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The demise of cells in various ways enables the body to clear unwanted cells. Studies over
the years revealed distinctive molecular mechanisms and functional consequences of
several key cell death pathways. Currently, the most intensively investigated programmed
cell death (PCD) includes apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis,
and autophagy, which has been discovered to play crucial roles in modulating the
immunosuppressive tumor microenvironment (TME) and determining clinical outcomes
of the cancer therapeutic approaches. PCD can play dual roles, either pro-tumor or anti-
tumor, partly depending on the intracellular contents released during the process. PCD
also regulates the enrichment of effector or regulatory immune cells, thus participating in
fine-tuning the anti-tumor immunity in the TME. In this review, we focused primarily on
apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, discussed
the released molecular messengers participating in regulating their intricate crosstalk with
the immune response in the TME, and explored the immunological consequence of PCD
and its implications in future cancer therapy developments.

Keywords: apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, autophagy, tumor microenvironment,
tumor immunotherapy
INTRODUCTION

To maintain the physiological homeostasis in normal or stress-challenged (injury or infection, etc.)
states, cells adopt different cell death pathways which generate distinctive morphological and
functional outcomes (Table 1). In an adult, approximately 50~70 billion cells die each day to
maintain a healthy turnover of cells (48). Programmed Cell Death (PCD) and non-PCD both are
demonstrated to participate in this turnover process of the cells. However, PCD is orchestrated by
precise molecular circuitry whereas non-PCD such as necrosis is characterized as a premature death
caused by injury. We will limit our discussion on PCD and its communication with the immune
milieu in the context of the tumor microenvironment (TME) in this review.

According to the ability to initiate further adaptive immune response or not, PCD can be further
categorized as immunogenic and non-immunogenic (or tolerogenic) ones (44). Immunogenic PCD
alerts the surrounding immune system of potential danger through the release of cellular
components, mainly pro-inflammatory cytokines, or other damage-associated molecular patterns
(DAMPs). These signals are recognized by the Pattern Recognition Receptors (PRRs) on innate
immune cells, thus activating subsequent immune responses. On the other hand, non-immunogenic
org March 2022 | Volume 13 | Article 8473451
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cell death such as apoptosis maintains the integrity of the cell
membrane without leaking cellular contents, therefore leading to
a “silent” clearance by phagocytic cells without initiating further
inflammation (49).

Besides apoptosis, several other well-recognized PCD
pathways, necroptosis (50, 51), pyroptosis (27, 36, 52), and
ferroptosis (53–56), etc. have also been found to be tightly
regulated and connected with the tumor immunity in TME.
Interestingly, one pro-survival strategy to avoid extensive PCD
adopted by cells is called autophagy. It’s also worth mentioning
that autophagy could convert into yet another type of PCD
under certain physiological circumstances (57, 58). Therefore, a
game between pro-survival and pro-death pathways shapes the
heterogeneity and complexity of the tumor immunity in TMEs.
Here, we will constrain our discussion on the following types of
PCD, apoptosis, necroptosis, pyroptosis, PANoptosis, ferroptosis,
and autophagy, respectively.
APOPTOSIS

One of the earliest well-recognized non-immunogenic PCD is
apoptosis (1, 59–65), which is elegantly orchestrated by the
sequential cleavages of the aspartate-specific proteases [caspases
(49, 65)]. This leads to cell membrane blebbing and the generation
of apoptotic bodies, nucleus condensation, and cellular organelle/
DNA fragmentation. These alterations eventually cause cell
disintegration followed by the engulfment by phagocytic
housekeepers from the innate immunity without releasing
proinflammatory cellular contents to the extracellular environment.
Although typical apoptosis is non-immunogenic, studies indicated
that, under certain conditions such as caspase deficiency, apoptosis
could indeed trigger adaptive anti-tumor or anti-viral immune
responses by activating NF-kB signaling (66) and cGAS/STING
pathway, respectively (67, 68). Moreover, radiotherapy or
chemotherapy could induce immunogenic apoptosis as well.

In the TME, drugs or cytotoxic immune cells induced
apoptosis has long been considered as the primary way of
cancer cell clearance in TME. Unfortunately, drugs showing
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potent anti-tumor potency in vitro mostly lost their
cytotoxicity or quickly develop drug resistance in patients (69).
Moreover, the immunosuppressive nature such as low pH,
hypoxia, and ROS of the TME also mediates the exhaustion
and apoptosis of cytotoxic immune cells at the same time,
facilitating the growth of pro-tumoral immune cells such as
Treg, M2 macrophage, and myeloid-derived suppressor cells
(MDSC) (70–79). As a result, cancer cell apoptosis is
commonly attenuated in the TME due to the loss of cytotoxic
tumor immunity and/or apoptotic signals of cancer cells (77).
Therefore, re-initiation of cancer cell-specific apoptosis in TME
is one of the focuses of cancer study (80). For instance, Agonists
such as APG350, AMP655 targeting TRAIL (tumor necrosis
factor (TNF) related apoptosis-inducing ligand) receptor
signaling could selectively induce cancer cell apoptosis in mice
models but limited benefits was observed in cancer patients (81–
86). It is also worth noticing that few studies evaluated the
potential damage of chemotherapy or radiation to the immune
cells. In fact, apoptosis of immune cells, such as cytotoxic T cells,
can directly undermine the anti-tumor immunity in the TME
(87, 88). Thus, careful assessments on different apoptosis-
inducing strategies may pave a way for scientists to constrain
or clear cancerous cells without compromising the anti-
tumor immunity.
NECROPTOSIS

Contrary to necrosis, necroptosis (89–91) belongs to PCD and
can trigger inflammation in TME when apoptosis is prohibited
(41, 51). Necroptosis differentiates itself from apoptosis in that its
progression does not involve caspases activation. It is instead
mediated by external signals that trigger activation of Receptor-
Interacting Protein 1 (RIP1), RIP3, and Mixed-Lineage Kinase
Domain-Like (MLKL) signaling cascade. MLKL pseudokinase is
one of the main actors of necroptosis due to its ability to form
membrane pores via polymerization and insertion into the
plasma membrane. Notably, necroptosis involves the
permeabilization of the lysosomal membrane followed by
TABLE 1 | Summary of key features of PCD.

Apo-
ptosis

Pyro-
ptosis

Ferro-
ptosis

Necro-
ptosis

PANo-
ptosis

Auto-
phagy

Ref.

Morphological features Pore formation X √ √ √ √ X (1–9)
Membrane blebbing √ √ X X TBD X (10–14)
Mitochondria dysfunction √ √ √ √ TBD X (15–25)
DNA fragmentation √ √ X √ TBD X (26–32)
Cell swelling X √ √ √ TBD X (5, 33–35)

Major regulatory
components

Caspase cleavages √ √ X X √ X (36–38)
GSDM family activation X √ X X √ X (27, 38–40)
RIP/MLKL Signaling activation X X X √ √ X (38, 41, 42)
Autophagosomic-lysosomal Pathway
activation

X X X X X √ (43)

Results Immunogenicity X or √ √ √ √ √ X (36, 44–46)
Programmed Cell Death (PCD) √ √ √ √ √ √ (7, 45, 47)
M
arch 2022 | V
olume 13 | A
rticle 84734
‘X’ means no; ‘√’means yes. ‘TBD’ means ‘to be defined’.
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mitochondrial damage and ultimately ends in necrosis-like death
both morphologically and biochemically.

Necroptosis is finely tuned and plays various functions. For
instance, in physiological states, necroptosis mediates the
formation of the mammalian bone plate, generation of
megakaryocytes (92), and maintaining epithelial hemostasis
(93). Necroptosis has been found to have both pro- and anti-
tumor roles in TME (94). On one hand, low expression of
necroptosis regulators RIP(K)3 and MLKL correlated with
poor prognosis in various types of solid tumors (95–97).
Specifically, necroptotic cells have been shown to promote
dendric cell maturation (98) and determined cross-priming
efficiency thus anti-tumor immunity of CD8+ T cells through
RIPK1 and NF-kB signaling (99). In comparison, cells going
through passive necrosis cannot effectively activate CD8+ T cells
in vivo (99). Notably, RIP(K)3 deletion in mice impaired NKT
cells’ cytotoxicity against tumors (100). Thus, triggering well-
targeted necroptosis of cancer cells whilst activating cytotoxic T
cells becomes one of the novel strategies in cancer therapy.
Moreover, vaccination with necroptotic cancer cells could
stimulate the maturation of dendritic cells, cross-priming of
CD8+ T cells, and IFN-g production, thereby enhancing anti-
tumor immunity (101). On the other hand, inhibiting TCR
restimulation-induced necroptosis in T cells could refresh the
anti-tumor efficacy of T cells. Moreover, Endothelial cells
necroptosis induced by tumor cells could in turn promote
tumor metastasis (102). Similarly, necroptosis-induced
signaling promotes macrophage-induced T cell suppression in
pancreatic ductal adenocarcinoma (PDA) mice models (103).
Recently, Jiao et al. demonstrated an elevated level of RIP(K)3-
mediated MLKL phosphorylation in breast tumor necrotic area
in late stages compared with early stages of breast cancer tumors.
Meanwhile, lung metastasis was suppressed in MLKL deficient
tumors, further correlating necroptosis with tumor metastasis
(104). Thus, the “friend” or “foe” relationship between
necroptosis and tumor immunity is highly context-dependent
and needs to be carefully differentiated.
PYROPTOSIS

Pyroptosis (33, 105), similar to necroptosis, is an immunogenic
PCD that results in the perforation of plasma membrane
followed by the release of pro-inflammatory cellular
components. It was first discovered in macrophages upon
pathogen infection (106, 107). Since caspase cleavages also
orchestrate apoptosis processes, pyroptosis phenotype on
macrophage has long been mistaken for apoptosis until the
discovery of gasdermin family proteins. Pyroptosis could be
initiated through both the pathogen-associated molecular
patterns (PAMPs)/danger-associated molecular patterns
(DAMPs) activated canonical caspase-1 inflammasome
pathway (27, 33, 105) and lipopolysaccharide (LPS) activated
non-canonical caspase-4/5/11 inflammasome pathway (108,
109). Activated caspases cleave GSDMD and release its N-
terminal fragments, which then oligomerize on the cellular
membrane, leading to pore formation. In the meantime,
Frontiers in Immunology | www.frontiersin.org 3
caspase1 cleaves pro-IL-1b/IL-18 and releases the highly
immunogenic IL-1b/IL-18 through the GSDMD pore (2, 27,
39, 110). In addition to the above pathways, recent studies
indicated that caspase 3, which has long been considered the
essential modulator of apoptosis, also regulates pyroptosis
induction through GSDME cleavage (3, 111). This discovery
further raises the possibility of caspase 3/GSDME signaling
might act as a switch between apoptosis and pyroptosis,
implying crosstalk of the two (112).

Pyroptosis also has both pro- and anti-tumor functions in
regulating anti-tumor immunity in TMEs. Lower levels of
caspase-1, IL-1b, and IL-18 were observed in hepatocellular
carcinoma (HCC) tissues compared with adjacent normal ones
(113), implying the role of pyroptosis in tumorigenicity. Being an
immunogenic form of cell death, pyroptosis produces
proinflammatory cytokines such as IL-1b, IL18 to facilitate the
infiltration of immune cells to the immunosuppressive TME,
demonstrating it can be utilized in anti-tumor therapy (114). It
has been shown that Nlrp3 and caspase-1 deficient mice, lacking
the ability to initiate effective pyroptosis, were more prone to
chemical-induced colitis-associated colon cancer (CAC) than the
wild type mice (115–117). Applying a bioorthogonal system,
which helps investigate the pyroptotic processes in live animals,
researchers found that the pyroptosis of less than 15% of cancer
cells was enough to strengthen T cell response and eventually
achieve the complete remission of solid tumor (118).
Nanoparticles can be used as pyroptosis inducers as well, and
thus potentiate antitumor immunity by enriching effector-
memory T cells and inhibiting tumor growth and metastasis
(119, 120). Cytotoxic immune cells such as natural killer cells and
CD8+ T cells can also trigger cancer cell pyroptosis through
lymphocyte-derived granzyme A (GZMA) or granzyme B
(GZMB) but not caspases-mediated cleavage of the GSDM
family proteins. The GZMA/GZMB triggered proteolytic
cleavages subsequently activate the pyroptosis cascade, thus
further recruiting more cytotoxic lymphocytes and amplifying
the anti-tumor signals in TME (40, 121). Currently, there are
attempts to utilize chemo- or radiotherapy to induce pyroptosis
for cancer treatment (122). It should be mentioned here that
apoptosis can convert into pyroptosis in the presence of TNF or
chemotherapy treatment, in which GSDME cleavage by caspase
plays a key role (3).

Alternatively, pyroptosis has also been implicated with cancer
immune evasion in TME. Chronic inflammation induced by pro-
inflammatory cytokines such as IL-1b, IL6, and IL-18, released
via pyroptotic cell death, is considered to drive tumor
progression and immune evasion (123, 124). Zhai et al.
d emons t r a t ed the pro - tumora l a spec t o f NLRP1
inflammasomes, which promoted tumor growth by suppressing
the apoptotic pathway (125). Furthermore, pyroptosis directly
mediated immune cell death in cancer and other diseases.
Although pyroptosis was initially discovered in macrophages
(106) and neutrophils (126) as the host innate immune defense
against pathogen invasion, pyroptosis of the adaptive immune
cells (CD4+ T cells) was also observed in chronic HIV infected
patients (127, 128). CARD8 inflammasome has been linked to T
cell pyroptosis via the caspase-1-GSDMD axis (129). Notably,
March 2022 | Volume 13 | Article 847345
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GSDM family gene expressions have been observed in various B,
T leukemia cell lines according to Cancer Cell Line
Encyclopedia (CCLE) database (Figure 1A) . These
observations imply that pyroptosis is not limited to innate
immunity, adaptive immune cells adopt pyroptosis as well.
Thus, careful evaluation of both pros and cons of pyroptosis
during the design of cancer treatment strategy will be helpful
for better clinical outcomes.
Frontiers in Immunology | www.frontiersin.org 4
FERROPTOSIS

Ferroptosis (130), another emerging immunogenic PCD, is
initiated by the excessive accumulation of intracellular reactive
oxygen species (ROS) which oxidize polyunsaturated fatty acids
(PUFAs) on the plasma membrane in an iron-dependent
manner, leading to lipid peroxidation-induced cellular
membrane destruction. Glutathione peroxidase 4 (GPX4) is
A B

FIGURE 1 | Bioinformatics of PCD landscape. (A) PCD occurs in immune cells as well. For instance, expressions of the pyroptosis marker gene ‘gasdermin’ family
(GSDME, GSDMD, GSDMB) can be detected in various T and B leukemia cell lines (marked with the cell line name and highlighted with stars) according to Cancer
Cell Line Encyclopedia (CCLE) database. The rest of the points represent other types of cell lines deposited in the database. The gray shade represents the
distribution density of T and B cell lines. (B) Based on PCD marker genes (192 for apoptosis, 32 for necroptosis, 36 for pyroptosis, 74 for ferroptosis, 9 for
PANoptosis, and 225 for autophagy), we analyzed the correlation between each marker gene and the overall survival in pan-cancer. Only those genes with p < 0.01
significance in correlation are used to plot the heatmap. The numeric mark in the heatmap means the number of marker genes that is significantly (p < 0.01)
correlated with the overall survival. The results reveal heterogeneous contributions of each PCD in the overall survival across cancers. In brief, brain cancer ranks first
in overall survival correlation with apoptosis, necroptosis, pyroptosis, ferroptosis, and PANoptosis, followed by kidney cancer, cutaneous melanoma, mesothelioma,
adrenal cortical cancer, and others. As for autophagy, it positively correlates with the overall survival in most cancers, with brain cancer being the most significantly
correlated as well. Clinical data are acquired from the TCGA database. Marker gene lists of respective PCD are provided in the Supplementary Excel File. HNSCC,
squamous cell carcinoma of the head and neck; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; OSC, ovarian serous cystic adenocarcinoma;
PPGLs, pheochromocytomas, and paragangliomas.
March 2022 | Volume 13 | Article 847345
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thus far the only enzyme known to prevent membrane lipid
peroxidation. Ferroptosis occurs when the balance between the
oxidation of the PUFAs and the detoxification of GPX4
is disrupted.

The induction of cancer cell ferroptosis in TME has been
explored as a treatment alternative for cancers (131). Interestingly,
recent discoveries indicated that cancer stem cells (CSCs) might be
sensitive to ferroptosis due to their relatively strong dependency
on the lipid intake pathways and higher intracellular iron levels
compared with regular cancer cells (132, 133). Therefore,
interference with GPX4 pathways seems to sensitize CSCs to
ferroptosis (134–136). Furthermore, cytotoxic CD8+ T cells
could enhance tumor cell lipid peroxidation caused by
ferroptosis, thus achieving higher efficacy of PD1 checkpoint
blockade therapy (137). Ferroptosis has also been found to play
a crucial role in regulating T cell immunity. Lack of glutathione
peroxidase 4 (Gpx4) in CD8+ and CD4+ T cells, the major
scavenger of phospholipid hydroperoxide, induces ferroptosis
and loss of protection from infection (138, 139) and might
facilitate cancer development. Moreover, it’s shown that the
overexpression of CD36, which is the fatty acid (AA)
transporter on T cells, can lead to tumor-infiltrating CD8+ T cell
ferroptosis through excessive lipid peroxidation and eventually
impaired anti-tumor immunity (140). As for regulatory T cell
(Treg) in TME, it’s well protected from ferroptosis by glutathione
peroxidase 4 (Gpx4). Targeted ablation of Gpx4 in Treg inhibited
tumor growth and potentiated anti-tumor immunity (141). Thus,
the consequences of ferroptosis in the TME need to be carefully
evaluated and interpreted (131, 142), which could be highly
context-dependent for achieving a sound clinical outcome of
anti-tumor therapy.
PANOPTOSIS

From the above discussion, distinct and separate molecular
pathways of apoptosis, pyroptosis, and necroptosis are
described. Nonetheless, accumulating evidence indicated
extensive cross-talk among these PCD pathways (36, 143–147).
This led to the hypothesis that master regulators exist to
orchestrate the interplay of different PCDs. Recently, the
concept of PANoptosis PCD was established and shown to be
able to incorporate and co-regulate apoptosis, pyroptosis, and
necroptosis through the formation of PANoptosome as part of
host innate immune defense (7, 47). PANoptosis could be
triggered by the cooperative interactions of AIM2, pyrin, and
ZBP1 that drives the formation of AIM2 PANoptosome,
Specifically, the PANoptosome protein complex encompasses
key signaling molecules of PCDs such as caspase-1, GSDMD,
GSDME of pyroptosis, caspase-8, caspase-3, FADD of apoptosis,
and RIPK3, MLKL of necroptosis. Therefore, the PANoptosome
complex acts as a molecular scaffold to facilitate signal
transduction and interplay among these PCDs, providing host
protection against virus or bacterial infection (47). Meanwhile,
excessive PANoptosis has been found to trigger cytokine release
syndrome (CRS) (148) during SARS-CoV-2 infection (149).
Lately, emerging studies highlighted the role of PANopotosis
Frontiers in Immunology | www.frontiersin.org 5
in tumorigenesis and anti-tumor therapy. For instance, IFNg,
together with TNFa, could induce PANoptosis in diverse cancer
cell lines and reduced tumor size in an immunodeficient mice
model (150). Moreover, blocking the interaction of ZBP1, (the
key mediator in PANoptosis) with RIPK3 or deletion of key
PANoptosis regulatory element IRF1 (Interferon regulatory
factor 1) suppressed PANoptosis and promoted tumorigenesis
in mice studies (151, 152). Therefore, harnessing the potent
immunogenicity of PANoptosis might strengthen anti-tumor
immunity in TME. It should be mentioned here that since
PANoptosis is a newly established concept of PCD, further
mechanistic exploration needs to be done at the single-cell
level (single-cell multi-omics techniques etc.) to address the
possibility that the observed “PANoptosis phenotype” is due to
different cellular subclusters undergoing respective PCDs.
AUTOPHAGY

Autophagy (153, 154) is a surviving mechanism adopted by
eukaryotic cells under nutrient stress conditions. The autophagic
pathway starts with the formation of an autophagosome, a
double-membrane structure, which contains autophagic
components such as ATG proteins and cellular organelles.
Autophagosome then fuses with lysosome for degradation to
provide an extra energy source. This pathway could help recycle
cellular nutrients and organelles to prevent nutritional stress-
induced premature cell death. Although autophagy is normally
considered as a pro-survival strategy adopted by cells, it has also
been proposed as a “suicide” mechanism committed by cells,
including malignant cells, through self-digestion (155). Evidence
indicated that excessive autophagy can lead to cell death
(autophagy-dependent cell death, ADCD) (156, 157). ADCD
should not be mistaken or obscured with the autophagy-
associated or autophagy-mediated cell deaths, which coincides
with or triggers apoptosis, respectively. ADCD, on the other
hand, is defined as ‘a form of regulated cell death that
mechanistically depends on the autophagic machinery (or
components thereof)’ according to the Nomenclature
Committee of Cell Death (45, 57, 58). ADCD has critical
physiological role in suppressing the oncogenic transformation
by eliminating pre-cancerous cells and is an integral component
of the tumor-suppressive machinery (158). However, autophagy
is also considered to play crucial role in establishing resistance to
cancer therapies (159). Pharmacological inhibition of autophagy
slowed pancreatic tumor growths (160, 161). Autophagy can
cross-talk with other PCD (e.g. apoptosis), and actively regulate
both cancer metastasis (162) and anti-tumor immunity (163,
164). Evidence indicated that autophagy regulated survival, and
memory formation of cytotoxic T cells (165–167). Meanwhile,
TME has long been known as a nutrient-depleted environment,
study indicated that the autophagy of cancer cells rescued itself
from T cell-mediated cytotoxicity by blocking cytokine-induced
apoptosis (168). Inhibiting cancer cell autophagy could facilitate
cancer cell clearance in the TME (169). Interestingly, naïve T
cells in ovarian cancer patients could not effectively engage in
autophagy under TME challenge, but go through apoptosis
March 2022 | Volume 13 | Article 847345
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instead, leading to poor anti-tumor immunity (170). Therefore,
pharmacologic inhibition of overall autophagy in TME,
regardless of which type of cells should be precisely targeted in
the context of cancer therapy, might be problematic (171).
Nevertheless, targeting autophagy might improve and/or
synergize the efficacy of current cancer therapies.
MOLECULAR MESSENGERS RELEASED
BY PCD TUNE TUMOR IMMUNITY

The occurrence of PCD in the TME is accompanied by the
release of intracellular components, including cytokines, small
molecules, mtDNA (172), ncRNA (173, 174), and exosomes
(175), etc. which are altogether involved in shaping the
immune landscape of the TME. Subsequently, we focused on
reviewing the effects of a few well-studied “end products” of
immunogenic PCD on innate and adaptive immune cells in
TME, mainly including cytokines (e.g. IL1) and small molecules
(e.g. ATP).

Family Cytokines
As pro-inflammatory cytokines, IL1 family cytokines such as IL1b
and IL18 belong to the “end products” of pyroptosis and
PANoptosis (27, 47, 52, 176). IL1b is one of the biomarkers for
pyroptosis since it is produced from caspase 1 cleavage of pro-IL1b
and subsequently secreted from GSDM pores. IL1 signaling cascade
activates dendritic cells and macrophages, professional antigen-
presenting cells (APCs), as well as regulates Th1/Th17
differentiation of CD4+ T cell and CD8+ T cell effector function
(177). Moreover, IL1 signaling disruption in myeloid cells leads to
colorectal cancer progression (117, 178). Notably, IL1b also plays
beneficial roles in the initiation of anti-tumor immunity in TME
(179, 180). Similar to IFNg, IL1b also plays both anti- and pro-
tumoral roles in TME in a highly context-dependent manner.
Accumulating evidence suggested the pro-tumoral role of IL1b
across a wide range of cancer types (178, 181). This might be due to
the increased level of IL1 cytokines, which leads to chronic
inflammation and drives tumor development and progression via
the stimulation of the epithelial-to-mesenchymal transition (182),
the proliferation of cancer cells, and the enrichment of
immunosuppressive cell populations in TME. In TME, the IL1
family creates a complex regulating network and orchestrates the
local anti-tumor immunity (183). These dichotomous discoveries
on the IL1 family emphasized comprehensive evaluations of the
pro- and anti-tumor responses of therapies that focus on the
induction of pyroptosis and PANoptosis will be necessary to
clarify potential benefits and unexpected risks.

HMGB1
As a type of DAMP molecule released by immunogenic PCD,
high-mobility group box 1 (HMGB1) is a chromatin-associated
protein first identified in 1973 (184). Since it tightly binds to
chromatin, it could only be secreted from cells with destructed
membrane structure (185). Once secreted to the extracellular
milieu, HMGB1 could interact with various cellular receptors
and form complexes with immune activators, regulating both the
Frontiers in Immunology | www.frontiersin.org 6
innate and adaptive immune responses (186). For instance,
through binding to the receptor of advanced glycation end
products (RAGE) and Toll-like receptors (TLRs), HMGB1
could activate caspase 1 cleavage and induce macrophage
pyroptosis (187). HMGB1 is a coactivator for NF-kB as well,
regulating inflammatory gene expressions in mice macrophages
via epigenetic chromatin remodulation (188). Similar to IL1b,
HMGB1 is also involved in dendritic cell (DC) maturation,
tumor antigen presentation (189), neutrophil polarization, and
cytokine release in TME (190, 191). HMGB1 production
positively correlates with tumor antigen-specific T cell
response and thus could serve as a biomarker for patient
prognosis (192, 193). HMGB1 signaling can directly trigger T
(194, 195) and B lymphocytes (196) proliferation, and
downregulate immunosuppressive CTLA4 and Foxp3
expression and IL-10 secretion in Tregs via the TLR pathway.

Nonetheless, HMGB1 plays immunosuppressive roles as well.
For example, HMBG1 can facilitate the growth and
differentiation of MDSCs to promote cancer progression in
TME (197, 198). Evidence also indicated HMGB1, together
with complement prote in , could induce monocyte
differentiation into anti-inflammatory macrophage M2, thus
regulating immune homeostasis (199). Moreover, HMGB1 and
its interaction with the RAGE receptor on tumor cells could also
directly regulate tumor cell autophagy and result in HMGB1-
mediated tumorigenesis (200). Furthermore, HGMB1 blockade
inhibited tumor growth and could work synergistically with
checkpoint immunotherapy (201). Interestingly, the expression
level of HMGB1 gene is elevated in tumor specimens from
TCGA database across almost all cancer types, but it does not
significantly correlate with patient prognosis (http://gepia.
cancer-pku.cn/). Therefore, the role of HMGB1 in TME needs
to be further investigated.

ATP and Its Intermediates
Adenosine triphosphate (ATP) has long been considered as the
intracellular currency inside living cells, fueling numerous
biological processes. Therefore, the concentration of
intracellular ATP (iATP) is very high, ranging from 1-10 mM
(202). In stark contrast, the concentration of extracellular ATP
(eATP) under normal physiological condition is comparatively
low (nM range). The physiological level of eATP does not induce
an immune response (203). However, in the context of
immunogenic PCD, ATP can leak from the “porous” cells into
the extracellular milieu and serve as a type of “alarmins” or “find‐
me” and “eat‐me” signals to attract phagocytes. Thus, elevated
eATP level is highly pro-inflammatory (204). Notably, eATP can
be further converted into the immunosuppressive metabolite
adenosine by CD39 and CD73 ectonucleotidases on the cellular
membrane. A main function of the extracellular adenosine is to
create an immunosuppressive tumor environment by inducing
tumor-infiltrating macrophage proliferation (205), regulatory
immune cell, and MDSC activation (206–209) while repressing
the anti-tumor function of cytotoxic T cells (210, 211).
Therefore, PCD-induced release of eATP, together with
adenosine, forms an intricate modulatory network of tumor
immunity in TME.
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Other Immunogenic Molecules
Calreticulin, a calcium-binding chaperone protein, mainly
resides in the endoplasmic reticulum (ER) but can translocate
to the cellular membrane during immunogenic PCD. It can serve
as a DAMP and “eat me” signal for antigen-presenting cells
(APCs), thus is a proinflammatory element in TME. Genetic
knockdown or antibody ablation of calreticulin attenuated the
phagocytosis of cancer cells by APCs, resulting in the elimination
of cancer cell immunogenicity (212). Interestingly,
chemotherapy drugs can induce calreticulin exposure onto the
cancer cell surface, leading to maturation of DC and activation of
tumor-specific effector T cells (213).

Another ER chaperone is the heat shock protein (HSP)
family, which exposes to the extracellular environment during
immunogenic PCD. Like calreticulin, HSP was found to have an
immunomodulatory role in the TME. For instance, recombinant
rHsp70, combined with radiotherapy, can potentiate DC
immunotherapy by inducing tumor-specific T cell response in
mice models (214). Furthermore, several HSP protein cancer
vaccines have been developed and are under clinical trials (215,
216). However, it’s reported that HSP protein has both pro- and
anti-inflammatory functions in TME, implying a sophisticated
role of HSP proteins play in regulating tumor immunity.

Together, DAMPs released during immunogenic PCD not
only can act as immunogens which lead to pro-inflammatory
immune response but also might cause chronic inflammation or
immune suppression, thus leading to tumor progression. Thus, it
is necessary to comprehensively weigh both the pros and cons of
the immune and systemic consequences of immunogenic PCD in
tumor therapy designs.
CLINICAL BENEFITS AND CONCERNS
OF PCD

Currently, efforts have been made on designing chemo- or
radiotherapies to induce immunogenic PCD in tumor cells. At
least 19 clinical trials, mostly chemotherapies, have been completed
or are underway in exploring the role of immunogenic PCD in
cancer treatments (clinicaltrials.gov). Bleomycin (BLM) (217),
Cyclophosphamide (CTX) (218), Shikonin (219), Anthracyclines
(213), and Oxaliplatin (220) are examples of immunogenic PCD
inducers being studied extensively. These chemo-drugs can
stimulate DC maturation, subsequently affecting tumor antigen
uptake and presentation of adaptive immune cells. In addition to
chemotherapy, radiotherapy (221), phototherapy (222, 223), and
targeted nano-drug delivery therapy (224, 225) can induce
immunogenic PCD as well. Reports showed that combining a
PCD-inducing regimen with immunotherapy could yield
promising results (221, 226). However, chimeric antigen receptor
T cell (CAR-T) therapy can trigger tumor cell pyroptosis-induced
cytokine release syndrome (CRS), leading to mitigated benefits of
the cell therapy (227). Moreover, PANoptosis, encompassing
features of pyroptosis, has also been found to initiate CRS (148,
149), whether it also contributes to the CRS observed in CAR-T
therapy awaits further investigation. Meanwhile, our previous
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clinical studies demonstrated allogeneic Vd2+ gd T cells transfers
do not cause CRS, and possess a high safety profile and clinical
benefits in terminal cancer patients (228, 229). Therefore, how to
utilize PCD to design safe and effective therapy protocol requires
further investigation.
FUTURE PROSPECTS

To vividly demonstrate the occurrence probability of respective
PCD across cancer types, we profiled maker gene contributions
of each PCD and generated a pan-cancer heatmap (Figure 1B).
Interestingly, there are significant variations in terms of PCD
occurrence in different cancer types, with brain cancer being the
most PCD-prone one, prompting one to speculate cancer types
might be a crucial factor in determining the response rate and
efficacy of PCD-inducing treatments.

In summary, different types of PCD can be triggered by
different or similar causes and lead to heterogeneous
consequences in the TME, resulting in either immunogenic or
non-immunogenic responses and eventually tumor regression or
progression (Figure 2A). Importantly, we believe the TME is
precisely regulated various types of PCD, including apoptosis,
necroptosis, pyroptosis, ferroptosis, PANoptosis, autophagy, and
others, as well as PCD-related cytokines, metabolites, and
immunogenic molecules, which collaboratively participate in
balancing the TME to enrich either anti-tumor effector
immune cells (e.g. cytotoxic T cells, NK cells, Vg9Vd2 gd T
cells, and M1 macrophages) or regulatory immune cells (e.g.
Tregs, MDSCs, Vg9Vd1 gd T cells, and M2 macrophages),
eventually lead to tumor regression or progress (Figure 2B).
Though most of the current literatures focuses on exploring the
role of cancer cell PCD plays in shaping the immune landscape of
TME, recently, increasing evidence indicated that both
immunogenic and non-immunogenic PCD of immune cells
can compromise anti-tumor immunity. Specifically, Zou’s
group made an insightful discovery that apoptotic Tregs can
exert significantly higher immunosuppressive function than live
Tregs (230). Moreover, ferroptosis induced by T cell lipid
peroxidation weakened T cell immunity to both virus infection
and tumor (138, 231). Similarly, the pyroptosis of CD4+ T cells
led to immunodeficiency in HIV (127, 128). Thus, it’s imperative
to further explore the immunological consequences of PCD of
immune cells in the TME.

To better understand PCD in the TME, many scientific
questions remain to be resolved. A few are listed below.

1. How do the heterogeneous cell populations in TME sense
and respond to PCD signals respectively?

2. Do different types of PCD have crosstalk in the TME? What
might be the immunological consequences of PCD crosstalk?

3. How do PCDs induce the depletion/deficiency of anti-tumor
effector immune cells, while enriching the suppressive
immune cells in TME, thus creating a “cold” tumor?

4. How canwe strengthen the anti-tumor immunity of immunologic
PCDs at the same time avoiding chronic inflammation?
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FIGURE 2 | Distinctive hallmarks and mechanisms of five types of PCDs and autophagy. (A) In the context of different types of extracellular stimulus and intracellular
signaling, a normal cell may undergo a specific type of cell death or survival. This process is precisely regulated by a set of genes and signaling molecules.
Necroptosis, pyroptosis, ferroptosis, and PANoptosis represent four typical ways of immunologic PCD in the TME, which releases various cytokines, metabolites,
and immunogenic molecules, thus leading to either tumor regression accompanied by immune activation or tumor progress along with immune suppression. For
non-immunologic apoptosis in the TME, it generally connects with tumor regression, however, immune cells in the TME are routinely apoptosis-activated as well and
implicate with the depressed immune microenvironment. Particularly, apoptotic regulatory T cell (Treg) can serve as a strong pro-tumor player in the TME. As for
autophagy (self-survival dominantly) in the TME, it is closely linked with cancer cell survival, tumor progress, and therapy resistance. Meanwhile, immune cells also
adopt autophagy strategy to survive in the stressful condition of the TME, and to eventually perform either pro-tumor or anti-tumor function depending on
circumstances. (B) Apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, as well as their respective produced cytokines, metabolites, and
immunogenic molecules in the TME, collaboratively participate in balancing the TME to enrich either anti-tumor effector immune cells or regulatory immune cells,
eventually lead to tumor regression or progression.
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5. How would PCD of tumor-infiltrating immune cells affect the
therapeutic efficacy and patient prognosis in different
cancers?

Currently, although certain “biomarkers” or “morphological
characteristics” were identified to differentiate individual PCD, it
is hard to exquisitely extinguish them apart from one another.
Therefore, it’s still difficult to develop highly targeted
pharmacological inhibitors for each PCD without causing
unwanted “off-target” effects. However, multi-omics
technologies at the single-cell level allow us to clarify the
characteristics of individual cells in the TME. This might
greatly benefit researchers to gain thorough understanding of
the above questions, which then facilitate the design of optimal
cancer treatment strategies.
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