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Simple Summary: Papillary thyroid carcinomas (PTC) are indolent tumors associated with
excellent long-term survival, albeit frequently accompanied by cervical lymph node (LN) metastasis.
The imaging criteria using conventional ultrasound (US) techniques showed high diagnostic
performance for the suspicious and probably benign LN categories, but showed low diagnostic
performance for the indeterminate category. In this retrospective study, we aimed to assess the added
value of Superb Microvascular Imaging (SMI) for detecting metastatic PTC in the indeterminate
LN category. We confirmed that SMI could effectively stratify indeterminate LNs by visualizing
additional vascular signals. The reclassified categories of SMI provided a high diagnostic performance
to distinguish metastasis from benign LNs. Therefore, adding SMI to conventional US scans can be
useful when evaluating indeterminate LNs in patients with PTC.

Abstract: Assessment of lymph node (LN) status in patients with papillary thyroid carcinoma (PTC) is
often troublesome because of cervical LNs with indeterminate US (ultrasound) features. We aimed to
explore whether Superb Microvascular Imaging (SMI) could be helpful for distinguishing metastasis
from indeterminate LNs when combined with power Doppler US (PDUS). From 353 consecutive
patients with PTC, LNs characterized as indeterminate by PDUS were evaluated by SMI to distinguish
them from metastasis. Indeterminate LNs were reclassified according to the SMI, the malignancy
risk of each category was assessed, and the diagnostic performance of suspicious findings on SMI
was calculated. The incidence of US-indeterminate LNs was 26.9%. Eighty PDUS-indeterminate
LNs (39 proven as benign, 41 proven as malignant) were reclassified into probably benign (n = 26),
indeterminate (n = 20), and suspicious (n = 34) categories according to SMI, with malignancy risks of
19.2%, 20.0%, and 94.1%, respectively. After combining SMI with PDUS, 80.8% (21/26) of probably
benign LNs and 94.1% (32/34) of suspicious LNs could be correctly diagnosed as benign and metastatic,
respectively. The diagnostic sensitivity, specificity, and accuracy of categorizing LNs as suspicious
based on SMI were 78.1%, 94.9%, and 86.3%, respectively. In conclusion, the combination of SMI
with PDUS was helpful for the accurate stratification of indeterminate LNs based on US in patients
with PTC.
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1. Introduction

Papillary thyroid cancers (PTC) are indolent tumors that are associated with excellent long-term
survival. Although the mortality rate of patients with differentiated thyroid cancer has consistently
been very low, up to 60–70% of patients have cervical lymph node (LN) metastasis at the time of
surgery [1,2], which is currently regarded as an important risk factor for poor prognosis [3,4]. In PTC,
it is assumed that tumor cells gain access to the lymphatic system either by the proliferation and
invasion of new lymphatics into and around the developing tumor or by cells invading preexisting
lymphatics adjacent to the tumor [5–7]. According to the current American Thyroid Association
guideline, surgery is the treatment of choice for locoregional disease [8]. However, as wider neck
dissections can increase the risk of surgical complications, accurate determination and mapping of
cervical LN metastasis are important for patients with PTC.

Ultrasonography (US) is the imaging method of choice for detecting and characterizing cervical
LNs in patients with thyroid cancer [9–13]. According to the guidelines of the European Thyroid
Association and the Korean Society of Thyroid Radiology, cervical LNs in patients with PTC are
categorized into three groups according to US features: suspicious, indeterminate, and benign [11].
Increased abnormal vascularity in the LN is a well-known imaging feature of metastatic PTC that
has been widely utilized [11,13]. Indeterminate LNs are defined as LNs with no imaging findings
of suspicious or benign LNs [13]. A recently published study showed the frequent occurrence of
US-indeterminate LNs (23.6% among biopsied LNs in thyroid cancer patients), and demonstrated that
the indeterminate category had a higher malignancy risk (19.5%) than the probably benign category
(2.8%) [14]. Suspicious US features on conventional US showed high specificity and predictivity for
diagnosing metastatic PTC [13]. However, the proper management of LNs with US-indeterminate
features still remains elusive. Although a recent study based on computed tomography (CT) analysis
had addressed this issue [15], no breakthrough trials using US have been reported for the better
differentiation of metastasis from indeterminate LNs.

Power Doppler US (PDUS) has been accepted as a quick and noninvasive method for assessing
vessels in tumor tissues. Specifically, along with gray-scale US, Doppler US has been adopted as a
useful technique because of its ability to detect the hypervascular characteristic of metastatic PTC
relative to a hypovascular normal lymphoid tissue background [11,13]. However, it is not possible to
differentiate low-velocity flow from artifacts caused by background tissue motion on PDUS. A recently
developed Doppler technique, known as Superb Microvascular Imaging (SMI; Canon Medical System,
Otawara, Japan), can improve the visualization of small and low-velocity flow blood vessels by using an
advanced Doppler algorithm. This algorithm separates low-velocity flow signals from clutter artifacts
and provides high sensitivity for the visualization of low-velocity flow with high resolution [16].
Investigators have reported that SMI can detect more flow signals within tumors than conventional
color Doppler or PDUS and thereby complement conventional Doppler scans in the examination of
tumorous lesions [17–20].

A few studies have reported that SMI could be useful for improving the diagnostic performance
during the assessment of cervical LNs [21–23] and salivary gland tumors [24]. However, its clinical
utility for the prediction of PTC metastasis in LNs has not yet been validated. Considering the technical
strengths of SMI, we hypothesized that the vascular information obtained by SMI could enhance the
differentiation of metastatic and benign LNs in patients with PTC. Therefore, we investigated whether
a combination of SMI and PDUS could be helpful for assessing US-indeterminate LNs in patients
with PTC.

2. Results

2.1. Demographic Data

The incidence of indeterminate LNs in patients with PTC was 26.9%. Among 80 patients with
indeterminate LNs, 39 patients had benign LNs, and 41 patients had metastatic LNs.
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Table 1 summarizes the demographic data of the patients and the characteristics of the indeterminate
LNs. Patients who had metastatic LNs were significantly older than those who had benign LNs
(p = 0.001). There were no significant differences in the sex, surgical treatment status, tumor extent,
and BRAFV600E mutation status between the two groups.

Table 1. Demographic data of patients and characteristics of indeterminate LNs according to pathology.

Variables Benign (n = 39) Metastasis (n = 41) p

Female patients 27 (69.2) 27 (65.9) 0.933
Age (mean) 43.4 ± 16.1 57.3 ± 20.2 0.001

Treatment status
1st thyroid cancer surgery 34 (87.2) 36 (87.8) 0.824

Repeated thyroid cancer surgery 5 (12.8) 5 (12.2)
Primary tumor

Largest diameter, range (mm) 7.1–38.0 6.7–45.0 0.421
Multifocal tumor 22 (56.4) 26 (63.4) 0.586

Gross extrathyroidal extension 0.877
T3 2 (5.1) 4 (9.8)
T4 0 (0) 1 (2.4)

BRAFV600E mutation 30 (76.9) 35 (85.4) 0.641
Mean minimal axial diameter of LN (mm) 8.1 ± 6.2 9.2 ± 5.9 0.533

Laterality of LN 0.877
Left 17 (43.5) 18 (44.0)

Right 22 (56.4) 23 (56.1)
Location of LN 0.001

1 1 (2.6) 0 (0.0)
2 17 (43.6) 3 (7.3)
3 6 (15.4) 10 (24.4)
4 7 (17.9) 22 (53.6)
5 4 (10.3) 0 (0.0)
6 4 (10.3) 6 (14.6)

Numbers in parentheses are percentages of patients in each group. LN—Lymph node.

The location of the LNs was significantly different (p < 0.001) between the metastatic and benign
groups: level 2 was the most common location of LNs in the benign group, and level 4 was the most
common location of LNs in the metastatic group.

2.2. Analysis of Vascular Patterns on SMI

The use of SMI revealed that 26 out of 80 LNs (32.5%) showed a centrally located vascular
hilum without aberrant vascular signals. However, 22 out of 80 LNs (27.5%) revealed peripheral
vascular signals, and 12 out of 80 LNs (15.0%) showed both central and peripheral vascular signals
on SMI. On the basis of the SMI images, 42.5% (34 out of 80) were reclassified as suspicious LNs by
showing additional peripheral vascular signals, and 32.5% (26 out of 80) were reclassified as probably
benign because of central hilar vascular signals; however, 25.0% (20 out of 80) still remained in the
indeterminate category. Figure 1 shows the flow chart depicting the changes of the LN categories after
the addition of SMI to the use of PDUS. Figures 2 and 3 illustrate representative cases. All patients
with metastatic LNs showed BRAFV600E mutations in the primary tumor. However, there were no
cases of any aggressive subtypes of PTC.
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Figure 1. Reclassification of PDUS indeterminate LNs after the addition of SMI. LN—Lymph node,
PDUS—Power Doppler ultrasound, SMI—Superb Microvascular Imaging.

Figure 2. A 42-year-old female patient with left PTC. (A) Gray-scale US showed an ovoid hypoechoic
indeterminate LN with displaced hilar echogenicity in the left neck level 3. (B) On PDUS, a displaced
hilar vascularity was noted. (C) On SMI, an additional peripheral vascular signal was noted in the
medial peripheral portion of the LN (arrows). (D) Contrast-enhanced CT (early arterial phase, 25 s)
showed focal cortical contrast enhancement in the corresponding area (arrowhead). (E) Subsequent
FNA and modified radical neck dissection revealed a metastatic papillary thyroid carcinoma (H&E stain,
×200). PTC-papillary thyroid carcinoma, US—ultrasound, LN—lymph node, PDUS—power Doppler
ultrasound, SMI—superb microvascular imaging, FNA—fine needle aspiration.
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Figure 3. A 30-year-old female patient with right PTC. (A) Gray-scale US showed an ovoid hypoechoic
indeterminate LN with loss of hilar echogenicity at right neck level 2. (B) Hilar vascularity was
also absent on PDUS (arrow). (C) On SMI, hilar vascularity was noted in the central area of the
LN. (D) Subsequent FNA and surgical biopsy revealed reactive hyperplasia (FNA-thyroglobulin =

0.16 ng/mL) (H&E stain, ×200). PTC = papillary thyroid carcinoma, US = ultrasound, LN = lymph node,
PDUS = power Doppler ultrasound, SMI = superb microvascular imaging, FNA = fine needle aspiration.

Table 2 lists the incidence and malignancy risk of each LN category on SMI. Based on SMI
characterization, the malignancy risks of suspicious LNs were significantly higher than those of the
indeterminate and probably benign LN groups (p < 0.001), whereas the malignancy risks of indeterminate
LNs were similar to those of the probably benign group (p = 0.81).

Table 2. Malignancy risk of LNs categorized by SMI.

Category Numbers (%) Malignancy Risk (%)

Probably benign 26 (32.5) 5/26 (19.2)
Indeterminate 20 (25.0) 4/20 (20.0)

Suspicious 34 (42.5) 32/34 (94.1)

Numbers in parentheses are percentages in each group.

2.3. Diagnostic Performance of SMI

Of the 26 LNs reclassified as probably benign, 21 cases (80.7%) were correct. Of the 34 LNs
reclassified as suspicious, 32 cases (94.1%) were correctly diagnosed as being malignant. Four LNs in
the SMI indeterminate category were confirmed to be malignant. The sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy of SMI were 78.1%, 94.9%, 94.1%, 80.4%,
and 86.3%, respectively. Table 3 summarizes the diagnostic performance of suspicious SMI features in
differentiating metastatic and benign LNs.
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Table 3. Diagnostic performances of suspicious findings on SMI for detecting metastasis in the
indeterminate LN category on conventional grey scale and Doppler US (n = 80).

Parameter SMI

Sensitivity 78.1% (32/41)
Specificity 94.9% (37/39)

False-positive rate 5.1% (2/39)
False-negative rate 22.0% (9/41)

Accuracy 86.3 % (74/80)
Positive predictive value 94.1% (32/34)
Negative predictive value 80.4% (37/46)

2.4. Inter-Observer Agreement

The inter-observer agreement was moderate (κ = 0.79 [95% confidence interval [CI], 0.68-0.92]) for
the reclassified SMI categories of probably benign, indeterminate, and suspicious LNs. Agreement
between the presence of central hilum (κ = 0.85 [95% CI, 0.72–0.98]) and peripheral vascular signals
(κ = 0.83 [95% CI, 0.70–0.96]) was strong.

3. Discussion

In this study, adding SMI to PDUS in the indeterminate LNs allowed the efficient differentiation
of metastatic and benign LNs for patients with PTC by allowing better visualization of minute vascular
signals and subsequently reducing the proportion of the indeterminate LN category. Although several
studies have focused on the feasibility of SMI for evaluating cervical LNs, this is the first study
to evaluate the value of SMI for distinguishing metastatic PTC from the specific population of
US-indeterminate LNs. Most of the metastatic LNs from PTC are pathologically hypervascular when
compared to benign lymphoid tissue [25,26], and abnormal vascularity on PDUS is a well-known
imaging feature for diagnosing metastatic LNs in thyroid cancer. Hypervascularity in metastatic LNs is
associated with increased tumor perfusion related to tumor angiogenesis and recruitment of capsular
vessels [27,28]. In thyroid cancer, the US criteria for suspicious LNs (cystic change, calcification,
hyperechogenicity, and abnormal vascularity) have been reported to be highly predictive (80–90%)
of LN metastases [29,30]. For cervical LNs, the presence of a normal hilum is generally regarded as
benign, and the absence of echogenic hilum or hilar vascularity is regarded as pathologic, because this
may reflect the interruption of lymphatic flow by tumor invasion [27]. However, the hilum is observed
in 28.6–87% of normal LNs on gray-scale US, and normal vascularization is observed in approximately
two-thirds of normal LNs on Doppler scans [1,29,31,32]. Accordingly, the specificity for hilum loss has
been reported to be only 29% for predicting the presence of metastasis [29,33]. In contrast, various
benign conditions occurring along with LNs and persistent inflammatory stimuli can cause unusual
morphological changes in the nodal shape in the neck, and this can result in a false positive presentation
of US-indeterminate LNs with deformed or displaced hilum [27]. For this reason, indeterminate LNs
are often encountered during routine practice [14], and this frequent manifestation of indeterminate
LNs limits the accuracy of US, even with the application of the size criteria [11,13,14].

In our study, patients with metastatic LNs were older than those with benign LNs. Our results
contradict previous reports, which consistently reported the aggressive nature of tumors in young
thyroid cancer patients [34,35]. This might be attributed to the presence of prominent lymphoid
tissues in young patients, which might occasionally appear as indeterminate LNs on US [36]. Likewise,
the high prevalence of level 2, PDUS-indeterminate LNs among benign LNs might be associated with a
similar reason because LNs in the upper jugular stations could easily be affected by benign hyperplasia
due to various inflammatory diseases of the head and neck region [36].

Our results are consistent with those of previous studies, which demonstrated the effectiveness of
SMI for differentiating malignant and benign cervical LNs [22,23]. In our study, many benign LNs with
indeterminate US features exhibited additional central hilar vessels in SMI, and this may be attributed
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to the improved visualization of central hilar vessels with low-velocity flow. On conventional Doppler,
a relatively low number of backscattering red blood cells in the small vessels could decrease the Doppler
signal intensity, which may not surpass the noise level and may be overlooked. Moreover, low-velocity
flow signals used in PDUS may be suppressed by a high-level single-wall filter. The use of SMI
allowed further visualization of peripheral vessels in the metastatic LNs and improved visualization
of aberrant tumor vessels with low-velocity flow. When metastatic tumors affect LNs, tumors entering
the LNs usually progress in a centripetal fashion and exhibit peripheral vascularity with preserved
central hilar vascularity. When the peripheral tumor nest is too small to be visualized on conventional
scans, the hyperechogenicity or hypervascularity of the tumor can be overlooked. In those instances,
SMI could enhance the accuracy of the diagnosis of metastatic LNs by allowing the detection of minute
neovascular signals.

In our study, the incidence of indeterminate LNs was much reduced for SMI, and many of those
indeterminate LNs were either classified as probably benign or suspicious. Moreover, the malignancy
risks of indeterminate and probably benign LNs were similar in the categories reclassified on the basis
of SMI. Based on these results, indeterminate LNs could be stratified into two groups of ‘suspicious’ vs.
‘indeterminate/probably benign’ on SMI. The diagnostic performance of suspicious findings on SMI for
PDUS–indeterminate LNs was high, even similar to the reported diagnostic performance of suspicious
findings on conventional gray–scale and Doppler scans [29,30].

The correct identification of probably benign LNs could potentially decrease the numbers of
unnecessary biopsies and neck dissections, whereas the correct diagnosis of suspicious LNs could
enhance accurate preoperative surgical mapping and eventually reduce the rate of recurrent or
persistent disease (4). In the postoperative setting, an accurate triage of imaging-detected neck lesions
can contribute to a more tailored postoperative risk stratification, which will enable the clinician to
establish the management plan for patients with greater confidence. Our results highlight the value of
combining SMI with PDUS for the accurate classification of indeterminate LNs. SMI could serve as a
complementary imaging technique to standard US examinations, which can help refine candidates
for LN biopsy in thyroid cancer patients without any concerns of ionizing radiation or intravenous
contrast administration in CT.

Our study has several limitations. First, this was a retrospective study in which selection bias is
inevitable with a small sample size. There were two reasons for this small sample size. First, SMI is
a relatively new US technique because of which the time period was not long enough to validate this
technique. Second, we attempted to include patients with a complete dataset of video clips (which requires
time and effort when evaluating numerous LNs in routine practice) along with cytopathological verification.
In practice, LNs with a typical benign appearance are rarely confirmed cytopathologically. Because we
aimed to perform a node-by-node correlation for the determination of the precise accuracy of this
technique, we focused on indeterminate LNs for which an unnecessary biopsy is frequently performed.
Despite the disadvantages of our small subject number, we believe that the coherent results of our
study reflect the validity of this relatively new technique. The second limitation is that retrospective
assessment of US images inherently limits the accuracy of interpretation and detection of small vascular
signals. Nevertheless, repeated inspections of the video clips might have mitigated the drawbacks of this
retrospective evaluation. Further studies with a multicenter prospective setting and larger sample size
are needed to validate our results. The third limitation is that the additional vascular signals detected
on SMI may be either microscopic or macroscopic metastases. As guidelines [8,13] have suggested that
microscopic nodal positivity does not carry the risk of recurrence of macroscopic (clinically detectable)
disease, the exact clinical significance of small and low-velocity flow blood vessels in metastatic LNs in
terms of patient outcome remains unclear. Further studies with histopathological investigation and longer
follow-up are necessary.
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4. Materials and Methods

4.1. Patient Population

This retrospective study was conducted in accordance with the Declaration of Helsinki and
approved by the Institutional Review Board of Soonchunhyang University Bucheon Hospital;
the requirement for written informed consent was waived because of its retrospective nature. Among the
353 patients with primary (n = 219) or recurrent (n = 134) PTC who underwent US between December
2016 and December 2018, 95 patients showed 95 indeterminate LNs on conventional gray-scale and
PDUS. Indeterminate LNs were defined as LNs without the imaging features of benign (LNs with
fatty hilum or central hilar vascularity) or suspicious LNs (LNs with hyperechogenicity, cystic change,
abnormal vascularity, or calcifications). The features of indeterminate LNs included an eccentric or
deformed configuration of hilar vessels as well as the loss of central hilar vascularity on US, regardless
of the nodal shape [13]. A total of 15 patients with a poor sonic window or prominent motion artifacts
were excluded from the study. Finally, 80 patients (70 primary and 10 recurrent) with 80 indeterminate
LNs were included in the study.

4.2. US Examination

Using a high-resolution US unit equipped with a 14 MHz, high-frequency linear transducer
(Aplio 500; Canon Medical Systems), two dedicated head and neck radiologists (H.S.H. and J.Y.L. with
27 and 7 years of experience in thyroid US and interventional procedures, respectively) performed
US examinations, including gray-scale US, PDUS, and SMI, to assess indeterminate LNs based on
gray-scale US and PDUS. In case of any indeterminate LN, they evaluated vascular patterns after
applying SMI.

PDUS was performed with standardized parameters adjusted for high sensitivity with a low wall
filter to allow the detection of blood vessels with low-velocity flow (scale, 4.9–6.1 cm/s; frame rate,
7–9 frames/s; pulse repetition frequency, 13.7–15.6 kHz). The gain was initially increased to show color
noise and then decreased to avoid substantial artifacts. SMI was performed in the monochromatic
mode, and the settings were standardized according to the manufacturer’s recommendations for a
high frame rate combined with minimal flash artifacts (frame rate, 25–30 frames/s; pulse repetition
frequency, 15.4–20.2 kHz) and a low velocity range (< 2 cm/s). The monochromatic mode was chosen
because of its high sensitivity for detecting low-velocity flow and small blood vessels. Still images and
video clips of the target LNs from PDUS and SMI were stored and archived on a picture archiving and
communication system.

4.3. Imaging Analysis

Two head and neck radiologists (J.Y.L. and H.S.H.) retrospectively evaluated the images and video
clips of SMI independently and were blinded to the patients’ information, especially with regard to
whether SMI depicted normal hilar vascularity, abnormal/peripheral/chaotic vascularity, or both.

After independent analysis, consensus reading was performed for discordant cases. The LNs
were re-categorized as probably benign, indeterminate, or suspicious LNs after the interpretation
session of SMI. The LNs were categorized as ‘suspicious’ when they showed peripheral or abnormal
diffuse vascularity on SMI. Probably benign LNs were diagnosed when non-displaced central hilar
vascularity was evident without the presence of peripheral vascularity. The LNs with no imaging
features of suspicious or probably benign LNs remained in the indeterminate category. Figure 4 shows
representative cases of categories reclassified by SMI.



Cancers 2020, 12, 2839 9 of 12

Figure 4. Reclassified LN categories of SMI. (A) SMI probably benign LN. Grey scale and PDUS
images show a hypoechoic LN with loss of hilum and hilar vascularity in the left neck level 3.
On SMI, central hilar vascularity is noted (arrows), and this LN is classified as ‘SMI probably benign’
(final diagnosis-benign on FNA-Tg) (B) SMI indeterminate LN. Grey scale and PDUS show a small
LN in right neck level 4 with loss of hilum and hilar vascularity. On SMI, no additional vascular
signals are noted; therefore, this LN is classified as ‘SMI indeterminate’ (final diagnosis-benign on
FNA-Tg). (C) SMI suspicious LN. Grey scale and PDUS show a hypoechoic LN with eccentric
cortical thickening and displaced hilar vascularity in left neck level 3. On SMI, abnormal peripheral
vascularity is noted at the medial portion of the LN (arrows, final diagnosis-metastatic PTC on CNB).
The arrowheads in figures A, B, C indicates the margin of the LN. PTC = papillary thyroid carcinoma,
US = ultrasound, LN = lymph node, PDUS = power Doppler ultrasound, SMI = superb microvascular
imaging, FNA = fine needle aspiration, CNB = core needle biopsy, Tg = thyroglobulin.

4.4. Reference Standard

For all indeterminate LNs, US-guided fine-needle aspiration (FNA) or core-needle biopsy (CNB)
was performed by one of the two radiologists. Materials obtained from FNA were smeared, and the
remaining aspirated samples were rinsed with 1 mL of isotonic saline and submitted for thyroglobulin
measurement (FNA-Tg). The cut-off value of FNA-Tg for differentiating metastasis from benign
lesions was 1 ng/mL [37] in this study. CNB was performed by targeting the LNs with a disposable,
automatic, 18-gauge core-biopsy needle (TSK, Ace-Cut; Create Medic, Yokohama, Japan). All LNs that
were diagnosed as metastasis on FNA/CNB were surgically confirmed through modified radical neck
dissection (n = 65) or preoperative tattooing, followed by selective neck dissection (n = 15). The BRAF
mutation was identified from a portion of the BRAFV600E gene by real-time PCR using a detection kit
(PNA Clamp BRAF Mutation Detection Kit, Panagene, Daejeon, Korea).

4.5. Statistical Analysis

Student’s t-test or Mann–Whitney U-test was used to analyze continuous variables of age as
well as diameters of the primary tumor and LNs. χ2 test or Fisher’s exact test was used to analyze
categorical variables to compare the demographic data (sex, treatment status, tumor multifocality,
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extrathyroidal extension, BRAF mutation status) and the characteristics of benign and metastatic LNs
(LN laterality and location).

Cohen κ values were used to analyze the inter-observer agreement of the presence of a central
hilum and abnormal vascularity and reclassify categories of LNs based on SMI. With SMI, incidence
and malignancy risks were calculated for each diagnostic category and compared using a Fisher’s
exact test. The diagnostic performance of suspicious findings on SMI for differentiating benign and
metastatic LNs was assessed by calculating the sensitivity, specificity, accuracy, and positive and
negative predictive values. All statistical analyses were performed with MedCalc version 18.6 statistical
software (MedCalc Software bvba, Ostend, Belgium). The significance threshold for the differences
was p < 0.05.

5. Conclusions

In conclusion, SMI was helpful for the accurate stratification of PDUS–indeterminate LNs in
patients with PTC, thus reducing the frequency of US–indeterminate LNs in patients with PTC.
The addition of SMI to the routine evaluation of indeterminate LNs could enhance accurate patient
management in PTC and enable the recommendation of invasive procedures with greater confidence.
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