://doi.org/10.1038/s41598-018-26282-y
https://doi.org/10.1002/pep2.24159
https://doi.org/10.1002/anie.201008142
https://doi.org/10.1016/j.jpba.2020.113775
https://doi.org/10.2174/0929867321666131218093611
https://doi.org/10.1039/c3ob27469a
https://doi.org/10.1016/j.ejmech.2017.12.012
https://doi.org/10.1002/asia.201100408
https://doi.org/10.2174/0929867321666141106115624
https://doi.org/10.1007/s00044-014-1259-7
https://doi.org/10.3390/ph14010074
https://doi.org/10.1021/cr000033x
https://doi.org/10.1002/anie.201005846
https://doi.org/10.1002/anie.196306331
https://doi.org/10.1016/j.bmc.2011.02.007
https://doi.org/10.1007/s00726-017-2441-2
https://doi.org/10.1080/00397911.2015.1056796
https://doi.org/10.1038/45230
https://doi.org/10.1021/jo101305m
https://doi.org/10.1021/ol101568d
https://doi.org/10.1002/ejoc.200800717
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
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