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Objective: Despite advances in artificial intelligence (AI) in glaucoma prediction, most works lack multicenter
focus and do not consider fairness concerning sex, race, or ethnicity. This study aims to examine the impact of
these sensitive attributes on developing fair AI models that predict glaucoma progression to necessitating
incisional glaucoma surgery.

Design: Database study.
Participants: Thirty-nine thousand ninety patients with glaucoma, as identified by International Classification

of Disease codes from 7 academic eye centers participating in the Sight OUtcomes Research Collaborative.
Methods: We developed XGBoost models using 3 approaches: (1) excluding sensitive attributes as input

features, (2) including them explicitly as input features, and (3) training separate models for each group. Model
input features included demographic details, diagnosis codes, medications, and clinical information (intraocular
pressure, visual acuity, etc.), from electronic health records. The models were trained on patients from 5 sites
(N ¼ 27 999) and evaluated on a held-out internal test set (N ¼ 3499) and 2 external test sets consisting of
N ¼ 1550 and N ¼ 2542 patients.

Main Outcomes and Measures: Area under the receiver operating characteristic curve (AUROC) and
equalized odds on the test set and external sites.

Results: Six thousand six hundred eighty-two (17.1%) of 39 090 patients underwent glaucoma surgery with a
mean age of 70.1 (standard deviation 14.6) years, 54.5% female, 62.3% White, 22.1% Black, and 4.7% Latinx/
Hispanic. We found that not including the sensitive attributes led to better classification performance (AUROC:
0.77e0.82) but worsened fairness when evaluated on the internal test set. However, on external test sites, the
opposite was true: including sensitive attributes resulted in better classification performance (AUROC: external #1
- [0.73e0.81], external #2 - [0.67e0.70]), but varying degrees of fairness for sex and race as measured by
equalized odds.

Conclusions: Artificial intelligence models predicting whether patients with glaucoma progress to surgery
demonstrated bias with respect to sex, race, and ethnicity. The effect of sensitive attribute inclusion and
exclusion on fairness and performance varied based on internal versus external test sets. Prior to deployment, AI
models should be evaluated for fairness on the target population.
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Recent years have seen a rapid proliferation of artificial
intelligence (AI) algorithms in health care using data from
electronic health records (EHRs) to predict a variety of
outcomes.1e5 In the field of ophthalmology, these have
included promising algorithms that can accurately predict
which patients with glaucoma will progress to the point of
requiring glaucoma surgery using structured6,7 and
unstructured (free-text) data8e10 from EHRs. The perfor-
mance of some of these algorithms is superior to even a
glaucoma specialist’s predictions.10 Prediction algorithms
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
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that can accurately identify those at high risk for disease
progression might ultimately assist clinicians in
personalizing glaucoma management plans, allowing for
more aggressive interventions in high-risk patients before
vision is irreversibly lost, or relaxing the burden of
surveillance in patients who are likely to remain stable.

However, the potential for implementation of any AI
prediction model depends on more than just the overall ac-
curacy of its predictions. Unfortunately, some AI prediction
algorithms in the field of health care have inadvertently
1https://doi.org/10.1016/j.xops.2024.100596
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demonstrated discrimination against minoritized groups,
exacerbating existing disparities in care and outcomes.11,12

For example, a widely used algorithm used to identify and
help patients with complex health needs was shown to be
biased, as Black patients were considerably sicker than
White patients for a given risk score, reducing their chances
of accessing special care programs.11 Thus, whether an
algorithm performs fairly or exhibits bias against particular
demographic subgroups of a population should be an
important component of its evaluation prior to
implementation. The question of bias is especially
important for glaucoma algorithms because of the wealth of
prior research that has demonstrated that glaucoma
disproportionately impacts Black13,14 and Latinx/Hispanic
patients.15e17 These patients are more likely to go blind
from glaucoma and experience worse outcomes,15,17 and yet
are underrepresented in many landmark studies.18

Furthermore, studies have shown a sex-dependent suscepti-
bility to developing some types of glaucoma, with women
outnumbering men in total cases worldwide and having a
higher risk for primary angle-closure glaucoma due to
anatomical predisposition and other factors.19e21 Artificial
intelligence algorithms can combat biases against marginal-
ized groups through responsible development and
deployment.22

Some authorities have advocated for a "fairness through
unawareness” approach toward developing models, arguing
that race or ethnicity, as sociopolitical constructs without
consistent biologic meaning, should not be included as input
features in prediction algorithms.23 However, others have
suggested that training models that are “unaware” of race
or other sensitive attributes can result in models that are
optimized for the majority group and underperform in
minority groups, which may actually harm minorities.24,25

To the best of our knowledge, whether race, ethnicity, or
other sensitive patient attributes should be included in
EHR models for ophthalmology has not been previously
explored. This question is especially important for
glaucoma because of the potentially complex interplay of
social, economic, and biologic factors that underpin the
relationship between race/ethnicity and glaucoma.

The recent establishment of the Sight Outcomes
Research Collaborative (SOURCE), a multicenter repository
of EHR from academic ophthalmology departments across
the United States, offers a promising opportunity for
investigating fairness in AI algorithms for ophthalmology.
The large and diverse population in SOURCE enables
researchers to develop and evaluate the fairness of AI
algorithms on racial and ethnic subgroups, an evaluation
that is difficult to perform using data from a single center,
especially if patients seen at that center are very homoge-
nous in their sociodemographic characteristics. The objec-
tive of this study is to examine the impact of sensitive
attributes (such as sex, race, and ethnicity) on developing
and implementing fair and equitable EHR models that
predict the progression of glaucoma to necessitating inci-
sional glaucoma surgery. We evaluate both standard model
performance metrics and model fairness criteria, under
conditions when the model excludes sensitive characteristics
as input features, includes them as input features, or when
2

separate models are developed for each group. We evaluated
a variety of fairness criteria, and we focused on the widely
accepted equalized odds metric for fairness, which stipulates
that comparison groups should have equal true positive rates
(sensitivity) and equal false positive rates (FPRs). We also
evaluated how model fairness generalizes when evaluated
on patients from sites not included in the training data.
Methods

Data Source

The data for this study were obtained from the SOURCE
Ophthalmology Data Repository (https://www.sourcecollabor-
ative.org/). The repository collects EHR data of all patients who
have received eye care at academic health systems participating in
the consortium. The data spans a time frame from when a site
implements the EHR up until the present. For this study, data were
extracted from 7 active SOURCE sites, each contributing patient
data spanning 7 to 14 years. The information captured by
SOURCE includes patient demographics, diagnoses based on
International Classification of Diseases (ICD) billing codes, eye
examination findings from each clinic visit, and details about
ocular and nonocular medications prescribed, laser treatments, and
surgical interventions. All data in the repository have been
deidentified to protect patient privacy. However, privacy-
preserving software (Datavant Inc) permits researchers to follow
patients longitudinally over time, while still protecting patients’
privacy. This study was approved by the University of Michigan
and Stanford Institutional Review Boards and adhered to the tenets
of the Declaration of Helsinki. As data were deidentified, informed
consent was not obtained in this study.

Study Population

In the SOURCE database, we first selected all patients with �1
glaucoma-related billing code (codes starting with ICD 365.xx,
H40.xx, Q15). We excluded patients with only glaucoma suspect
codes (H40.0, and ICD 365.0 and their descendants). Within this
group, we identified persons who underwent incisional glaucoma
surgery, as determined by Current Procedural Terminology26

billing codes, or had �2 distinct visits with a glaucoma
diagnosis identified by ICD27 coding (Table S1, available at
www.ophthalmologyscience.org).

Our models sought to predict the likelihood that a patient with
glaucoma will undergo incisional glaucoma surgery in either eye
within 12months of an index date, using data from the preceding 4 to
12months and a cut-off threshold/score based on a validation dataset,
similar to our previous work.28 This approach predicts surgery at the
patient level, and it allows for prediction at any time point during the
patient’s time in the health system, as opposed to only at baseline
(which would be the case for models using only baseline data).
Briefly, for each patient, we established a prediction date (or index
date) that divided their medical timeline into 2 periods: a look
forward period during which the model would predict the
likelihood of progression to surgery, and a lookback period of �4
months and up to 12 months, from which the model drew its input
data. Patients with <4 months of lookback data were excluded
from the analysis. For patients who underwent glaucoma surgery,
we identified the date of their first surgery and defined the
prediction date as either 12 months prior to the surgery date or
after the initial 4 months of follow-up (whichever was later). The
prediction date for nonsurgical patients was defined as 12 months
before their last follow-up date. A summary of cohort construction
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timelines with examples is given in Fig S1 (available at
www.ophthalmologyscience.org).

Feature Engineering

The feature engineering and cohort construction process have been
previously described.28 Briefly, the input features extracted from
the EHRs included demographics (age at prediction date, sex,
race, ethnicity, rural/urban [Rural-Urban Commuting Area]
codes,29 and distressed communities index score30); clinical
variables (logarithm of the minimum angle of resolution best
recorded visual acuity, intraocular pressure, refraction spherical
equivalent, and central corneal thickness for both eyes), ocular
and systemic ICD diagnosis codes, and ocular and systemic
medication prescriptions. Demographic information on race,
ethnicity, and sex were as recorded in the EHR, which is likely
to be self-reported, though collection methods at each partici-
pating SOURCE institution may vary. Continuous variables were
scaled; categorical variables were dummy-encoded. Encounter-
level ICD codes were aggregated to the first decimal level. Sys-
temic and ocular outpatient medication data from the specified time
period were aggregated based on their generic names. Patients with
a particular ICD code or medication in the lookback period were
assigned a "1" for that feature, "0" otherwise. International Clas-
sification of Diseases codes and medication with near-zero variance
(<0.5% and <2%, respectively) were removed, resulting in a total
of 92 ICD code-based features and 52 medication-based features.
The total number of structured data input features was 179.

The data were split for model training, model validation, and
evaluation. Data from 2 sites was reserved as an “External Site #1”
(N ¼ 1550) and “External Site #2” (N ¼ 2542). The remaining 5
sites of SOURCE data were split by patient in an 80:10:10 ratio for
training (N ¼ 27 999), validation (N ¼ 3500), and internal testing
(N ¼ 3499). The purpose of validation data is to fine-tune hyper-
parameters, like threshold cutoffs or scores, to enhance perfor-
mance while guarding against overfitting to the training data.
Internal test data evaluate the model’s performance after hyper-
parameter tuning on the same data distribution as the training set.
Conversely, external test data, drawn from a distinct data source,
asses the model’s performance and its ability to generalize beyond
the training data’s distribution.

Sensitive Attributes

We analyzed fairness and generalizability of fairness across 3
sensitive attributes. These attributes and the comparison groups for
each were:

� Race - White (G1) vs. non-White (G2)
� Sex - Male (G1) vs. Female (G2)
� Ethnicity - non-Latinx/Hispanic (G1) vs. Latinx/Hispanic

(G2)

Decision Boundary Complexity

A classification decision boundary is a dividing line or surface in
the feature space that separates different classes or categories in a
classification problem. It represents the threshold at which a clas-
sifier assigns different labels or predictions to different regions of
the feature space. We first investigated whether the complexity of
the classification decision boundary differed between each sub-
group, which would suggest that including sensitive attributes in
modeling could be beneficial. For example, if White (G1) in-
dividuals can be adequately classified into those who will progress
to glaucoma surgery and those who will not using a linear classi-
fier, while non-White (G2) individuals require a complex nonlinear
model for classification, this would imply that complexity of the
classification problem differs between the 2 groups.

The N2 measure quantifies the geometric complexity of the
classification problem by assessing the ratio between the average
distance to the intraclass (i.e., within the same outcome) nearest
neighbor and the average distance to the interclass nearest
neighbor, for each individual.31 The minimum value for the N2
measure is 0. Smaller N2 values indicate that the classification
problem is easier, and the classes can be separated more
effectively using a smoother discriminant function. We tested the
significance of the difference between the decision boundary
complexity of the groups by first (1) selecting 500 subsets
randomly from each group within the training set, (2) computing
the mean and standard deviation of the N2 data complexity
measure for each group, and (3) use a t test to analyze whether
there is a significant difference between the mean complexity of
G1 and G2 in each sensitive attribute.

Modeling

We developed XGBoost models using the Python xgboost 1.7.6
package using 3 approaches: (1) a model not using sensitive
attributes (M1) as input features, (2) a model including sensitive
attributes as explicit input features (M2), and (3) models which use
the sensitive attributes to train separate models for each group
(M3). Hyperparameters were tuned using random search and
threefold cross-validation on the training set to optimize the area
under the receiver operating characteristic curve (AUROC).
Probability thresholds for classification were optimized for best F1
score on a validation set.

Evaluation

The primary outcome was model fairness as defined by the widely
used equalized odds metric.32 In models which are fair with respect
to equalized odds, the true positive and the FPRs are equalized
across comparison groups of patients. For example, a model’s
prediction of whether a glaucoma patient will progress to surgery
performs with equal FPRs for White and non-White patients, and
equal true positive rates for White and non-White patients. Sec-
ondary fairness metrics included independence (demographic par-
ity),32 overall accuracy equality,33 and sufficiency (calibration).33

Table S2 (available at www.ophthalmologyscience.org) provides
the definitions for each of the fairness metrics. We used
equalized odds as the primary metric in this study over other
metrics such as overall accuracy equality as it specifically
assesses fairness in terms of predictive parity across different
demographic groups, ensuring that predictive performance is
similar for all groups regardless of their characteristics, thus
providing a more comprehensive measure of fairness in
predictive models. All fairness measures are reported as absolute
value differences between subgroups (G1 and G2). Optimal
fairness approaches a difference of 0, signaling minimal
unfairness, while higher numbers denote increased disparity and
unfairness between subgroups. In clinical settings, employing the
absolute value difference provides a straightforward measure of
disparity between groups, facilitating clear interpretation. By
assessing the magnitude of unfairness regardless of its direction,
stakeholders can effectively identify and address disparities,
enhancing overall fairness in decision-making processes.

We also evaluated standard classification performance metrics
including sensitivity (recall), specificity, positive predictive value
(precision), FPR, false omission rate, AUROC, and accuracy. A
bootstrap analysis with 1000 samples was conducted to generate
95% confidence intervals (CIs) for the AUROC. We also computed
the proportion of data assigned to the positive class (i.e., support
3

https://www.ophthalmologyscience.org
https://www.ophthalmologyscience.org


Ophthalmology Science Volume 5, Number 1, February 2025

�

TPþFP
TPþTNþFPþFN]). All metrics were evaluated on both the internal
test set and the independent external site data. An overview of the
entire study design is shown in Figure 1.

Results

Study Population

Table 3 summarizes the population characteristics for the
study cohort of 39 090 patients with glaucoma, stratified
by the internal training, validation, and testing groups, and
external subgroups. Of 39 090 participants, the mean age
of the population was 70.1 years (standard deviation
14.6). A majority (N ¼ 21 312, 54.5%) were female.
Most patients were White (N ¼ 24 372, 62.3%). There
were N ¼ 8638 Black patients (22.1%) and 1832 Latinx/
Hispanic patients (4.7%). Overall, 16.9% (N ¼ 6019) of
the patients progressed to undergo glaucoma surgery. The
base rate of patients progressing to surgery was 17.6% for
males and 16.6% for females. For White and non-White
patients, the base rates of undergoing surgery were 16.0%
and 18.8%, respectively. Finally, the base rates for Latinx/
Hispanic and non-Latinx/Hispanic patients were 24.7% and
16.7%, respectively.

Comparing Decision Boundaries for Subgroups
in Sensitive Attributes

We investigated the complexity of the classification decision
boundary for each demographic subgroup defined by the
sensitive attributes, comparing the N2 measure between
subgroups. Figure 2 visualizes the distribution of the N2
measure for each subgroup in each sensitive attribute. We
found that the complexity of the classification problem
was significantly different between the subgroups (t test, P
< 0.001 for G1 vs. G2 for each sensitive attribute). The
difference in N2 distribution curves was notably distinct
compared between Latinx/Hispanic and non-Latinx/
Hispanic subgroups, potentially suggesting the necessity
of employing distinct models for each group to faithfully
capture the decision boundaries.

Model Performance and Fairness

Area under the receiver operating characteristic curve scores
are shown in Figure 3 for models which exclude (M1),
include (M2), and stratify (M3, separate models for each
group) on sensitive features. All standard classification
performance metrics are reported in Table S4a and
Table S4b (available at www.ophthalmologyscience.org).
For sex, the model excluding sex as an input feature (M1)
achieved the highest AUROCs on the internal testing set
(0.779 [95% CI 0.779e0.780] male, 0.768 [95% CI
0.766e0.769] female), but the performance of the model
including sex as an input feature (M2) achieved the
highest AUROCs on external site #1 (0.731 [95% CI
0.730e0.734] male, 0.764 [95% CI 0.764e0.765] female)
and external site #2 (0.681 [95% CI 0.679e0.682] male,
0.674 [95% CI 0.671e0.676] female). Similarly, for race
4

the M1 AUROC was highest for the internal test set
(0.776 [5% CI 0.775e0.775] White, 0.762 [95% CI
0.762e0.764] non-White), but for the external test sites
the race-aware approaches (M2 and M3) had higher
AUROCs. For ethnicity, M1 achieved the highest AUROC
for the internal testing set and M2 achieved the highest
AUROC on external site #2. For external site #1, the
highest-performing modeling approach was different for
Latinx/Hispanic and non-Latinx/Hispanic patients: M1 was
best for Latinx/Hispanic patients in external site #1 but M3
was best for non-Latinx/Hispanic patients.

Figure 4 illustrates the fairness of each modeling
approach with respect to sex, race, and ethnicity, as
determined by equalized odds for the internal test set and
external test sets. For fairness metrics, a difference
between G1 and G2 which is closer to zero is more fair
and less biased; for example, if model true positive and
FPRs are the same for females as for males, then the
difference is 0 and the model is perfectly fair with respect
to sex as measured by equalized odds. We found that for
sex, M2 was most fair on the internal test set and external
test site #2 while M1 was most fair on the external test
site #1. For race, models using sensitive attributes (M2
and M3) were fairer on the internal testing set and
external test site #2, while M1 was most fair on external
test site #1. For ethnicity, M3 was most fair for both the
internal testing set and external test sites. For other
fairness metrics such as overall accuracy equality and
sufficiency, we also observed varying degrees of fairness
across different modeling strategies for all sensitive
attributes, which were not consistent between evaluation
sites. Results for all evaluated fairness metrics are reported
in Table S5 (available at www.ophthalmologyscience.org).
Discussion

In thismulticenter study of nearly 40000patients across 7 large
United States health systems, we evaluated the fairness and
generalizability of AI algorithms that predict whether patients
with glaucoma will progress to require surgery in the coming
year. Such algorithms could eventually aid physicians in
personalizing therapies for patients with high- and low-risk
glaucoma. We found evidence of bias for sex, race, and
ethnicity that was not wholly ameliorated by removing these
sensitive attributes as inputs to the models. When we system-
atically evaluated the inclusion and exclusionof race, ethnicity,
and sex in our models, we found that not including these
sensitive attributes resulted in better classification performance
but worse fairness when evaluated on an internal test set from
the same distribution as the training data. However, these re-
sults did not generalize well, as we found that when we tested
our models on data from external test site #1, the opposite was
true: including sensitive attributes resulted in better classifi-
cation performance, but worse fairness for sex and race as
measured byequalizedodds. For external test site #2, including
sensitive attributes results in both better classification and
fairness for all sensitive attributes. These results underscore the
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Figure 1. Study design overview. Flowchart depicts the overall study design, including the training and evaluation set, the modeling approaches, and the
fairness and classification evaluation metrics.
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importance of external validation and subpopulation analyses
for uncovering potential biases in AI models.

A key insight gleaned from the results of this study was that
the modeling approach for sensitive attributes which achieved
Table 3. Population

Train Val Int

N ¼ 27 999 N ¼ 3500 N

Mean Std Dev. Mean Std Dev. Mean

Age (yrs) 70.3 14.6 70.2 14.4 70.4
Best logMAR VA, OD 0.6 1.1 0.7 1.2 0.7
Best logMAR VA, OS 0.6 1.1 0.6 1.1 0.7
IOP max, OD (mmHg) 17.4 6.6 17.5 6.6 17.5
IOP max, OS (mmHg) 17.4 6.6 17.5 6.7 17.5
IOP max of either eye (mmHg) 19.2 7.5 19.3 7.8 19.3
Spherical equivalent, OD �1.1 3.4 �1.2 3.6 �1
Spherical equivalent, OS �1.1 3.5 �1.3 3.5 �1
CCT, OD (um) 550.5 52.5 551.2 52.6 551.9
CCT, OS (um) 551.0 53.9 551.5 53.7 553.5

N % N % N

Surgery 4550 16.3% 612 17.49% 5
Female 15 259 54.5% 1869 53.40% 19
Race
White 18 371 65.6% 2313 66.1% 22
Black 5788 20.7% 716 20.5% 7
Asian 1826 6.5% 225 6.4% 2
American Indian or Hawaiian 94 0.3% 10 0.3% 1
Other 1575 5.6% 193 5.5% 2
Unknown 345 1.2% 43 1.2% 4

Ethnicity
Hispanic 1193 4.26% 151 4.3% 1
Non-Hispanic 25 776 92.1% 3229 92.3% 32
Unknown 1030 3.7% 120 3.4% 1

Rural/urban
Rural 878 3.1% 108 3.1% 1
Urban 25 621 91.5% 3206 91.6% 31
Missing 1500 5.4% 186 5.3% 2

CCT ¼ central corneal thickness; IOP ¼ intraocular pressure; logMAR ¼ lo
eye; VA ¼ visual acuity.
the best classification performance was not necessarily the
fairestdsimilar to another study that analyzed the impactof race
and ethnicity on diabetic screening.34 On the internal test set of
patients from the 5 sites used for model training, models that
Characteristics

ernal Test External Test #1 External Test #2 Total

¼ 3499 N ¼ 1550 N ¼ 2542 N ¼ 39 090

Std Dev. Mean Std Dev. Mean Std Dev. Mean Std Dev.

14.6 66.7 13.9 67.5 16.4 70.1 14.6
1.1 0.7 1.2 0.7 1.1 0.6 1.1
1.1 0.7 1.3 0.7 1.1 0.7 1.1
6.6 18.8 7 18 6.2 17.5 6.6
6.8 19.1 7 17.8 6 17.5 6.7
7.6 20.7 8.1 19.6 6.9 19.3 7.6
3.5 �1 3.8 �1.6 4.2 �1.1 3.5
3.4 �0.8 3.2 �1.4 4.3 �1.1 3.5
54.2 546.8 47.4 554.1 65.7 550.5 52.4
56.6 547.4 47.6 555.7 67.2 551.1 53.8

% N % N % N %

95 17.00% 262 16.90% 663 26.08% 6682 17.1%
06 54.47% 919 59.29% 1359 53.46% 21 312 54.5%

69 64.85% 249 16.06% 1170 46.03% 24 372 62.3%
30 20.86% 1183 76.32% 221 8.69% 8638 22.1%
38 6.80% 39 2.52% 707 27.81% 3035 7.8%
0 0.29% 4 0.26% 46 1.81% 164 0.4%
09 5.97% 48 3.10% 339 13.34% 2364 6.0%
3 1.23% 27 1.74% 59 2.32% 517 1.3%

46 4.17% 36 2.32% 306 12.04% 1832 4.7%
37 92.51% 1444 93.16% 2219 87.29% 35 905 91.9%
16 3.32% 70 4.52% 17 0.67% 1353 3.5%

08 3.09% 2 0.13% 43 1.69% 1139 2.9%
91 91.20% 474 30.58% 2497 98.23% 34 989 89.5%
00 5.72% 1074 69.29% 2 0.08% 2962 7.6%

garithm of the minimum angle of resolution; OD ¼ right eye; OS ¼ left
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Figure 2. Kernel density estimate of N2 measures. Plots visualizing the distribution of nonparametric separability of classes (N2) for each group in each
sensitive attribute. Each subplot showcases the difference in distribution of the N2 measure between the subgroups for each sensitive attribute, over 500
subsets randomly sampled in the training set. That the distributions of the N2 measure differ between subgroups of patients suggests that there are varying
levels of complexity of the classification problem of distinguishing between patients who will progress to glaucoma surgery or not. Std ¼ standard deviation.
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were ‘“blind” to the sensitive attribute, whether that was sex,
race, or ethnicity, achieved higher AUROCs, but models that
were “aware” of the attributes were considered fairer in terms
of equalized odds. This is likely consistent with the trade-off
between fairness and performance described in other contexts
outside of medicine,35e38 such as the loan eligibility problem
where there is an apparent trade-off between fairness and
Figure 3. Area under the receiver operating characteristic curve for different
AUROC for different modeling approaches which exclude (M1), include (M2),
under the receiver operating characteristic curve is plotted separately for subgro
(non-Hispanic and Hispanic). Model performance is shown evaluated on an
(“Test”) and for patients from 2 different independent sites (“External #1” and “

curve.

6

accuracy among racial groups.39 This trade-off between fairness
and performancewas also notable in external site #1, though the
pattern was opposite: the models that were “blind” to race and
sex were fairer, but had lower AUROCs. However, for external
site #2 where models that were “aware” of attributes were both
fairer and had better AUROCs. The difference in results be-
tween the 2 external sites may potentially be attributable to the
modeling approaches regarding sensitive attributes. Figure illustrates the
or stratify (M3) on the sensitive attributes of sex, race, and ethnicity. Area
ups by sex (male and female), race (White and non-White), or ethnicity
internal test set of patients from the same 5 sites used for model training
External #2”). AUROC ¼ area under the receiver operating characteristic



Figure 4. Fairness as measured by equalized odds for different modeling approaches regarding sensitive attributes. Figure illustrates the fairness of different
modeling approaches regarding sensitive attributes. Fairness is determined by equalized odds, defined as the gap between the demographic subgroups in true
positive rates and false positive rates. The comparison subgroups are male and female for sex, White and non-White for race, and non-Hispanic and Hispanic
for ethnicity. Fair models have an equalized odds measure near zero (short bars) indicating small or no gap in the true and false positive rates between
demographic subgroups, whereas biased models have an equalized odds measure which is high (longer bars), indicating a large gap in true and false positive
rates between demographic subgroups.

Ravindranath et al � Fairness forGlaucomaPredictionModels in the SightOutcomesResearchCollaborative
large differences in population demographics between these
sites. For example, there is a substantial demographic shift in
regards to White (65.6% vs. 16.1% vs. 46.0%), Black (20.7%
vs. 76.3% vs. 8.7%), and Hispanic (4.26% vs. 2.3% vs. 12.0%)
patients between the training set, external site #1, and external
site #2, respectively.

These results lead to a second key insight, which is that
models that appear fairest when evaluated on a standard internal
test set are not necessarily the fairest models for completely
independent external sites. Some prior studies analyzing the
generalizability of fairness using clinical risk predictionmodels
across various medical domains indicate a consistent bias
against minoritized groups when applied to new and unseen
data.11,40e42 For example, Singh et al explored generalizability
challenges ofmortality risk predictionmodels usingmulticenter
EHR data.42 The study found that models vary considerably in
fairness and calibration when trained and tested across different
hospitals. The authors reported a median value of 0.16
(interquartile range 0.08e0.29) for sufficiency (i.e.,
calibration) across various hospitals. Our results show a
median value of 0.10 (interquartile range 0.1e0.11) on
external test site #1 and 0.06 (0.05e0.07) on external test site
#2 for racedshowcasing fairer results with lower variance.

The failure of modeling approaches to remain consistently
fair when deployed to external validation sets could be
considered as a specific case of the failure of model perfor-
mancemetrics to generalize in the face of dataset shifts,11,40e42

which occurwhendata distributions differ between the training
and testing/deployment environments. In this study, therewere
large demographic differences between the training/test sets
and the external test sites: the internal train/test set was almost
two-thirds White individuals, while external set #1 was over
three-quarters Black patients and external set #2 was less than
one-tenth Black patients. Differences in demographic pop-
ulations have been shown to reduce model generalizability in
various domains,most notably in the health care industry, such
as in the aforementioned mortality prediction model.41,42

These large demographic differences pose a useful and
illustrative stress test for the performance of our models,
highlighting how fairness could change under almost the
most extreme circumstances for population changes. We
found that models trained with sensitive attributes as input
features (M2) or trained separately for different groups (M3)
demonstrated much more bias for sex and race when
evaluated on external test sites.

This study is subject to various limitations. Many stan-
dard fairness evaluation methods constrain analyses to a
simplified, binary view of sensitive attributes: White vs.
non-White, etc. In reality, sensitive attributes such as race
contain numerous subgroups and there may be a spectrum of
privilege. Individuals can have intersectional identities and
belong to multiple groups (e.g., Hispanic Black male).
Further investigation is required to examine systemic biases
and develop models that produce fair predictions across
multiple groups (>2) and for combinations of sensitive
attributes.32,43,44 Another limitation is in separating effects
attributable to site-specific versus patient-group-specific
care patterns. For instance, if site A’s population has a
majority of Black patients and routinely performs surgery,
while site B is more hesitant to recommend surgery and
primarily serves a White population, this could potentially
influence model outcomes and introduce biases for partic-
ular groups. Additional factors such as the number of
glaucoma specialists at a given site, how they vary in being
7
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conservative or aggressive in their desire to operate, oper-
ating room availability, and others could also affect the
decision to perform surgery. Finally, training models on
real-world observational health data can potentially replicate
the biases already embedded within the health care system.
Access to health care affects health outcomes, and thus any
model trained on data in the EHR is predicated on access to
health care and has the potential to be biased in ways that
are difficult to assess. Future studies could encompass
developing different models that predict complementary
outcomes that may be less (or differently) affected by
existing health inequities, such as glaucoma progression to
maximum medical therapy, elevated intraocular pressure,
visual field progression, and optic nerve structural changes.

In conclusion, in this study of fairness and generaliz-
ability of an EHR algorithm predicting glaucoma patients’
progression to surgery, we found evidence of bias for sex,
race, and ethnicity. Not including these sensitive attributes
as input features produced better-performing but less fair
algorithms for an internal test set, whereas on external test
sets, using sensitive attributes resulted in better performance
8

but worse fairness metrics for sex and race. Since removing
sex, race, and ethnicity is not a comprehensive solution to
eliminate bias in glaucoma algorithm predictions, it may be
reasonable to include them if external validation and thor-
ough subpopulation analyses are performed. Clinicians and
researchers who seek to develop, deploy, or utilize clinical
decision support systems based on AI algorithms should
critically evaluate the potential biases in these algorithms
and understand that even if an algorithm’s performance
metrics have been evaluated in demographic subgroups,
results may not generalize to the specific setting in which the
algorithm will ultimately be used. Moreover, different fair-
ness metrics target distinct fairness constraints, potentially
leading to disparate conclusions. Models may need to be
exclusively trained and deployed within a single hospital
setting to optimize both fairness and performance or
retrained for each specific site. Future studies developing
and evaluating model training methods which specifically
aim to mitigate bias and improve generalizability will be
important for the future of AI in ophthalmology.
Footnotes and Disclosures
Originally received: April 30, 2024.
Final revision: July 31, 2024.
Accepted: August 7, 2024.
Available online: August 14, 2024. Manuscript no. XOPS-D-24-00136.
1 Department of Ophthalmology, Byers Eye Institute, Stanford University,
Palo Alto, California.
2 Department of Ophthalmology & Visual Sciences, University of Michigan
Kellogg Eye Center, Ann Arbor, Michigan.
3 Department of Biomedical Data Science, Stanford University, Stanford,
California.

*Members of the SOURCE Consortium and their site PIs includeHenry
Ford Health System: Sejal Amin, Paul A. Edwards; Johns Hopkins Uni-
versity: Divya Srikumaran, Fasika Woreta; Montefiore Medical Center:
Jeffrey S. Schultz, Anurag Shrivastava; Medical College of Wisconsin:
Baseer Ahmad; Northwestern University: Paul Bryar, Dustin French;
Scheie Eye Institute: Brian L. Vanderbeek; Stanford University: Suzann
Pershing, Sophia Y. Wang; University of Colorado: Anne M. Lynch;
Jennifer L. Patnaik; University of Maryland: Saleha Munir, Wuqaas Munir;
University of Michigan: Joshua Stein, Lindsey DeLott; University of Utah:
Brian C. Stagg, Barbara Wirostko; University of West Virginia: Brian
McMillian; Washington University: Arsham Sheybani; Yale University:
Soshian Sarrapour, Kristen Nwanyanwu; University of California, San
Francisco: Michael Deiner, Catherine Sun; University of Texas e Houston:
Robert Feldman; University of Rochester: Rajeev Ramachandran. The
SOURCE Data Center is located at the University of Michigan. The Chief
Data Officer of SOURCE is Joshua Stein. The Lead Statistician of
SOURCE is Chris Andrews. More information about SOURCE is available
at https://www.sourcecollaborative.org/

This work was presented as a paper presentation at the American Glaucoma
Society Annual Meeting, March 1st 2024.

Disclosures:

All authors have completed and submitted the ICMJE disclosures form.

The authors have made the following disclosures:

J.D.S.: Grants e Abbvie, Janssen, Ocular Therapeutix.

T.H.B.: Grants e National Library of Medicine, Agency of Healthcare
Research Quality, National Center for Advancing Translational Sciences;
Course in Responsible AI e Stanford University; Consultant e PAUL
HARTMANN AG; Honoraria e Roche, Pfizer; Payment for expert testi-
mony e McDermott Will & Emery LLP; Travel expenses e Roche, NIH;
Patents planned, issued or pending e The Board of Trustees of the Leland
Stanford Junior University.

Financial support was provided by National Eye Institute K23EY03263501
(SYW); Career Development Award from Research to Prevent Blindness
(S.Y.W.); unrestricted departmental grant from Research to Prevent
Blindness (S.Y.W., R.R.); departmental grant National Eye Institute P30-
EY026877 (S.Y.W., R.R.); R01EY032475 (J.D.S.); R01EY034444
(J.D.S.).

HUMAN SUBJECTS: No human subjects were included in this study. This
study was approved by the University of Michigan and Stanford Institutional
ReviewBoards and adhered to the tenets of theDeclaration ofHelsinki. As data
were deidentified, informed consent was not obtained in this study.

No animal subjects were included in this study.

Author Contributions:

Conception and design: Wang, Ravindranath, Hernandez-Boussard

Data collection: Wang, Ravindranath, Stein

Analysis and interpretation: Wang, Ravindranath, Fisher, Stein, Hernandez-
Boussard

Obtained funding: Wang, Stein

Overall responsibility: Wang, Ravindranath, Hernandez-Boussard, Stein,
Fisher

Abbreviations and Acronyms:
AI ¼ artificial intelligence; AUROC ¼ area under the receiver operating
characteristic curve; CI ¼ confidence interval; EHR ¼ electronic health
record; FPR ¼ false positive rate; ICD ¼ International Classification of
Diseases; SOURCE ¼ Sight OUtcomes Research Collaborative.

Keywords:
Bias, Fairness, Glaucoma, Health disparities, Machine learning.

Correspondence:
Sophia Y. Wang, MD, MS, Department of Ophthalmology, Stanford Univer-
sity, 2370 Watson Ct, Palo Alto, CA 94303. E-mail: sywang@stanford.edu.

https://www.sourcecollaborative.org/
mailto:sywang@stanford.edu


Ravindranath et al � Fairness forGlaucomaPredictionModels in the SightOutcomesResearchCollaborative
References
1. Rasmy L, Nigo M, Kannadath BS, et al. Recurrent neural
network models (CovRNN) for predicting outcomes of pa-
tients with COVID-19 on admission to hospital: model
development and validation using electronic health record
data. Lancet Digit Health. 2022;4(6):e415ee425.

2. Zhang X, Yan C, Malin BA, et al. Predicting next-day
discharge via electronic health record access logs. J Am Med
Inform Assoc. 2021;28(12):2670e2680.

3. Morawski K, Dvorkis Y, Monsen CB. Predicting hospitaliza-
tions from electronic health record data. Am J Manag Care.
2020;26(1):e7ee13.

4. Coley RY, Boggs JM, Beck A, Simon GE. Predicting out-
comes of psychotherapy for depression with electronic health
record data. J Affect Disord Rep. 2021;6:100198.

5. Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using
EHRs and machine learning for heart failure survival analysis.
Stud Health Technol Inform. 2015;216:40e44.

6. Baxter SL, Marks C, Kuo T-T, et al. Machine learning-based
predictive modeling of surgical intervention in glaucoma us-
ing systemic data from electronic health records. Am J Oph-
thalmol. 2019;208(December):30e40.

7. Baxter SL, Saseendrakumar BR, Paul P, et al. Predictive an-
alytics for glaucoma using data from the all of us research
program. Am J Ophthalmol. 2021;227:74e86.

8. Jalamangala Shivananjaiah SK, Kumari S, Majid I, Wang SY.
Predicting near-term glaucoma progression: an artificial intel-
ligence approach using clinical free-text notes and data from
electronic health records. Front Med. 2023;10:1157016.

9. Wang SY, Tseng B, Hernandez-Boussard T. Deep learning
approaches for predicting glaucoma progression using elec-
tronic health records and natural language processing. Oph-
thalmol Sci. 2022;2:100127.

10. Hu W, Wang SY. Predicting glaucoma progression requiring
surgery using clinical free-text notes and transfer learning with
transformers. Transl Vis Sci Technol. 2022;11:37.

11. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting
racial bias in an algorithm used to manage the health of pop-
ulations. Science. 2019;366(6464):447e453.

12. Röösli E, Bozkurt S, Hernandez-Boussard T. Peeking into a
black box, the fairness and generalizability of a MIMIC-III
benchmarking model. Sci Data. 2022;9(1):24.

13. Siegfried CJ, Shui YB. Racial disparities in glaucoma: from
epidemiology to pathophysiology. Mo Med. 2022;119(1):
49e54.

14. Wu AM, Shen LQ. Racial disparities affecting black patients
in glaucoma diagnosis and management. Semin Ophthalmol.
2023;38(1):65e75.

15. Halawa OA, Jin Q, Pasquale LR, et al. Race and ethnicity
differences in disease severity and visual field progression
among glaucoma patients. Am J Ophthalmol. 2022;242:69e76.

16. Quigley HA, West SK, Rodriguez J, et al. The prevalence of
glaucoma in a population-based study of Hispanic subjects:
proyecto VER. Arch Ophthalmol. 2001;119(12):1819e1826.

17. Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-
angle glaucoma and ocular hypertension in latinos: the Los
Angeles latino eye study. Ophthalmology. 2004;111(8):
1439e1448.

18. Allison K, Patel DG, Greene L. Racial and ethnic disparities in
primary open-angle glaucoma clinical trials: a systematic Re-
view and meta-analysis. JAMA Netw Open. 2021;4(5):
e218348.
19. Vajaranant TS, Nayak S, Wilensky JT, Joslin CE. Gender and
glaucoma: what we know and what we need to know. Curr
Opin Ophthalmol. 2010;21(2):91e99.

20. Madjedi KM, Stuart KV, Chua SYL, et al. The association of
female reproductive factors with glaucoma and related traits: a
systematic Review. Ophthalmol Glaucoma. 2022;5(6):
628e647.

21. Asano Y, Himori N, Kunikata H, et al. Age- and sex-
dependency of the association between systemic antioxidant
potential and glaucomatous damage. Sci Rep. 2017;7:8032.

22. Chin MH, Afsar-Manesh N, Bierman AS, et al. Guiding
principles to address the impact of algorithm bias on racial and
ethnic disparities in health and health care. JAMA Netw Open.
2023;6(12):e2345050.

23. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain Sight d
reconsidering the use of race correction in clinical algorithms.
N Engl J Med. 2020;383(9):874e882.

24. Corbett-Davies S, Goel S. The measure and mismeasure of
fairness: a critical Review of fair machine learning. arXiv.
2018. https://doi.org/10.48550/arXiv.1808.00023.

25. Paulus JK, Kent DM. Predictably unequal: understanding and
addressing concerns that algorithmic clinical prediction may
increase health disparities. NPJ Digit Med. 2020;3:99.

26. “Current Procedural Terminology (CPT)”. Current Procedural
Terminology (CPT) j The Measures Management System.
mmshub.cms.gov/measure-lifecycle/measure-specification/spe
cify-code/CPT. Accessed March 4, 2024.

27. “ICD - Classification of Diseases, Functioning, and
Disability”. Centers for Disease Control and Prevention,
Centers for Disease Control and Prevention; 2021. www.cdc.
gov/nchs/icd/index.htm. Accessed July 23, 2024.

28. Wang SY, Ravindranath R, Stein JD, et al. Prediction models
for glaucoma in a multicenter electronic health records Con-
sortium: the Sight outcomes research collaborative. Oph-
thalmol Sci. 2024;4(3):100445.

29. “Rural-Urban Commuting Area Codes.” USDA ERS - Rural-
Urban Commuting Area Codes. www.ers.usda.gov/data-
products/rural-urban-commuting-area-codes/. Accessed March
4, 2024.

30. Distressed Communities Index. eig.org/wp-content/uploads/
2016/02/2016-Distressed-Communities-Index-Report.pdf.
Accessed March 5, 2024.

31. Ho TK, Basu M. Complexity measures of supervised classi-
fication problems. IEEE Trans Pattern Anal Mach Intell.
2002;24(3):289e300.

32. Moritz H, Price E, Srebro N, et al. Equality of opportunity in
supervised learning. Adv Neural Inf Process Syst. 2016.

33. Alves G, Bernier F, Couceiro M, et al. ‘Survey on fairness
notions and related tensions’. arXiv [cs.CY]. 2023.

34. Coots M, Saghafian S, Kent D, Goel S. Reevaluating the role
of race and ethnicity in diabetes screening. arXiv [stat.AP].
2023. https://doi.org/10.48550/arXiv.2306.10220.

35. Menon AK, Williamson RC. The cost of fairness in binary
classification. In: Proceedings of the 1st Conference on Fair-
ness, Accountability and Transparency, New York, NY. 81.
2018:107e118.

36. Dutta S, Wei D, Yueksel H, et al. Is there a trade-off between
fairness and accuracy? A perspective using mismatched hy-
pothesis testing. In: Proceedings of the 37th International
Conference on Machine Learning, Virtual Only (formerly
Vienna). 119. 2020:2803e2813.
9

http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref1
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref2
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref2
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref2
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref2
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref3
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref3
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref3
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref3
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref4
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref4
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref4
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref5
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref5
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref5
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref5
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref6
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref6
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref6
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref6
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref6
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref7
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref7
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref7
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref7
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref8
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref8
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref8
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref8
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref9
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref9
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref9
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref9
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref10
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref10
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref10
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref11
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref11
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref11
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref11
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref12
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref12
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref12
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref14
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref14
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref14
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref14
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref15
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref15
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref15
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref15
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref16
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref16
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref16
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref16
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref17
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref17
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref17
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref17
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref18
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref18
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref18
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref18
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref18
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref19
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref19
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref19
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref19
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref20
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref20
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref20
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref20
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref21
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref21
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref21
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref21
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref21
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref22
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref22
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref22
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref23
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref23
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref23
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref23
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref24
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref24
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref24
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref24
https://doi.org/10.48550/arXiv.1808.00023
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref26
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref26
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref26
http://mmshub.cms.gov/measure-lifecycle/measure-specification/specify-code/CPT
http://mmshub.cms.gov/measure-lifecycle/measure-specification/specify-code/CPT
http://www.cdc.gov/nchs/icd/index.htm
http://www.cdc.gov/nchs/icd/index.htm
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref29
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref29
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref29
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref29
http://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
http://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
http://eig.org/wp-content/uploads/2016/02/2016-Distressed-Communities-Index-Report.pdf
http://eig.org/wp-content/uploads/2016/02/2016-Distressed-Communities-Index-Report.pdf
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref32
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref32
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref32
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref32
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref33
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref33
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref34
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref34
https://doi.org/10.48550/arXiv.2306.10220
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref36
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref36
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref36
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref36
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref36
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref37


Ophthalmology Science Volume 5, Number 1, February 2025
37. Chen I, Johansson FD, Sontag D. Why is my classifier
discriminatory? arXiv [stat.ML]. 2018. https://doi.org/10.
48550/arXiv.1805.12002.

38. Zhao H, Gordon GJ. ‘Inherent tradeoffs in learning fair rep-
resentations’. arXiv [cs.LG]. 2022. https://doi.org/10.48550/
arXiv.1906.08386.

39. Lee MSA, Floridi L. Algorithmic fairness in mortgage lending:
from absolute conditions to relational trade-offs. Minds Mach.
2021;31:165e191.

40. Sagawa S, Koh PW, Hashimoto TB, Liang P. Distributionally
robust neural networks for group shifts: on the importance of
regularization for worst-case generalization. arXiv. 2019.
https://doi.org/10.48550/arXiv.1911.08731.
10
41. Chen RJ, Wang JJ, Williamson DFK, et al. Algorithmic fair-
ness in artificial intelligence for medicine and healthcare. Nat
Biomed Eng. 2023;7:719e742.

42. Singh H, Mhasawade V, Chunara R. Generalizability chal-
lenges of mortality risk prediction models: a retrospective
analysis on a multi-center database. PLOS Digit Health.
2022;1(4):e0000023.

43. Kearns M, Neel S, Roth A, Wu ZS. Preventing fairness
gerrymandering: auditing and learning for subgroup fairness.
In: Dy J, Krause A, eds. Proc. Of ICML. 80. PMLR; 2018:
2569e2577.

44. Foulds JR, Pan S. An intersectional definition of fairness.
CoRR. 2018. https://doi.org/10.48550/arXiv.1807.08362.

https://doi.org/10.48550/arXiv.1805.12002
https://doi.org/10.48550/arXiv.1805.12002
https://doi.org/10.48550/arXiv.1906.08386
https://doi.org/10.48550/arXiv.1906.08386
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref40
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref40
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref40
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref40
https://doi.org/10.48550/arXiv.1911.08731
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref42
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref42
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref42
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref42
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref43
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref43
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref43
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref43
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref45
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref45
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref45
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref45
http://refhub.elsevier.com/S2666-9145(24)00132-5/sref45
https://doi.org/10.48550/arXiv.1807.08362

	The Impact of Race, Ethnicity, and Sex on Fairness in Artificial Intelligence for Glaucoma Prediction Models
	Methods
	Data Source
	Study Population
	Feature Engineering
	Sensitive Attributes
	Decision Boundary Complexity
	Modeling
	Evaluation

	Results
	Study Population
	Comparing Decision Boundaries for Subgroups in Sensitive Attributes
	Model Performance and Fairness

	Discussion
	References


