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Brain mechanisms in motor control 
during reaching movements: 
Transition of functional 
connectivity according to 
movement states
Hong Gi Yeom1, June Sic Kim2* & Chun Kee Chung   2,3,4

Understanding how the brain controls movements is a critical issue in neuroscience. The role of brain 
changes rapidly according to movement states. To elucidate the motor control mechanism of brain, it is 
essential to investigate the changes in brain network in motor-related regions according to movement 
states. Therefore, the objective of this study was to investigate the brain network transitions according 
to movement states. We measured whole brain magnetoencephalography (MEG) signals and extracted 
source signals in 24 motor-related areas. Functional connectivity and centralities were calculated 
according to time flow. Our results showed that brain networks differed between states of motor 
planning and movement. Connectivities between most motor-related areas were increased in the 
motor-planning state. In contrast, only connectivities with cerebellum and basal ganglia were increased 
while those of other motor-related areas were decreased during movement. Our results indicate that 
most processes involved in motor control are completed before movement. Further, brain developed 
network related to feedback rather than motor decision during movements. Our findings also suggest 
that neural signals during motor planning might be more predictive than neural signals during 
movement. They facilitate accurate prediction of movement for brain-machine interfaces and provide 
insight into brain mechanisms in motor control.

The mechanisms underlying the control of movement by brain are a critical issue in neuroscience1. The brain 
mechanisms have important academic and practical implications. Georgopoulos et al. reported that neural sig-
nals were altered according to the direction of arm movement2. Thus, the trajectories of arm movement can be 
predicted based on neural signals in monkeys3–5 and humans6–9. Such prediction of arm movements using neural 
signals facilitates control of robotic arms by paralyzed patients similar to real arms10–12. Therefore, understanding 
the brain mechanism is of direct interest.

Brain mechanism of motor control has been studied for more than 150 years13. Early studies were mainly 
based on correlations between lesions in the brain and corresponding motor deficits13. Results of these stud-
ies revealed functional brain areas. Advances in electrophysiological recordings such as electroencephalography 
(EEG) enable visualization of neural activities occurring in the brain during motor tasks. For instance, the slow 
negative wave or the Bereitschaftspotential (BP) occurs before the movement generated by primary motor cortex 
(M1) and supplementary motor area (SMA)14,15. Movements induce event-related synchronization (ERS) in delta 
(0–4 Hz), theta (4–8 Hz) and gamma (above 30 Hz) waves and event-related desynchronization (ERD) in alpha 
(8–13 Hz) and beta (13–30 Hz) waves in the contralateral motor cortex16,17. A beta rebound is generated after the 
movement18. ERD and ERS represent power decrease and increase, respectively. ERD and ERS are generated by a 
decrease19,20 and an increase in synchronous neural populations21, respectively. ERD and ERS have been used as 
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the key principles of brain–computer interface (BCI)22,23. Since the early 2000s, the mechanism of communication 
between different brain areas has been actively investigated24–32. These studies revealed brain networks during 
resting state or task performance33,34. Especially, studies involving motor functions have analyzed the neural syn-
chrony between M1, SMA, premotor (PM), sensorimotor cortex (SM), parietal cortex and so on in theta (4–8 Hz), 
alpha, beta and gamma (30–100 Hz) bands25–30. The studies revealed that the brain networks differ according to 
the motor tasks25,28,30, types of movement initiation26, accuracy of movements27 or movement complexity32. For 
example, isometric contraction of the forearm increases brain networks within the beta band between M1 and 
SMA, whereas repetitive finger movements increases the brain networks within the gamma band and between 
the theta and the gamma bands from iPM (ipsilateral premotor) to SMA and from iPM to M130. During motor 
planning, connectivity between ipsilateral SM (iSM) and contralateral SM (cSM) in the alpha band is increased26. 
Rhythmic movements increase beta band coherence between interhemispheric motor areas31. Visuomotor track-
ing tasks increase beta band coherence between motor and visual cortex31. Previous studies mainly focused on 
connectivity during a consistent state24–32.

Recently, temporal changes in brain connectivity have been regarded as an important issue because the 
brain works differently depending on each task35–37. Motor control involves interaction between several brain 
regions38,39. Further, the roles of these motor-related regions are changed according to movement states such 
as perception, motor planning or execution1,40. Therefore, it is essential to analyze the changes in motor-related 
regions according to movement states to elucidate the brain motor control mechanism, which has yet to be inves-
tigated. Therefore, the objective of this study was to investigate the brain network transitions according to move-
ment states. In the present study, we measured whole brain magnetoencephalography (MEG) signals in humans 
during goal-directed reaching movements. Source signals of 24 motor-related areas were extracted from MEG 
signals using beamforming method. To analyze the changes in brain networks depending on movement states, 
the functional connectivity between source areas was calculated using mutual information (MI) according to 
the time window. To reveal the network hubs, the degree centrality was calculated. The aim of this study was to 
reveal the transition in brain networks by analyzing the transition of connectivities and centralities according to 
movement states.

Methods
Experimental procedure.  In this study, MEG signals were measured during center-out reaching move-
ments (Fig. 1A). The experiments were performed in accordance with the Declaration of Helsinki and were 
approved by the Institutional Review Board (IRB) of Seoul National University Hospital (1105-095-363). The 
experimental procedures were explained prior to the measurements. Informed consent was obtained from all 
subjects included in the study. Nine right-handed subjects (five males, and four females) aged 19 to 37 years 
(26.8 ± 6.8, mean ± SD) participated in this study. The score on the Edinburgh Handedness Inventory was above 
80 in all subjects (87.2 ± 5.7)41. During the experiment, participants were instructed to move their right arms to 
reach a target in three-dimensional space according to visual stimuli without any other movements (Fig. 1B). To 

Figure 1.  Experimental paradigm. (A) Magnetoencephalography (MEG) signal acquisition. Whole-head MEG 
signals were measured during center-out reaching movements. Stereographic visual stimuli were presented to 
guide movements. (B) Movement tasks. Participants were instructed to move their right arms to reach a target 
in three-dimensional space according to visual stimuli. (C) Histogram of response time. Because large variation 
in response time altered brain connectivity pattern, trials with response time of 100–400 ms (72.28% of whole 
trials) were selected for further analysis.
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minimize movement artifacts, a cushion was placed under the participant’s elbow. To present three-dimensional 
targets, stereographic images were shown on a screen using an STIM2 system (Neuroscan, El Paso, TX, USA). At 
the beginning of the experiment, a sphere was presented in the middle of the screen for 4 s. During this period, 
the participants were required to locate their index fingers on the sphere. After the initial period, a target sphere 
was presented for 1 s in one of the four corners along with a line connected to the target with the center sphere. 
During this period, the participants were instructed to move their index fingers from the center to the target 
sphere following the line (a center-out paradigm) and move back to the center sphere. This center-out reaching 
task was repeated during the session. A total of 120 trials were performed in one session (30 trials in each direc-
tion). Two sessions were recorded per subject. Further details of this experiment have been described 
previously9.

Data acquisition.  During the experiment, MEG signals were recorded using a 306-channel whole-head 
MEG system (VectorView, Elekta Neuromag Oy, Helsinki, Finland) in a magnetically shielded room. The system 
consisted of 306 sensors in triplets of two planar gradiometers and one magnetometer distributed at 102 locations 
over the whole brain. The sample frequency of MEG signals was 600.615 Hz. These signals were band-pass filtered 
at 0.1~200 Hz. Movement trajectories were simultaneously measured using a three-axis accelerometer (KXM52, 
Kionix, NY, USA) attached to the index finger of the participant with the same sample frequency as MEG signals. 
We used the spatiotemporal signal space separation (tSSS) method for the MEG signals to reduce the interference 
from external noise as described previously42,43. To align MEG and MRI data, three-dimensional digitization was 
recorded (FASTRAK, Polhemus, Colchester, VT, USA). All data processing was performed using MATLAB 2018a 
(Mathworks, Natick, MA, USA).

Source signal extraction.  To examine the activities of motor-related area, the source signals were calcu-
lated for 24 regions of interest (ROI). The ROIs related to movements were selected based on references1,40. These 
24 ROIs included left and right sides of prefrontal area (PF), supplementary motor area (SMA), dorsal premotor 
(PMd), primary motor cortex (M1), primary sensory cortex (S1), anterior cingulate cortex (ACC), putamen 
(PUT), pallidum (PAL), thalamus (THA), posterior parietal cortex (PPC), primary visual cortex (V1), and cere-
bellum (CB). PF is related to movement strategy40. SMA and PMd play important roles in motor planning40. M1 
executes movement of the contralateral body part40. S1, V1 and PPC appear to generate the current body posi-
tion40. PUT and PAL receive inputs from the PF, M1 and S1 and provide outputs to the SMA and PMd via THA40. 
PUT and PAL are related to movement initiation40. ACC and THA consist of limbic circuits1. CB regulates body 
and limb movements1.

MEG and template MRI data were aligned according to three anatomical landmarks (i.e., nasion, left preau-
ricular, and right preauricular). To calculate the source signals from the 24 ROIs, a point in each region was cal-
culated by averaging the Automated Anatomical Labeling (AAL) atlas positions of the region44. We created a lead 
field matrix to describe the relationship between MEG signals and source signals of these points with a spherical 
head model as described previously45,46. If we define B as MEG signals, the relationship between MEG signals and 
source signals can be defined by the following equation:

= ⋅ +B A S n

In the above equation, S represents source signals, n denotes measurement noise, and A is the lead field 
matrix. Because the signal at each point consists of two orthogonal dipole components tangential to the surface 
of a spherical head model, the source model comprises two source vectors for each point. To calculate the source 
model, a standardized low-resolution brain electromagnetic tomography (sLORETA) algorithm47 was used. Sj, 
the current density at the j-th point, is obtained using the following equation:

= ⋅S W Bj j

In the above equation, W is represents a pseudo-inverse matrix of A. Each source location contains two source 
signals orthogonal to each other. The two signals can be presented as one signal using singular value decomposi-
tion, a method used to represent data on a new axis to best describe the data.

Functional connectivity.  To investigate the motor mechanism, we calculated the functional connectiv-
ity according to time flow. Source signals were band-pass filtered to low (0.5–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), and gamma (30–200 Hz) frequency bands. The filtered signals of 24 ROIs were temporally segmented 
based on movement onset. The root-mean-square of the accelerometer signals were calculated and normalized. 
The time, when the signal began to grow above 5% of a standard deviation, was chosen as the movement onset. 
The movement onsets were determined by the amplitudes of the accelerometer signals. The movement response 
time to visual stimuli was 287.0 ± 201.7 ms (mean ± SD). Because large variation in response time altered brain 
connectivity pattern, trials with a response time of 100 ms to 400 ms (72.28% of whole trials) were selected for 
further analysis (Fig. 1C). The response time refers to the time between the visual cue and the movement onset. 
To determine the functional connectivity, the MI between source signals was computed at 10-ms interval from 
−0.5 s to 1 s based on movement onset with a Hamming window. We selected MI to calculate the connectivity 
because MI reflects both linear and nonlinear relationships between time series48. The window size of MI was 
100 ms, which was adequate to calculate MI, although 90 ms of the window was overlapped. Thus, the time inter-
val was 10 ms to analyze rapid changes. MI was then calculated using the following equation:

https://doi.org/10.1038/s41598-020-57489-7


4Scientific Reports |          (2020) 10:567  | https://doi.org/10.1038/s41598-020-57489-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑=MI x x p x x log p x x
p x p x

( , ) ( , ) ( , )
( ) ( )x x

1 2
,

1 2
1 2

1 21 2

where x1 and x2 represent 100 ms segments of source signals at 24 ROIs, p(x1) and p(x2) are probability density 
functions (PDF) of x1 and x2, respectively, and p(x1,x2) denotes joint PDF of x1 and x2. These PDFs were calculated 
from the 100 ms window data of all trials at each time. These MI matrices were then averaged for subjects at each 
frequency band.

To analyze the communicative ROIs in the motor network, degree centralities were calculated by summing 
MIs connected from a node as shown below:
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,

Centrality is an effective method to represent the sum of connectivity36. Thus, it reflects the importance of the 
node in the network49. To highlight the motor network transition, baseline correction was performed by subtract-
ing the mean centrality at baseline. The duration of the baseline ranged from −500 ms to −400 ms. A positive 
value indicates increased centrality during movement compared with the value during resting state (baseline) 
while a negative value suggests the opposite.

K-means clustering.  To determine a finite set of motor network, we used the unsupervised clustering algo-
rithm, K-means, for each frequency band36. K-means algorithm can be used to separate motor networks into 
K states. To perform reaching movement, perception, cognition and action are involved1. The action includes 
several processes such as extrinsic kinematics, intrinsic kinematics and kinetics. To examine the change of motor 
network including these states, we decided to adjust K to 10 to investigate the connectivity change sufficiently. 
Centralities over time were clustered by using K-means algorithm with nonrandom centroid seeds. To determine 
centroid seeds, we separated the same 10 intervals and averaged the centralities within each interval. The 10 aver-
age centralities were then used as centroid seeds. After clustering, centralities of the same cluster were averaged. 
As a result, 10 motor networks were determined for each frequency band.

Visualization of connectivity.  For intuitive presentation, we illustrated connectivity in the brain model. 
Connectivity based on MI was represented as thickness of an edge between ROIs. The node size was determined 
based on centrality. Only connectivity and centrality larger than baseline were described. Therefore, edge thick-
ness and node size indicate the degree of increase in connectivity and centrality according to movement planning 
and execution. The maximum size of edge or node is limited. To visualize connectivity in a brain model, we used 
BrainNet Viewer50. The data analysis procedure is summarized in Fig. 2.

Statistical analysis.  The aim of this study was to investigate the transition of brain networks according to 
movement states. Therefore, we assessed the statistical significance underlying the change of centrality before 
and during the movement compared with baseline. Cluster 2 showed the longest time between clusters before 
movement. Cluster 2 lasted from −330 to −170 ms before the onset of movement. The duration may be related to 
the motor-planning state. Duration of the cluster 9–10 was 160 to 500 ms after the movement onset. The duration 
corresponds to the movement state. Therefore, cluster 2 and cluster 9–10 were selected as a pre-movement state 
and a state during movement, respectively. Centralities during cluster 2 and cluster 9–10 intervals were compared 
with the centralities during baselines from −560 ms to −400 ms and from −740 ms to −400 ms, respectively. We 
used the 160 ms and 340 ms baselines to match the baseline length with the data length during cluster 2 and clus-
ter 9–10 intervals, respectively. Paired-sample t-test with Bonferroni correction was used for statistical analysis 
using α = 0.001 (n = 48) to compare the centralities in the same brain area.

Results
Most centralities were decreased in alpha, beta, and gamma bands in both motor-planning (before 0 ms) 
and movement states (Fig. 3). In contrast, considerable centralities were increased in low-frequency bands. 
Centralities of different frequency bands according to time are shown in Fig. 3. Each line represents the centrality 
of one ROI. Because centralities of bands were increased only at low frequency, the signals at low frequency were 
analyzed to reveal major regions associated with movements (Fig. 4).

Low-frequency centralities were increased in most motor-related regions in the motor-planning state although 
most of them were not significant after the Bonferroni correction (Fig. 4). In contrast, low-frequency centralities 
were increased in CB and basal ganglia (BG) during the movement state. In Fig. 4A,D, colors represent z-scores 
normalized by centralities at baseline (from −500 ms to −400 ms). The red color shows increased centrality while 
the blue color indicates decreased centrality. The x-axis denotes time while the y-axis depicts 24 ROIs. Clusters 
of these centralities are illustrated in Fig. 4B. Figure 4C shows the average arm position among all subjects and 
trials. The corresponding connectivity of each cluster is shown in Fig. 4D. For intuitive presentation, centrality 
and connectivities are depicted in the brain model depicted in Fig. 4(E). Sizes of spheres and lines indicate the 
range of z-score. Large figures of clusters 2 and 9 are presented in Fig. 4F,G, respectively.

Figure 5 shows increase and decrease in centralities during the motor-planning state (from −330 ms to 
−170 ms corresponding to cluster 2) and movement state (from 160 ms to 500 ms corresponding to clusters 9 
and 10) compared with those at baselines from −560 ms to −400 ms and from −740 ms to −400 ms, respectively. 
Blue boxes illustrate centralities in the motor-planning state whereas green boxes depict centralities during move-
ments. Error bars show standard error of mean (SEM). Stars on bars denote significance level. Most centralities 
were increased in the motor-planning state except right PF, right PMd, left PUT, left PAL, and left THA (ROI: 2, 
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6, 13, 15, and 17, respectively). However, centralities on left and right PAL (ROI: 15 and 16) and left and right CB 
(ROI: 23 and 24) were increased during movement.

Discussion
Importance of neural signals during motor planning.  In general, neural signals carry more informa-
tion during movement than in motor planning51,52. However, our results suggest that most motor-related areas 
communicated with each other during the motor-planning state, probably related to the Bereitschaftspotential 
(BP). The increased connectivity can be expressed as a slow wave. The BP is generated from SMA and M114. 
BP appears to be related to motor planning. During movement, connectivities of CB and BG were increased 
while those of other motor-related areas were decreased, which may be related to the ERD on the motor cortex. 
Decreased connectivity can be expressed as desynchronization of neural signals. This decrease does not exclude 
the role of other motor-related areas during movements. These regions might be involved in movements, albeit 
with reduced connectivity. These results suggest that most processes involved in motor control might be com-
pleted in the motor-planning state. Subsequently, the brain may focus on evaluating the movement to determine 

Figure 2.  Schematic diagram of data analysis procedures. To examine the activities of motor-related area, the 
source signals were calculated for 24 regions of interest (ROIs). After band-pass filter and signal segmentation, 
mutual information (MI) between source signals was computed from −0.5 s to 1 s at 10 ms interval. The 
window size for MI calculation was 100 ms. To determine the importance of ROIs in the motor network, 
degree centralities were calculated. To elucidate a finite set of motor network, we used unsupervised clustering 
algorithm K-means for each frequency band. For intuitive presentation, we demonstrated the connectivity in 
the brain model using BrainNet Viewer. Connectivity based on MI was defined by the thickness of edge between 
ROIs. The node size was determined based on centrality.
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differences with previous decisions, suggesting that neural signals in the motor-planning state are more inform-
ative about movement parameters compared with neural signals during movements. Previous studies support 
this view. It has been reported that patterns of speed change during reaching movement are similar, although 
distances differ53. The scale of the pattern is altered linearly according to movement distance (Fig. 6A). Therefore, 
if the brain works efficiently, it may encode parameters such as reaching distance and maximum velocity instead 
of continuous speed change. Both the distance and velocity should be determined before movement. Therefore, 
an increased connectivity during motor planning may suggest processing of information related to reaching 
distance and velocity.

Compared with motor planning, brain contains a feedback network during movements in which CB and 
BG are hubs. CB plays an important role in feedback control as an internal model54,55. Therefore, damage to 
the CB causes inaccurate movements56. For example, patients with CB lesion may overshoot a target when they 
make a voluntary movement toward the target56 or their hand may oscillate irregularly around the target1. BG is 
also related to motor control. Diseases of the BG lead to various dysfunctions, ranging from hypokinetic disor-
ders such as tremor to hyperkinetic disorders such as chorea1. Therefore, brain networks related to feedback are 
designed to compensate via sensory feedback rather than determination of movement parameters.

In conclusion, neural signals during motor planning are more informative in predicting movements than 
signals during movements based on our results.

Implication for brain-machine interface.  It has been generally thought that continuous brain waves 
encode continuous changes in movement velocity (Fig. 6B). Therefore, brain-machine interface (BMI) studies 
have been performed to decode movement velocity from continuous brain signals5,10,11,57. However, our results 
imply that neural signals during motor planning are more informative than the signals during movements for 
movement prediction as discussed above. Therefore, we propose to predict movement parameters such as reach-
ing distance and velocity using brain signals in the motor-planning state (Fig. 6C). We expect significant improve-
ments in BMI performance by predicting movements based on motor-planning state.

Importance of low frequency in motor control.  Many connectivities in low-frequency bands were 
increased under motor-planning and movement states. However, most connectivities in alpha, beta, and gamma 
bands were decreased or maintained probably due to ERD in alpha and beta. It appears reasonable because the 
magnitudes of neural signals in alpha and beta were reduced. The connectivity in gamma band can be decreased 
although the magnitude of gamma signals is increased. These results imply that low frequency plays an impor-
tant role in motor planning and execution, probably because low-frequency neural oscillations carry substantial 
movement information such as movement trajectories or velocities6,9,17,51,58,59. Our results suggest that movement 
information is not only processed, but also transmitted in low-frequency oscillation. Because different brain states 
such as resting, motor planning, and motor execution display different connectivity patterns, brain states can be 
predicted based on low-frequency connectivity. Such prediction of brain states will be useful for BMI systems.

Limitations.  To investigate motor control mechanism, we analyzed neural signals during center-out reaching 
movements. The center-out paradigm is a conventional paradigm for the study of reaching movements. Although 
our results revealed the neural network transition according to movement states, it was difficult to examine the 
adaptation response to variations such as shifting target position. To investigate the adaptation mechanism, fur-
ther studies with more complex paradigms are needed. Another limitation of this study is that neural signals 

Figure 3.  Centralities of 24 ROIs in low-frequency alpha, beta, and gamma bands. Each line represents the 
centrality of a single ROI. Centralities were normalized by mean and standard deviation (SD) of baseline (−500 
ms to −400 ms). Transparent red thick line shows three SDs. The x-axis depicts time in seconds. The y-axis 
shows centrality in SD units. Time 0 represents the movement onset.
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originating in deep brain structures have a relatively insignificant effect on MEG signals. Although deep brain 
signals are weak, source modeling facilitates their investigation60. Because it is very difficult to directly meas-
ure broad and deep brain signals, studies with source modeling might be the best approach to investigate rapid 
changes in broad cortical and subcortical brain signals.

Conclusion
We demonstrated the transition in connectivity between motor-related areas according to movement states. To 
the best of our knowledge, this is the first study that elucidates the neurophysiology of transition in motor con-
trol networks. Our results showed that brain networks differ between motor-planning and movement states. 
During the motor-planning state, connectivities were increased among most motor-related areas. In contrast, 
during movement, connectivities of CB and BG were increased whereas those of other motor-related areas were 
decreased suggesting that most motor control processes might have been completed during the motor planning 
stage. Further, our results revealed that the brain developed networks related to feedback rather motor decision 
during movements. Our findings imply that neural signals during motor planning are more informative than 
neural signals during movement. It provides important insight into the prediction of precise movements for BMIs 
and elucidation of brain mechanisms of motor control.

Figure 4.  Transition of centralities and connectivities before and during reaching movements in low frequency. 
(A) Transition of centralities of low-frequency band. Colors represent z-scores normalized by centralities 
during baseline (from −1 s to −500 ms). Red color shows increased centralities. Blue color indicates decreased 
centralities. The x-axis of (A–C) denotes time (s). The y-axis depicts 24 ROIs. ROI 1: left PF; 2: right PF; 3: left 
SMA; 4: right SMA; 5: left PMd; 6: right PMd; 7: left M1; 8: right M1; 9: left S1; 10: right S1; 11: left ACC; 12: 
right ACC; 13: left PUT; 14: right PUT; 15: left PAL; 16: right PAL; 17: left THA; 18: right THA; 19: left PPC; 
20: right PPC; 21: left V1; 22: right V1; 23: left CB; and 24: right CB.(B) The cluster number of centralities 
assigned by the K-means algorithm. The y-axis represents the cluster number. (C) Normalized arm position 
averaged among all subjects and trials. The y-axis represents cluster normalized arm position from center. 
(D) Corresponding connectivities of each cluster number of (B). The x- and y-axes represent 24 ROIs. (E) 
Horizontal and sagittal view of centralities and connectivities in the brain model corresponding to each cluster 
of (D). Sizes of spheres and lines depict the range of z-scores. (F) Centralities and connectivities of cluster 2. (G) 
Centralities and connectivities of cluster 9.
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Data availability
The data measured and analyzed for the current study are available from the corresponding author on reasonable 
request.

Figure 5.  Changes in centralities of 24 ROIs before (from −330 ms to −170 ms corresponding to cluster 2) and 
during (from 160 ms to 500 ms corresponding to the clusters 9 and 10) movements compared with the baseline 
values from −560 ms to −400 ms and from −740 ms to −400 ms, respectively. Blue boxes indicate centralities 
before movements. Green boxes depict centralities during movements. The red line indicates the baseline. Error 
bars show standard error of mean (SEM). Stars on bars denote significance levels. Statistical significances were 
calculated by Bonferroni-corrected paired sample t-test for each ROI. ROI 1: left PF; 2: right PF; 3: left SMA; 4: 
right SMA; 5: left PMd; 6: right PMd; 7: left M1; 8: right M1; 9: left S1; 10: right S1; 11: left ACC; 12: right ACC; 
13: left PUT; 14: right PUT; 15: left PAL; 16: right PAL; 17: left THA; 18: right THA; 19: left PPC; 20: right PPC; 
21: left V1; 22: right V1; 23: left CB; and 24: right CB. *P < 0.05.

Figure 6.  Proposed BMI model for prediction of movement parameters based on brain signals in the motor-
planning state. (A) Patterns of velocity and accelerometer for different distances. Scale of the pattern is linearly 
altered according to movement distance. (B) Previous method used to decode movement: Previous BMI studies 
predicted movement velocity using continuous brain signals. (C) Proposed method to decode movement: 
Movement parameters such as reaching distance and velocity were predicted based on brain signals in the 
motor-planning state.
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