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Abstract

Introduction

Diabetes remains a growing public health concern in Egypt, as prevalence of Type II diabe-

tes (TIID) has nearly tripled there in the last two decades. Egypt was ranked ninth worldwide

in number of diabetes cases, with prevalence of 15.56% among adults. Recent studies have

proposed that disturbance of gut microbiota could influence TIID development and indicated

associations between a reduced diversity in microbiomes and Type I diabetes (TID). In the

present study, we investigated the composition and abundance of the bacterial microbiome

in disease state (TID and TIID) of Egyptian patients. Our goal in this study was to character-

ize features of the gut microbiota and possible differences associated with TID and TIID in

this population.

Methods

DNA was extracted from fecal samples taken from 22 TID and 18 TIID outpatients of Al-Hus-

sein hospital, Cairo, Egypt. 16S rRNA amplicon sequencing was used to characterize the

bacterial taxa and these reads were processed using the software mothur with analysis uti-

lizing packages vegan, phyloseq and metagenomSeq in R.

Results and conclusions

Our results highlighted a significant increase in abundance of Gram negative, potentially

opportunistic pathogenic taxa (Pseudomonas, Prevotella) in all diabetic groups, compared

to the control. Lipopolysccharide (LPS), a component of the gram-negative bacterial wall,

can activate local immune response and may result in low-grade systemic inflammation con-

tributing to insulin resistance. The gram-positive Gemella, which is associated with

increased risk to diabetes, also had a significant increase in abundance in all diabetic

groups, compared to the control. In contrast, the commensal bacterial taxa Turicibacter,

Terrisporobacter and Clostridium were found to be more abundant in the control group than
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in TID. Further studies are needed to understand the role of these taxa in health and dis-

ease. Lower Richness and low Shannon diversity, though not statistically significant, were

observed for TID subjects with no glucose control and with onset of liver disease or hyper-

tension compared to other subjects. In addition, large variation in alpha diversity within the

control group could also be observed. Future studies will include larger samples sizes to fur-

ther elucidate these findings, as well as possible metagenomic studies to examine the

intriguing function of significant microbes.

Introduction

Diabetes mellitus (DM) is a diverse metabolic disorder characterized by elevated blood sugar

levels as a result of deficiency of insulin secretion, defective insulin action or both [1]. DM can

cause complications if uncontrolled, including, stroke, cardiovascular disease and kidney fail-

ure [2]. Globally, DM is the ninth major cause of death; one in eleven adults worldwide have

DM [3].The International Diabetes Federation (IDF) ranked Egypt ninth worldwide in num-

ber of diabetes cases, with prevalence of 15.56% among adults [4,5].

Diabetes cases can be categorized into 3 classes [6]. Type I diabetes (TID) is characterized

by the autoimmune destruction of pancreatic B cells. Over the past 50 years there was an

increase in incidence of TID that may be attributed to genetic predisposition and several envi-

ronmental factors including stress and viral infections [7,8]. Type II diabetes (TIID) represents

about 90% of all diabetes cases worldwide. It is associated with an unhealthy lifestyle and diet,

obesity, lack of exercise and physical activity, in addition to other poor dietary habits [9]. The

third class is known as MODY (Maturity onset diabetes of the young). is a rare but increasingly

recognized cause of diabetes in young people. MODY is commonly misdiagnosed as type 1 or

type 2 diabetes and, as a result, patients are often inappropriately managed with insulin when

they can be more effectively managed with oral sulfonylureas [6].

Recent research, driven by advances in high throughput 16S rRNA amplicon sequencing

and shotgun metagenomics, has established that the gut microbiome includes100-fold or more

genes than the human genome [10–12]. These microbial genes are considered key to metabolic

processes with impact to the host, including catabolism of dietary fibers to short-chain fatty

acids, amino acid and vitamin biosynthesis, as well as aiding the production of neurotransmit-

ters and hormones [10]. The previous decade witnessed many studies that aimed to explain

the role of the gut microbiota in TIID and glycemic control. Recent studies have proposed that

disturbance of gut microbiota could influence TIID development [13,14]. Significance of

diversity of the microbiota in controlling metabolic processes was revealed by Le Chatelier

et al. [15] and Cotillard et al. [16] who reported association between low diversity of the gut

microbiome with obesity, non-alcoholic fatty liver disease and a higher prevalence of insulin

resistance [15,16].

Type I diabetes is associated with a well-known genetic mutation in the human leukocyte

antigen genes. High incidence of this disease can also be attributed to environmental factors

[17]. A study of eight children, four with newly developed TID and four matched controls,

found differences in the composition of the gut metagenome between the two groups and

reduced diversity in the TID-associated microbiomes [18]. Another study in non-obese

diabetic (NOD) mice have demonstrated that germ-free NOD mice are more likely to have

diabetes, suggesting a role for the gut microbiota in the development of autoimmune diabetes

[19].
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To better understand the features of gut microbiota in TID and TIID, here we investigated

the gut microbiome of 47 Egyptian citizens (7 healthy controls, 22 TID and 18 TIID), using

the conserved V4 region of the bacterial 16S ribosomal DNA. We compared the composition,

diversity and richness (number of species) of the fecal microbial ecosystem of healthy, TID

and TIID patients. To our knowledge, this is the first metagenomic study comparing the gut

microbiome among TID and TIID patients in Egypt.

Materials and methods

Ethical considerations

Study protocol was approved by the Ethics Committee of the Faculty of Pharmacy at Al-Azhar

University in Cairo, Egypt. All participants provided written informed consent prior to sample

collection.

Human subjects

This study included 47 subjects (7 healthy controls, 22 TID and 18 TIID). TID and TIID sub-

jects were further stratified by whether they were treated or not (Controlled versus Uncon-

trolled diabetes symptoms) and by secondary disease onset, if present (S1 Table). All study

groups were matched for age, sex and type of medication. Subjects were excluded if they

received antibiotics within one month prior to sampling.

Sample collection and DNA extraction

Sample collection was performed on site in Egypt as described previously [14]. Briefly, fecal

samples were collected immediately after defecation and placed in an Eppendorf tube pre-pre-

pared with saline solution. These samples were preserved at –20˚C until processed. DNA was

extracted from approximately 0.3–0.5g from each stool sample using QIAamp DNA Stool

Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA con-

centration and quality were evaluated utilizing a Qubit 2.0 fluorometer (Invitrogen,California

USA) and gel electrophoresis.

DNA sequencing

Isolated microbial DNA from each sample was used for amplification of the hypervariable

region 4 (V4) of the 16S rRNA gene, as described previously [20]. Briefly, the universal 515F/

806R primer set was used in a single-step 30-cycle PCR reaction to generate multiplexeddual-

indexed library molecules. Controls included the ZymoBIOMICSTM D6311 Microbial DNA

Community Standard II (mock community) and a no-template negative control, which was

included in each PCR plate. An additional PCR reaction was conducted using P5 and P7

library amplification primers with 15 cycles to help further amplify these library molecules. To

confirm amplification, libraries were visualized on an agarose gel. Library molecules were

purified using Sera-Mag beads (GE Life Sciences) to select for DNA fragments larger than

150bp. Purified library molecules were quantified using Quant-iT Broad-Range dsDNA kit

(Invitrogen) according to manufacturer’s protocols. An equimolar concentration of each

library was combined, and the final pool was brought to a concentration of 4 nM.

The 4 nM pooled library was quality controlled with the NEBNext Quant Kit for Illumina

E7630 (New England Biolabs) according to manufacturer’s protocols. The library was diluted

and denatured according to Illumina’s MiSeq System Denature and Dilute Libraries Guide

number 15039740–10. Briefly, the library was mixed with freshly prepared 0.2 N NaOH for

denaturation and diluted to a final concentration of 8pM. A PhiX control was denatured and
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diluted to the same loading concentration as the amplicon library to add necessary diversity to

the library. The final library mixture contained 10% PhiX. The library was sequenced on an

Illumina MiSeq at Colorado State University’s Next Generation Sequencing Core Facility

using a MiSeq Reagent Kit v2 500-cycle, resulting in paired-end 2x250 base-pair reads. The

resulting raw sequence data are publicly available on the National Center for Biotechnology

Information’s (NCBI) Sequence Read Archive (SRA) repository, accession number

PRJNA629382 and the associated sample key is also provided in S2 Table.

Data processing and bioinformatics

Demultiplexing and base calling were both performed using bcl2fastq Conversion Software

v2.18 (Illumina, Inc.). We utilized the software FastQC [21] for quality assessment and the

software trimmomatic (version 0.39) [22] with sliding window of size 4 and cutoff quality at

PHRED 30, to filter the resulting sequence data selecting for high quality reads for further

analyses. A minimum length of 150 base-pairs was also used to guarantee an overlap between

the forward and reverse reads required for constructing the contigs used in further processing.

Further data processing was conducted using mothur [23] version 1.40.5 and utilizing an

adjustment to the developers’ standard operating procedure (SOP) for OTU clustering and

classification [20]. Adjustments included the use of UCHIME for de novo chimera detection

and the use of USEARCH, utilizing the dgc (distance-based greedy clustering) option, for

Clustering (adjusted SOP can be found at https://github.com/Abdo-Lab/Microbiome-

Analysis-Scripts/blob/master/PE-de-novo-processing.pl). Groups that were at least 97% simi-

lar were classified to belong to the same operational taxonomic unit (OTU). We utilized the

SILVA (nr_v132) database [24] for bacterial taxonomic classification. Rarefaction curves were

generated using the package ’vegan’ [25] as implemented in R version 3.6.1 to assess diversity

and suitability of depth of coverage per sample. The resulting OTU table and taxonomic

assignment were utilized in further data analyses.

Statistical analysis

Alpha diversity measures were calculated and included rarefied richness, as computed using

the package ’vegan’ in R [25], (we refer to it as Richness here after).The Shannon diversity

index was computed utilizing the R package phyloseq [26]. We used an analysis of variance

(ANOVA) to assess significance of the treatment levels.

Nonmetric Multidimensional Scaling (NMDS) was used on the OTU level to assess possible

trends and clustering in the microbial community structure per treatment condition (Beta

diversity). NMDS was performed using the vegan package [25] and utilizing Bray-Curtis dis-

similarity and was based on data normalized utilizing cumulative sum scaling (CSS) [27]. We

plotted the 95% confidence ellipsoids utilizing the standard error within each treatment group.

Distance based; permutation based multivariate analysis of variance (PerMANOVA) [28] was

employed to assess significant differences between the microbial communities per treatment

level.

Utilizing relative abundance data based on the resulting OTU table, bar graphs were gener-

ated using the ggplot2 package [29] in R for taxa that were observed with relative

abundance > 1% at the family level to describe the microbial community structure per time

point under each of the treatments. The package metagenomeSeq [27] was used to identify the

OTUs driving differences between the treatment levels. We fit a cell means model accounting

for possible differences between treatment means. This model fits a mean per each treatment

and compares against a null model that assumes no differences between all means. OTUs cho-

sen part of this analysis were selected to be present in at least 10 samples with at least one
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observed sequence read per sample. Log-fold-changes were compared between treatments

using empirical Bayes’ moderated t values calculated utilizing the function eBayes in the pack-

age limma [30] and using false-discovery-rate (FDR) [31] adjusted p-values utilizing the R

package fdrftool [32]. Log-fold-change differences with an adjusted p-values less than 0.05

were deemed significant.

Results

In this study a total of 47 human fecal samples were analyzed by 16S rRNA amplicon sequenc-

ing targeting the V4 region to investigate the microbiota composition between healthy, TID

and TIID subjects.

Human subjects

Patients were categorized into groups according to type of diabetes, controlled blood glucose

level, age and other medical condition. S1 Table summarizes different factors associated with

the human subjects.

Preprocessing of DNA sequence data

DNA from fifty-three samples was sequenced including the aforementioned 47 samples

obtained from the subjects associated with this study along with four negative no template

controls (NTC) and two positive ZymoBIOMICSTM D6311 standard controls utilizing a log

distribution of the taxa resulting in a ladder of known taxa observed at different decreasing

abundances. We observed a range between 6 and 219,746 reads per sample after pre-process-

ing using trimmomatic and mothur as described above and a total of 3,405 operational taxo-

nomic units (OTUs) in all samples. Seven of the 47 samples resulted in fewer reads than the

negative controls, ranging between 6 and 798 reads, and hence were dropped from further

analysis. These samples did not have sufficient DNA for sequencing to start with. We chose a

cutoff of 15 reads that was subtracted from each OTU count per sample to further account for

possible contamination in the negative controls. This cutoff resulted in a reduction of observed

putative contaminants in the negative controls from 38 to 4, two of which were observed in

only one of these samples. This cutoff resulted in observing only five of the eight bacterial taxa

present in the positive control missing those taxa with abundance equal to or less than 0.01%

of the total. The resulting OTU table after this rigorous filtering included 619 OTUs with total

number of reads per sample ranging from 6,219 to 214,764 belonging to 40 samples as

described in Table 1. S1 Fig shows the rarefaction curves associated with these samples

Table 1. Summary of the samples surviving further processing.

Item TID No. %) TIID No. (%) Healthy control No.

(%)

Controlled blood glucose level- Diabetic only 7 6

Not controlled blood glucose level- Diabetic with liver

diseases

4 1

Not controlled blood glucose level- Diabetic with

hypertension

3 2

Not controlled blood glucose level- Diabetic only 4 6

Total 18 15 7

TID; Type I diabetes, TIID; Type II diabetes

https://doi.org/10.1371/journal.pone.0238764.t001

PLOS ONE The gut microbiome in diabetic Egyptians patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0238764 September 9, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0238764.t001
https://doi.org/10.1371/journal.pone.0238764


indicating that the depth of sequencing for these samples was adequate to capture the underly-

ing diversity.

Statistical analysis

Given the small sample size we combined the data across gender and age. We also combined

the not-controlled blood level samples with hypertension and liver disease into one category

that we referred to as not-controlled diseased. This resulted in seven treatment levels that we

compared and presented in Table 2.

Alpha diversity and beta diversity. A qualitatively lower Richness and low Shannon

diversity was observed for subjects with no glucose control and with onset of liver disease or

hypertension (TIIND) compared to other subjects (Fig 1). Large variation in alpha diversity

within the control group can also be observed from Fig 1. An analysis of variance applied to

both Richness and Shannon diversity showed no significance and could not identify possible

significant differences between the treatments (F = 0.52, p-value = 0.79 and F = 0.76, p-

value = 0.60 for Richness and Shannon diversity, respectively).

Trends in Beta diversity also indicated no significant differences between the treatments

reflected in overlap in the confidence ellipsoids in the nonmetric multidimensional scaling

(NMDS) plot for all treatments (S2 Fig). This lack of a significance was also highlighted by an

insignificant outcome (p-value = 0.86) of a perMANOVA test aimed to assess differences

between the different treatment levels described above. Comparing the type I, type II and the

control groups did not result in any significant difference (perMANOVA p-value = 0.34).

The NMDS plot in Fig 2 compares treatments within TID and TIID patients. The figure

indicates a qualitative difference, although not significant, in beta diversity between TID

patients where glucose levels were not controlled with and without onset of disease. No trends

were observed for patients of TIID and no differences were observed between patients of TID

and TIID per treatment.

Comparing treatment effects by OUT. Nineteen families were identified with abundance

more than 1% per sample within each of the treatment levels. S3 Fig shows these families

aggregated over samples within each treatment level. These families mainly belonged to phy-

lum Firmicutes (Ruminococcaceae, Veillonellaceae, Streptococcaceae, Peptostreptococcaceae,

Listeraceae, Leuconostocaceae, Lactobacillaceae, Lachnospiraceae, Eryslipelotrichaceae, Clos-

tridiaceae, Christensenellaceae, Bifidobacteriaceae, Akkermanalaceae and the Gram negative

Acidaminococcaceae).

Only one hundred and forty-five OTUs were present in 10 samples with number of reads

greater than 1 meeting the rule we set to limit sparsity of the data used in metagenomeSeq

analyses. Forty-three of these OTUs where identified as being significantly different at the 0.05

level in at least one of fifteen pair wise comparisons (range from 4 to 9 per comparison after

Table 2. Abbreviation of different study groups.

Abbreviation Treatment Description

TIC Type I diabetic with controlled blood glucose
TIIC Type II diabetic with controlled blood glucose
TIND Type I diabetic with no blood glucose control and disease
TIIND Type II diabetic with no blood glucose control and disease
TINN Type I diabetic with no blood glucose control and no disease
TIINN Type II diabetic with no blood glucose control and no disease
C Healthy controls

https://doi.org/10.1371/journal.pone.0238764.t002
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correcting for multiple testing using FDR as described above). Comparisons included testing

the log-fold-changes between all treatments and the control, comparing treatments withinTID

subjects, comparing treatments within TIID subjects, and comparing matched treatments

Fig 1. Richness and Shannon diversity per treatment level indicating qualitatively lower diversity for treatment

TIIND and highlighting the high variability in the control group (C). � Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0238764.g001

Fig 2. NMDS plot comparing treatments within the TID (A) and within TIID (B) diabetes patients indicating possible

qualitative separation between TIND and TINN treatments within the TID subjects. Data points are marked with “�”. �

Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0238764.g002
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between TID and TIID subjects (for example, TIND against TIIND). S3 Table provides a sum-

mary of these comparisons. Fig 3 shows the significantly different log-fold-change of OTUs as

compared between the different treatments and the control group. The red bars represent an

Fig 3. Log-fold-change of OTUs as compared between the different treatments and the control group. Detailed results of the statistical testing are in S3

Table. � Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0238764.g003
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increased abundance in the treatment and the blue bars represent increased abundance in the

control. We note that Veillonella, Streptococcus, Catenibacterium and Roseboria showed signif-

icantly higher log fold change in TIND than in the control group. While in TIIND, Pseudomo-
nas, Lachnospiraceae and Howardella were more significant compared to the control group

that showed significant increase in Lactobacillus. For TINN, Prevotella and Veillonella were

significantly higher than the control group which showed higher abundance of Terrisporobac-
ter. TIINN presented higher abundance for Veillonellaceae, Lachnospiraceae and Howardella,

while in the control group, Ruminococcaceae and Christensenellaceae showed significantly

higher abundance than the TIINN. Comparing control group with both types of diabetes that

had controlled blood glucose level were nearly the same as Terrisporobacter and Turicibacter
were the most abundant among the control group, while Gemella, Streptococcus and Alistipes
were more abundant in TIC. On the other hand, TIIC showed higher abundance of Pseudomo-
nas and Veillonellaceae.

The different treatments for the TID subjects are presented in Fig 4. We note that the con-

trol group always shows more variability than TID of different treatments and higher abun-

dance in beneficial bacterial families such as Ruminococcaceae and Veillonellaceae. Also, it

was observed that Pseudomonas showed higher abundance in TINN than TIC. Pseudomonas is

well documented as opportunistic pathogenic bacteria.

The log-fold-change between the different treatments for the type II diabetic subjects is

shown in Fig 5. It is interesting to show that there were differences in the trends in the log fold

changes between the different treatments indicating that dysbiosis might be an important risk

factor associated with TIID.

Finally, Fig 6 compares the matched treatments between the type I and type II diabetic sub-

jects. We note that TIIND shows higher abundance than TIND for Lachnospiraceae and

Howardella, while for TIINN and TINN, Christensenellaceae and Gemella were more abundant

in TINN. Both types of diabetes with controlled blood glucose level (TIC and TIIC) show differ-

ent patterns of presence and abundance of bacterial families, mainly there is a shift towards the

phylum Firmicutes (Ruminococcaceae and Acidaminococcus) in the TIIC treatment. We can

observe that Gemella shows higher abundance in TINN and TIC than TIINN and TIIC.

Discussion

Fecal samples were obtained from 47 subjects and used to evaluate the differences in micro-

biota composition in healthy controls and diabetic patients using 16S rRNA amplicon

sequencing. The small sample sizes and the large variability observed between patients resulted

in an inability to identify differences in Alpha and Beta diversity between the different treat-

ment levels. However, even with such small sample sizes, we could identify OTUs that had dif-

ferential relative abundance, indicated by significant log-fold changes between the compared

treatments.Alldiabetic groups showed an increase in the abundance of Gram negative, poten-

tially opportunistic pathogenic taxa (Pseudomonas, Prevotella) and Gram positive, Gemella.

These bacteria might potentiate the pathogenesis of type II diabetes through production of

endotoxins that induce inflammatory factors [33]. On the other hand, Terrisporobacter and

Turicibacter were observed to be significantly more abundant in the control group as com-

pared to either of the diabetes groups (Fig 3). These are highly fermenting bacteria [34,35] and

future studies should be performed to understand their metabolic pathways and its effect on

diabetes.

Based on our results we hypothesize that dysbiosis and disruption of the Firmicutes/Bacter-
oidetes ratio may have more impact on diabetes than the presence of a specific bacterial taxa.

This dysbiosis is observed in many metabolic disorders such as obesity and diabetes [36,37].
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Fig 4. Log-fold-change between the different treatments for the type I diabetic subjects. Detailed results of the statistical testing are in S3 Table. � Abbreviations in
Table 2.

https://doi.org/10.1371/journal.pone.0238764.g004

PLOS ONE The gut microbiome in diabetic Egyptians patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0238764 September 9, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0238764.g004
https://doi.org/10.1371/journal.pone.0238764


Fig 5. Log-fold-change between the different treatments for the type II diabetic subjects. Detailed results of the statistical testing are in S3 Table. � Abbreviations in
Table 2.

https://doi.org/10.1371/journal.pone.0238764.g005
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Fig 6. The log-fold-change of matched treatments between type I and type II diabetic subjects. Detailed results of the statistical testing are in S3 Table. �

Abbreviations in Table 2.

https://doi.org/10.1371/journal.pone.0238764.g006
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Several studies have reported microbial signature in TIID. Tilg et al. [36] reported that intesti-

nal dysbiosis in TIID was characterized by a decrease in Roseburia intestinalis and F. prausnit-
zii suggesting a direct link between an altered microbiota composition and the inflammatory

state in patients with TIID. Also, a study done by Sircana et al [38] reported differences

between the gut microbial composition in healthy individuals and those with TIID. These

changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability,

and modulate metabolism of short-chain fatty acids, bile acids and metabolites that act syner-

gistically on metabolic regulation systems contributing to insulin resistance. Interventions that

restore equilibrium in the gut appear to have beneficial effects and improve glycemic control.

In contrast to the previous studies, a study done on Egyptian citizens, by Salah et al. [37] con-

cluded that obesity and diabetes were associated with enriched populations of both Firmicutes

and Bacteroidetes. This could be explained by the type of diet, high carbohydrate intake and is

correlated with high populations of Firmicutes and Bacteroidetes, while high fat diet is corre-

lated withhigh abundance of Firmicutes only. Another study by Qin et al. [39] reported a mod-

erate degree of dysbiosis in diabetic subjects compared to controls including reduction in the

abundance of various Firmicutes; butyrate producing bacteria such as Clostridiales, Eubacte-
rium rectale, Faecalibacterium prausnitzii, and Roseburiain testinalis. Additionally, they identi-

fied more opportunistic pathogens such as, Clostridium hathewayi, Clostridium ramosum,

Clostridium symbiosum, Bacteroides caccae, Escherichia coli and Eggerthella lenta. These obser-

vations were consistent with our study, as the control group shows higher abundance of poten-

tially beneficial bacterial genera (Fig 3) including Lactobacillus, Terrisporobacter and

Turicibacter. These bacterial families are included in the Firmicutes phylum, which is known

for its production of anti-inflammatory short chain fatty acids [40].

Recent studies suggest a link between type I diabetes and the gut microbiota [41,42]. In a

study on rats, Brugman et al. [41] showed that, before onset of TID, composition of the gut

microbiota was markedly different between rats that eventually developed TID and those that

did not. Similarly, Roesch et al. [43] observed a significant decrease in abundance of Lactobacil-
lus, Bryantella, Bifidobacterium, and Turicibacter taxa in Bio-Breeding Diabetes-Prone (BB-DP)

rats, whereas abundance of Bacteroides, Eubacterium, and Ruminococcus increased in BB-DP

rats compared to Bio-Breeding Diabetes-Resistant (BB-DR) rats. Thesefindings are consistent

with our study where Turicibacter, Terrisporobacter and Clostridium were more abundant in

the control group than in TID (Fig 3). In addition, in comparing different treatments of TID, it

was observed that Pseudomonas (a Gram negative, opportunistic pathogenic taxon) was more

prominent in the non-controlled blood glucose level (TINN) than in TIC (Fig 4).

Results from this pilot study should be taken cautiously as a basis for further investigations

to understand differences in the microbiome in association with TID and TIID in Egyptian

patients with controlled and non-controlled blood glucose and the presence or absence of liver

disease onset or hyper-tension. In addition to the small sample sizes, there were other factors

that we couldn’t control for in this study such as the type of diet. A high fat diet may shift the

balance of the microbiota to taxa that cause inflammation, modulate metabolism and alter pro-

duction of SCFA by microbiota leading to insulin resistance [44]. We aim to develop future

studies, including larger samples sizes, to further elucidate our findings and alleviate some of

these limitations, as well as possible metagenomic studies to examine the intriguing function

of significant microbes.
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