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In silico spectral libraries by deep learning facilitate
data-independent acquisition proteomics
Yi Yang 1,4, Xiaohui Liu 1,4, Chengpin Shen 2, Yu Lin 3, Pengyuan Yang1 & Liang Qiao 1*

Data-independent acquisition (DIA) is an emerging technology for quantitative proteomic

analysis of large cohorts of samples. However, sample-specific spectral libraries built by data-

dependent acquisition (DDA) experiments are required prior to DIA analysis, which is time-

consuming and limits the identification/quantification by DIA to the peptides identified by

DDA. Herein, we propose DeepDIA, a deep learning-based approach to generate in silico

spectral libraries for DIA analysis. We demonstrate that the quality of in silico libraries

predicted by instrument-specific models using DeepDIA is comparable to that of experi-

mental libraries, and outperforms libraries generated by global models. With peptide

detectability prediction, in silico libraries can be built directly from protein sequence data-

bases. We further illustrate that DeepDIA can break through the limitation of DDA on

peptide/protein detection, and enhance DIA analysis on human serum samples compared to

the state-of-the-art protocol using a DDA library. We expect this work expanding the toolbox

for DIA proteomics.
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W ith the ability to identify and precisely quantify
thousands of proteins from complex samples, liquid
chromatography (LC)-tandem mass spectrometry

(MS/MS) has been the most widely used tool for proteomic
studies over the past decades1,2. Recent advances in the data-
independent acquisition (DIA) technique allow systematic and
unbiased proteomic measurement. In DIA experiments, the mass
spectrometer performs a sequence of MS/MS scans within defined
isolation windows in each acquisition cycle, recording fragmen-
tation information of all peptides present in a sample3. Never-
theless, data analysis for DIA is extremely difficult since the
fragments of various precursor ions can present on one MS/MS
spectrum. For the past few years, a wide variety of strategies have
been developed to analyze DIA data, including spectrum-centric
and peptide-centric strategies4. Spectrum-centric workflows, such
as DIA-Umpire5 and Group-DIA6, generate pseudo-MS/MS
spectra for each precursor from DIA data for routine data-
dependent acquisition (DDA) database search by assembling
precursor-fragment groups based on the elution profiles of pre-
cursor and fragment ions. In peptide-centric methods, target
peptides are queried against DIA data to extract the best candi-
date chromatogram signals using prebuilt spectral libraries, also
known as peptide query parameters, or peptide assays, containing
the information of retention time (RT) and fragment ions7. As an
alternative, peptide query can also be applied to individual DIA
MS/MS spectra by spectral matching tools, such as MSPLIT-
DIA8. It has been reported that tools that rely on prior knowledge
in the form of spectral libraries deal better with low selectivity
data than library-free tools9, and peptide-centric approaches
perform better to exploit highly comprehensive DIA data than
spectrum-centric methods10. To date, a sample-specific spectral
library, which is typically generated from DDA data acquired a
priori from fractionated or enriched samples on the same
instrument, is necessary in most studies using DIA. The method
is not only time-consuming but also limits the identification/
quantification by DIA to the peptides identified by DDA, which
hinders the inherent advantages of DIA of unbiased measure-
ment. In this regard, it is of great value to generate in silico
spectral libraries containing predicted RT and fragment ions with
quality comparable to that of experimental spectral libraries for
DIA analysis.

A variety of RT prediction methods have been proposed,
including look-up approaches, index-based methods, modeling-
based methods, and machine learning-based methods11. Look-up
approaches keep a table of previously observed RT for a set of

peptides, where peptide standards are used for interconversion of
RT and normalized RT (iRT) across different LC setups12.
Modeling-based methods, such as BioLCCC13, predict RT based
on structure of peptides and their interactions with LC columns
using statistical physics. Index-based methods aim at estimating
the contributions of each individual amino acid to peptide RT,
which are often referred to retention coefficients, to form a
retention index of peptide14. SSRCalc15 is currently the most
widely used index-based tool, which has been integrated into the
targeted proteomic tool, Skyline16, for RT scheduling. Machine
learning-based methods use a set of peptides with known features
and their RT to train a predefined model, such as artificial neural
networks17 or support vector machines18. Nevertheless, machine
learning-based methods rely on peptide feature selection, which is
usually performed manually upon personal knowledge. As
numerous factors are involved in peptide separation, the lack of
suitable representations of peptide features, such as secondary
structure19, leads to prediction errors. For peptide MS/MS spec-
trum prediction, there have also been tools developed, including
kinetic model-based methods such as MassAnalyzer20 and
MS-Simulator21, and machine learning-based methods like Pep-
tideART22 and MS2PIP23. However, it has been shown that
prediction performance of PeptideART across different
experiments is significantly lower than those within the same
experiment24. More powerful tools are required due to the
complexity of peptide fragmentation and retention in LC.

Over the past years, deep learning has enabled many practical
applications and attracted extensive attention. Deep neural net-
works, including convolutional neural network (CNN) and
recurrent neural network (RNN), can learn different representa-
tions of objects automatically, recognizing complex patterns from
large datasets25. Efforts have been made using deep neural net-
works for MS/MS spectrum prediction26–28, de novo peptide
sequencing29 and RT prediction27, indicating great potential of
deep learning in the field of proteomics.

Herein, we present DeepDIA, a deep learning-based method to
generate in silico spectral libraries to support DIA analysis
(Fig. 1). In contrast to Prosit27, another recently reported tool that
pursues a general deep learning model for MS/MS and RT pre-
diction by taking collision energy (CE) into consideration,
DeepDIA aims at training instrument-specific models for more
accurate MS/MS spectrum and RT prediction. In addition,
DeepDIA can select a list of target peptides to be included in in
silico spectral libraries from protein sequence databases, e.g.
SwissProt, by predicting the MS detectability of candidate
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Fig. 1 The workflow of conventional DIA analysis and DeepDIA. a In conventional DIA analysis, DIA target extraction is performed using sample-specific
spectral libraries built with DDA result. b DeepDIA uses deep neural networks to generate in silico spectral libraries from protein or peptide sequence
databases.
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proteotypic peptides. The in silico spectral libraries are readily
applicable to data analysis using state-of-the-art DIA analysis
software, e.g. Spectronaut30. We benchmark the performance of
DeepDIA on datasets of HeLa cells and mixed proteome samples,
and the results are comparable to those obtained with DDA-based
sample-specific spectral libraries. Instrument-specific libraries by
DeepDIA outperform Prosit in terms of detectable peptides and
proteins as well as reproducibility among technical replicates.

We further demonstrate the applicability of DeepDIA on a
dataset of human serum samples. Compared to the state-of-the-
art protocol using the DDA-based library, the number of iden-
tified and quantified proteins is increased by >100% using an in
silico spectral library wherein the peptide sequences are from
human plasma/serum data of previous projects in our labs.
Accuracy of the identification results is validated using a standard
mixture containing >800 stable isotope labeled reference peptides
from >500 proteins in human serum. We expect this method
contributing to complete profiling of blood proteome samples
across studies and laboratories. We have made the in silico
spectral libraries as well as the DeepDIA tool freely available to
expand the toolbox for DIA proteomics.

Results
Performance evaluation of peptide MS/MS and iRT prediction.
In DeepDIA, MS/MS spectra and iRT of target peptides are pre-
dicted using a hybrid model that combines CNN and bi-
directional long-term and short-term memory (BiLSTM, a
widely used variant of RNN) network (Fig. 2a). The model takes a
peptide sequence as an input, and outputs relative intensities of b/y
product ions at each possible fragmentation site including neutral
loss of ammonia or water, as well as iRT of the peptide. For details
of the model architecture and training procedure, see Methods
section.

For performance evaluation, we trained and validated the model
with four DDA LC-MS/MS datasets of two organisms acquired on
Q Exactive HF mass spectrometers in two laboratories (HeLa1,
Mouse1, and Mouse2 from one lab, and HeLa2 from another lab;
see Supplementary Table 1 for details)31,32. Each dataset was
randomly partitioned into two subsets, where 2/3 were used for
training and the remaining 1/3 for test. The distributions of dot
products (DP)33 were computed between the predicted and
experimental b/y/neutral loss peak intensities on the test dataset as
presented in Fig. 2c. The median DP was as high as 0.939 for
doubly charged precursors and 0.907 for triply charged precursors
when the dataset used for model training and validation was from
the same lab and the same organism (HeLa1 in Fig. 2c), better
than those calculated by comparing different experimental spectra
of the same precursors within a dataset (Experimental in Fig. 2c).
For cross-organism validation (Mouse1-HeLa1 in Fig. 2c,) and
cross-lab validation (HeLa2-HeLa1 in Fig. 2c), median DPs were
0.933 and 0.891, and 0.917 and 0.881, for doubly and triply
charged precursors, respectively, wherein the models were trained
using Mouse1 and HeLa2 data, respectively. Pearson correlation
coefficients (r) of predicted and experimental iRT were higher
than 0.99 and the interquartile ranges (IQR) of the differences
between predicted and experimental iRT were smaller than 3
when the dataset used for model training and validation was from
the same lab and the same organism (HeLa1 in Fig. 2d). IQRs
were 3.35 and 5.26 for cross-organism (Mouse1-HeLa1 in Fig. 2d)
and cross-lab validation (HeLa2-HeLa1 in Fig. 2d), wherein the
models were trained using Mouse1 and HeLa2 data, respectively.

We computed DPs of experimental b/y peak intensities of the
same precursors across several HeLa datasets from different
labs31,32,34,35 (Supplementary Fig. 1a and Supplementary Note 1).
Similarities of MS/MS spectra were low across different types of

Orbitrap mass spectrometers. For the same type of mass
spectrometers in different labs, similarities of MS/MS spectra
were still a bit lower than experimental repeats in the same lab,
possibly due to differences in instrumental settings and instru-
mental status between labs. We also compared experimental iRT
of the same peptides in different HeLa datasets (Supplementary
Fig. 2a).

The results showed that prediction using models trained with
data from the same organism and the same lab were better than
experimental repeats. The change of lab gave higher impact on
the accuracy of prediction than the change of organism. For data
from different organisms but the same lab, the prediction results
were still comparable to experimental repeats within a lab and
better than cross-lab experimental repeats. On the HeLa1 data,
the performance of MS/MS prediction by DeepDIA with models
trained by HeLa1 and Mouse1 were very close, indicating that
good cross-sample prediction is feasible when keeping the
instrument same.

We compared the performance of DeepDIA on peptide MS/
MS and RT prediction to Prosit27, and other existing tools
(Supplementary Note 2 and 3). Different normalized CE
parameters were tested for Prosit on HeLa1 data (Supplementary
Fig. 1b), and performance of MS/MS prediction by Prosit with the
optimal CE was still worse than DeepDIA with models trained by
HeLa1 (same-organism and same-lab), HeLa2 (same-organism
and cross-lab), and Mouse1 (cross-organism and same-lab)
(Fig. 2c). Test on Mouse1 data came to similar results
(Supplementary Fig. 1c). We further compared DeepDIA, Prosit,
pDeep26, and MS2PIP23 on HeLa2 data. The performance of
DeepDIA was similar to pDeep wherein both models were trained
with Mouse2 data (cross-organism and cross-lab), slightly worse
than Prosit for 2+ precursors, and better than Prosit for 3+
precursors (Supplementary Fig. 1d). All the deep learning-base
methods outperformed MS2PIP. For RT prediction, DeepDIA,
Prosit and SSRCalc15 were compared on HeLa2 data, and
DeepDIA trained with Mouse2 data (cross-lab and cross-
organism) outperformed the latter two tools (Supplementary
Fig. 2b-2d). From the results, the performance of DeepDIA
trained with remote data in MS/MS prediction was similar to
Prosit that was also trained with remote data. When DeepDIA
was trained with data from the same organism or the same
instrument, especially the same instrument, it outperformed
Prosit in MS/MS and RT prediction.

Benchmarking DeepDIA on HeLa and mixed proteome data-
sets. For benchmark purposes, we performed DIA analysis using
Spectronaut on a dataset of HeLa cells containing three DIA
technical replicates acquired on a Q Exactive HF mass spectro-
meter31 (HeLa1, see Supplementary Table 1 for details), using a
sample-specific spectral library built with DDA experiments
(HeLaDDA), an in silico library predicted by DeepDIA (trained
with HeLa1 data) containing the doubly and triply charged pre-
cursors from the DDA results (HeLaPredicted), and in silico
libraries containing the same precursors as HeLaPredicted and
predicted by Prosit with different normalized CEs, respectively
(see Supplementary Table 2 and Supplementary Note 4 for
details). Precursor and protein group level Q-value was set to
0.01. More details are described in Methods section. The detected
peptides as well as protein groups are listed in Supplementary
Data 1 and statistics of the results are shown in Fig. 3a–c. At
peptide level, 54,846 peptides were identified using the HeLa-
Predicted library, and 52,282 of them were shared with those
identified using the HeLaDDA library. Among the 3657 peptides
identified only by the HeLaDDA library, 1886 with single or more
than triple charges were absent in the HeLaPredicted library. At

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13866-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:146 | https://doi.org/10.1038/s41467-019-13866-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


protein group level, 5212 and 5189 protein groups were identified
using the HeLaPredicted library and HeLaDDA library, respec-
tively, with 5047 shared by the two methods. Results of Prosit
predicted libraries with different normalized CEs are presented in
Supplementary Fig. 3a and 3b. With the optimal CE, 42,213
peptides and 4895 protein groups were identified. Coefficients of
variation (CVs) of precursors and protein group quantification
results were calculated among the three technical replicates as
shown in Fig. 3b. The median CVs were lower than 5 and 4%
using the three libraries at precursor and protein group level,
respectively. The median CVs using the HeLaPredicted library
were comparable to those using the HeLaDDA library, and
smaller than those using the Prosit library. Pearson correlation
coefficients (r) of quantification results between replicates using
the HeLaPredicted library was higher than those using the Prosit
library at both precursor and protein group level (Fig. 3c). Apex
RTs of precursors detected using the predicted libraries by
DeepDIA were highly consistent with those using the HeLaDDA
library (Supplementary Fig. 3c).

DIA analysis of HeLa1 was also performed using the Pan-
Human library built on Q-TOF covering >10,000 human
proteins36, and an in silico library (PanPredicted, with DeepDIA
model trained using HeLa1 data) containing the doubly and triply
charged precursors without variable modifications in the Pan
library, respectively (Supplementary Table 2, Supplementary
Fig. 4 and Supplementary Data 2). There were 43,005 peptides
and 4720 protein groups identified by using both libraries. Extra
3256 peptides and 109 protein groups were identified using the
Pan library, while extra 10,253 peptides and 842 protein groups
were identified using the PanPredicted library. Therefore, the
instrument-specific model predicted library outperforms the large
heterogeneous experimental library, i.e. Pan-Human.

The performance of DeepDIA was further evaluated on a
dataset of mixed proteome samples containing peptides from
Homo sapiens, Caenorhabditis elegans, Saccharomyces cerevisiae
and Escherichia coli with different abundance (Sample 1: Sample
2 1:1 for H. sapiens, 1:1.1 for C. elegans, 1:1.2 for S. cerevisiae, and
1:0.7 for E. coli, see Supplementary Table 1 for details) acquired
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Fig. 2 Peptide MS/MS spectrum and iRT prediction. a A graphical illustration of the deep neural networks for peptide MS/MS spectrum and iRT
prediction. b A representative spectral match of a peptide (AVLGTSNFK 2+) between its higher energy collisional dissociation (HCD) MS/MS spectrum
and the corresponding in silico predicted MS/MS spectrum. c The distributions of dot products computed between predicted and experimental b/y/neutral
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coefficients (r) and the differences computed between predicted and experimental normalized retention time (iRT). Color gradation indicates relative
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precursors; 3+: triply charged precursors. Source data are provided as a Source Data file.
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on a Q Exactive HF mass spectrometer31. DIA analysis was
performed using a standard DDA library (MixStandard), an in
silico library predicted by DeepDIA (MixPredicted) trained with
HeLa1 data, and an in silico library predicted by Prosit with
optimized CE (MixProsit), respectively (Supplementary Note 4,
Supplementary Table 2, Supplementary Fig. 5 and Supplementary
Data 3). Based on the mean quantities in three replicates of each
sample, percent changes of detected precursors and protein
groups of the two samples were calculated and visualized in
Fig. 3d. Percent changes of H. sapiens, C. elegans, and E. coli were
close to the theoretical values using the MixStandard, MixPre-
dicted and MixProsit libraries. For S. cerevisiae, percent changes
were underestimated by using all the three libraries. The results
by using the MixPredicted library were comparable to those using
the MixStandard library, and better than those using MixProsit

library at both precursor and protein group level (Supplementary
Fig. 5), indicating that DeepDIA trained with data from the same
instrument but different samples outperformed Prosit in terms of
generating in silico spectral libraries for DIA analysis.

In silico spectral libraries of large size. Motivated by the results
above, we explored the current limits of DeepDIA for direct
analysis of DIA data without DDA analysis on the same sample.
For this purpose, the performance of DeepDIA was tested using
three large in silico spectral libraries, i.e. HeLaProt containing
>6000 proteins identified by sample-specific DDA experiments,
PanProt containing >10,000 proteins in HeLaProt or the
Pan-Human library, and HumanProt containing >20,000 proteins
from SwissProt H. sapiens database. Tryptic specific digested
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peptides without missed cleavage were in silico generated and
considered by the DeepDIA, which was trained using the HeLa1
data. For large spectral libraries, there were a few differences in
search condition (described in Methods section). An entrapment
strategy37 was used to approximately estimate false positive
identifications by adding proteins from other organisms to the
libraries. In all the analyses, we kept the number of entrapment
proteins similar to that of the organism specific proteins, and
consequently there were 6173 (human)+ 6622 (entrapment)
proteins and 207,061 (human)+ 155,776 (entrapment) peptides
in HeLaProt, 10,639 (human)+ 10,649 (entrapment) proteins
and 358,849 (human)+ 270,503 (entrapment) peptides in Pan-
Prot, and 20,163 (human)+ 19,226 (entrapment) proteins and
585,934 (human)+ 455,253 (entrapment) peptides in Human-
Prot (see Methods and Supplementary Table 2 for details). The
DIA analyses results by the large in silico spectral libraries are
presented in Fig. 4a, Supplementary Fig. 6a, 7a and 7b, and
Supplementary Data 4. Although the same Q-value filter was
applied on all the analyses, there were a small percentage of
entrapment proteins remaining. As the size of spectral library
increased, sensitivities (percentage of the number of proteins
shared by using the HeLaDDA and predicted libraries to those
identified using the HeLaDDA library) of identification at protein
group levels declined from 93.1% to 85.6%, while entrapment

percentages (percentage of the number of entrapment proteins to
all of those identified using the predicted library) increased from
1.4% to 3.3%.

In order to build an in silico spectral library directly from a
proteome database similar to the DDA spectral library, criteria
should be established to select a list of target peptides from a
protein to be included in the spectral library. We modified the
model for RT prediction, and applied it to predict the detectability
of peptides by mass spectrometry (Supplementary Note 5 and
Supplementary Fig. 8a–c). A detectability prediction model was
trained with a dataset of HeLa and HEK-293 cells (HeLa&HEK,
Supplementary Table 1), which was from the lab acquiring the
HeLa1 dataset. Then, we built another three spectral libraries (see
Supplementary Table 2 for details), denoted as HeLaProt50 (6151
human proteins+ 6459 entrapment proteins, 161,376 human
peptides+ 129,500 entrapment peptides), PanProt50 (10,591
human proteins+ 10,458 entrapment proteins, 273,050 human
peptides+ 220,790 entrapment peptides) and HumanProt50
(19,841 human proteins+ 18,909 entrapment proteins, 431,624
human peptides+ 416,125 entrapment peptides), containing
tryptic peptides with ≤2 missed cleavages and with detectability
scores ≥ 0.5 from all the proteins (including entrapment entries) in
HeLaProt, PanProt and HumanProt, respectively. The MS/MS and
RT prediction models were trained using the HeLa1 data. Since
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there was no significant change on the protein number before and
after filtering for both entrapment and human, we can use
entrapment percentage to compare the error rates before and after
filtering relatively. Using the three new libraries, entrapment
percentages at protein group level were <2%, and sensitivities were
higher than those using the in silico libraries without detectability
filtering (Fig. 4b, Supplementary Fig. 6b, 7c and 7d, and
Supplementary Data 4). Using the HeLaProt50 library, the
entrapment percentage decreased to 0.2%, while the sensitivity
was >93% at protein group level. Even with the HumanProt50
library, the number of detected protein groups was still
approximately equal to that detected with the HeLaDDA library.

At peptide level, when detectability prediction was applied, the
number of identified peptides by DeepDIA was larger than or
comparable to that by using the DDA library, and significantly
larger than that by DeepDIA without detectability prediction. The
overlap of peptide identifications using the DDA library and the
predicted library was lower than that of protein group identifica-
tions (Supplementary Fig. 6). It should be noticed that we chose the
identification results by using the HeLaDDA library as reference for
sensitivity calculation, which does not indicate that the proteins/
peptides identified only by using the predicted libraries were wrong.
Since the protein level overlap was high, most of the peptides only
identified using the predicted libraries were from the protein groups
also identified using the DDA library.

We further tested DeepDIA (detectability prediction trained
with HeLa&HEK, MS/MS and RT prediction trained with HeLa1)
with detectability prediction on a dataset of four groups (P9, P15,
P30, and P54) of mouse tissue samples (Mouse1, see Supple-
mentary Table 1 for details) for cross species validation. Different
detectability score thresholds were set to build in silico libraries
from SwissProt Mus musculus database (Supplementary Fig. 8d).
Using the in silico library with a detectability score threshold of
0.6 and ≤2 missed cleavages (MouseProt60, Supplementary
Table 2), entrapment percentages were <2% and sensitivities
were ~90% at protein group level (Fig. 4d and Supplementary
Data 5). The corresponding peptide level information is given in
Supplementary Fig. 6d.

We have further adapted a two-step approach for DIA analysis
using spectral libraries generated from proteome-scale databases.
The library used for the second search on Mouse1 was generated
from the first search results using MouseProt60 in silico spectral
library (Supplementary Table 2). Proteins combined from four
groups (P9, P15, P30, and P54) of samples detected in the first
search were in silico digested (≤2 missed cleavages) and protein
inference was re-performed based on the peptides after detect-
ability filtering (detectability score ≥ 0.6). Consequently, the
library contained 7424 proteins (7380 protein groups) from M.
musculus, while 6424 proteins (6340 protein groups) from S.
cerevisiae and 4297 proteins (4235 protein groups) from E. coli
were added as entrapment. In the identification results of the
second search, the entrapment percentages were ≤0.5%, and the
sensitivities were ranging from 91.3 to 93%. More protein groups
were identified for each sample than that using the DDA-based
library (Supplementary Note 6 and Supplementary Fig. 9). Similar
performance was also observed on the HeLa1 data (Supplemen-
tary Fig. 9). During the second search, the library size was smaller
and the library was more specific to the sample, which could lead
to better performance in peptide and protein identification.

For benchmark purposes, directDIA, a spectrum-centric
library-free tool in Spectronaut, was performed on the HeLa1
and Mouse1 dataset with 1% precursor and protein group level
Q-value. Sensitivities were 69% and ~87% at protein group level
using directDIA for the HeLa1 and Mouse1, respectively (Fig. 4c,
d). The numbers of identified proteins and peptides were
significantly smaller than that by DeepDIA and the DDA

libraries (Fig. 4, Supplementary Fig. 6, and Supplementary
Fig. 8).

Enhanced protein detection from human serum by DeepDIA.
Analysis of proteins from blood is an important clinical appli-
cation of proteomics, but is challenged by the extreme dynamic
range of protein abundance. From human plasma/serum data of
previous projects in our labs, we collected a sequence database
containing 27,142 peptides of 2543 protein groups, and built an in
silico library (PlasmaPredicted, see Supplementary Table 2 for
details, PXD014108) using DeepDIA. The PlasmaPredicted
library was tested on a dataset of three human serum samples (A,
S, N) acquired on a Q Exactive HF mass spectrometer with six
DIA runs without high abundance protein (HAP) depletion. Also,
a project-specific library of the serum samples (containing 7484
peptides of 877 protein groups) was built based on DDA with
HAP depletion and pre-fractionation by high pH reverse phase
(RP) LC. The DIA results are presented in Supplementary Data 6.
With the in silico library, >400 protein groups were detected and
quantified on average for each run (Supplementary Fig. 10a).
From the accumulated results of all the runs, 3748 peptides and
518 protein groups were detected with the in silico library.
Among them, 1328 peptides and 303 protein groups were missed
using the DDA-based library (Fig. 5a). DeepDIA detected 36%
more peptides and 131% more protein groups than the
DDA-based approach, and 45% more peptides and 130% more
protein groups than directDIA (Fig. 5a). Using the in silico
library, peptide and protein detection was no longer limited by
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DDA results of the samples, and hence more peptides/proteins
were detected from the DIA data.

PQ500 stable isotope labeled reference peptides were added to
the samples in three runs. Using the in silico library, 181, 157, and
171 precursors were detected for the PQ500 peptides without
isotope label, which were originally from the sample. Among
them, 20, 11, and 16 were missed using the DDA-based library
(Fig. 5b). By comparing the RT of the PQ500 precursors detected
in each run using the in silico library with the corresponding
isotope labeled peptides from the kit using the official PQ500
library, 179, 156, and 169 precursors were matched with an
absolute RT difference of <0.5 min. In each run, ~110 protein
groups containing these matched PQ500 peptides were detected,
and distributed throughout the intensity range of detected protein
groups (Supplementary Fig. 10b). Considering the “matched”
precursors as correct identification, the accuracies of detection
using the in silico library were estimated as ~99% on average,
higher than those using the DDA-based library and directDIA.

Discussion
DIA technique has enabled fast quantitative analysis of large
cohorts of samples. Currently, spectral library generation in DIA
quantitative proteomic experiments requires sample pre-
fractionation and DDA experiments, which is time-consuming
and limits the detection to peptides identified by DDA. Using
deep learning, we generate in silico spectral libraries with accurate
prediction of fragment intensities, iRT and peptide detectability
by MS, and demonstrate that the performance of predicted
libraries is comparable to DDA-based libraries.

Reproducibility of peptide fragmentation and retention is
influenced by types of instruments and changes of instrumental
settings, e.g. LC column, LC flow rate, electrospray voltage, ion
optics, scan range, resolution, AGC target, collision energy, etc.,
between labs. It has been reported that experimental factors do
influence iRT precision, and it is recommended to perform
library generation and analytical measurements on the same
system38. On the analysis of the HeLa dataset and the mixed
proteome dataset, we trained deep neural networks using the
DDA data provided by the lab generating the DIA data, and
achieved better performance than Prosit that was trained using
the reference MS/MS data from the ProteomeTools project. Since
it is not feasible to consider all the instrumental settings during
the training of deep neural networks, we suggest generating lab
and instrument-specific models for DIA analysis, instead of
developing a global model.

In this study, in silico spectral libraries were generated in two
ways, i.e. from peptide lists and from protein sequence databases.
From peptide lists in public libraries, e.g. Pan-Human,
instrument-specific libraries were built for DIA analysis, achiev-
ing better results than the original public libraries. We expect that
scientists can take full advantage of community resources using
models trained with data acquired on their own instruments to
improve their DIA analysis. In silico spectral libraries can also be
built from protein sequences in public database, e.g. SwissProt,
for direct analysis of DIA data without peptide-level prior
knowledge. However, a current challenge of DIA analysis using
proteome-scale libraries is the large query space. The increasing
numbers of peptides queried favor the occurrence of false posi-
tives and compromise detection sensitivity. It has been pointed
out that further investigations are required to establish appro-
priate strategies for statistical control of error rates in large-scale
DIA studies, and to optimize strategies for reducing the query
space in different applications39. We developed deep neural
networks for peptide detectability prediction, enabling the selec-
tion of target peptides from proteins by setting a threshold of

detectability score. More attempts, e.g. two-step search, have been
taken to reduce the query space (Supplementary Note 6), and we
anticipate that the issues of large query space can be overcome in
the future. Also, instead of querying all the peptides in a spectral
library, researchers can focus on a subset of proteins of interest
for their specific biological questions10.

Plasma/serum proteomics holds great promise for the discovery
of protein biomarkers for a range of diseases, such as early stage
cancers40 and cardiovascular diseases41. However, the study of
plasma proteome is challenged by the extreme dynamic range of
protein abundance, i.e. over 12 orders of magnitude42. Efforts are
being made on human plasma/serum proteome by many labs
around the world. Based on data from our labs, an in silico plasma/
serum proteome library was built using DeepDIA. With the in
silico library, >400 protein groups were detected on average in a
single DIA run without HAP depletion, which was double of those
detected using state-of-the-art DDA-based library from the same
data. By spike-in approach with stable isotope labeled reference
peptides, the error rates of detection using the in silico library were
estimated as low as those using the DDA-based library. The results
indicate that DeepDIA coupled with state-of-the-art peptide-
centric tools can break through the limitation of DDA on peptide/
protein detection, and outperforms spectrum-centric approaches in
proteomic study of blood sample. We have made the in silico
plasma/serum spectral library as well as the DeepDIA tool freely
available, and hope that they will contribute to complete profiling
of blood proteome samples across studies and laboratories.

Although it is demonstrated here in the context of DIA pro-
teomics, DeepDIA should also benefit any method that relies on
spectral libraries or other prior knowledge, for instance targeted
proteomics. MS/MS and RT prediction are complementary to
shotgun experiments to extend targeted assays for selected reac-
tion monitoring (SRM) or parallel reaction monitoring (PRM)
experiments. Recently, a “global targeting” approach was pro-
posed by unifying shotgun and targeted proteomics, extending
the targeting concept to a proteome-wide scale43, and we expect it
will also profit from in silico target lists generation.

In summary, we have demonstrated that instrument-specific
models can outperform approaches like Prosit and pDeep in the
generation of in silico spectral libraries for DIA data analysis, and
that the in silico spectral libraries generated by instrument-
specific models from public protein sequence database, e.g.
SwissProt, are comparable to sample specific DDA-based libraries
in the analysis of DIA data. We expect in the future that labs
would train their instrument-specific DeepDIA models using
DDA data acquired from fractionated peptides of a cell line, e.g.
HeLa, and then use the models to analyze their DIA data of other
samples without performing DDA experiments until significant
changes in equipment performance are observed.

Methods
Sample preparation. Human serum samples were collected from three volunteers
under the consent of the donors. For DDA analysis, high-abundant proteins (HAP)
were depleted using Pierce Top 12 Abundant Protein Depletion Spin Columns
(ThermoFisher Scientific, Rockford, USA) and Seppro IgY14 Spin Columns
(Sigma-Aldrich, St. Louis, MO, USA). After that, 10 μL of samples were diluted
1:40 with urea buffer (8 M urea, 1% sodium dodecyl sulfate), exposed on ice for
30 min with vortex mixing every 10 min, and centrifuged at 12,000g for 20 min at
4 °C. The supernatant was collected, and proteins were quantified using Pierce BCA
Protein Assay Kit (ThermoFisher Scientific, Rockford, USA).

For each sample, 100 μg of protein extracts were resuspended in 8M urea at
1 mgmL−1. After adding 2 μL of 0.5 M tris(2-carboxyethyl)phosphine (TCEP), the
sample was incubated at 37 °C for 1 h. Then 4 μL of 1M iodoacetamide was added
to the sample and the incubation was last for 40 min in dark at room temperature.
After that, five volumes of −20 °C pre-chilled acetone was added to precipitate the
proteins overnight at −20 °C. The precipitates were washed by 1 mL pre-chilled
90% acetone aqueous solution twice and then re-dissolved in 100 μL 100 mM
tetraethylammonium tetrahydroborate (TEAB). Sequencing grade modified trypsin
(Promega, Madison, WI, USA) was added at the weight ratio of 1:50 (enzyme:
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protein) to digest the proteins at 37 °C overnight. Peptides from each sample were
purified and concentrated using Pierced C18 spin columns (ThermoFisher
Scientific, Rockford, USA), and then quantified using Pierce Quantitative
Colorimetric Peptide Assay (ThermoFisher Scientific, Rockford, USA).

LC-MS/MS analysis. DDA was used to build a spectra library for DIA analysis.
The peptides from each sample were pooled together and re-dissolved in buffer A
(20 mM ammonium formate in water, pH 10.0, adjusted with ammonium
hydroxide), and then fractionated by high pH reverse phase (RP) LC separation
using an Ultimate 3000 system (ThermoFisher scientific, MA, USA) connected to
an XBridge C18 column (4.6 mm × 250mm, 5 μm) (Waters Corporation, MA,
USA). High pH RPLC separation was performed using a linear gradient, starting
from 5 to 45% B in 40 min (B: 20 mM ammonium formate in 80% acetonitrile, pH
10.0, adjusted with ammonium hydroxide). The column was re-equilibrated at the
initial condition for 15 min. The column flow rate was maintained at 1 mLmin−1

and the column temperature was maintained at 30 °C. Ten fractions were collected
(4 min each). Each fraction was dried in a vacuum concentrator. The peptides were
re-dissolved in solvent C (0.1% formic acid in water) and analyzed by an on-line
nanospray Q Exactive HF mass spectrometer coupled with an EASY-nLC
1200 system (ThermoFisher Scientific, MA, USA). For each sample, 3 μL (1 μg)
was loaded to an Acclaim PepMap C18 column (75 μm× 25 cm) (Thermo Fisher
Scientific, MA, USA) and separated with a 120 min gradient, from 5 to 35% solvent
D (0.1% formic acid in acetonitrile). The column flow rate was maintained at
200 nLmin−1. The electrospray voltage of 2 kV versus the inlet of the mass
spectrometer was used. The MS scan was performed with the following parameters:
scan range (m/z)= 350 − 1600; resolution= 60,000; automatic gain control (AGC)
target= 3e6; maximum injection time= 50 ms; dynamic exclusion= 30 s. The
HCD MS/MS scan was performed with the following parameters: resolution=
15,000; AGC target= 5e5; maximum injection time= 60 ms; collision energy= 30.

Three serum samples from three individuals without HAP depletion were
analyzed in DIA mode with two replicate runs for each sample. The peptides were
re-dissolved in 30 μL solvent C and spiked with iRT Kit (Biognosys AG, Schlieren,
Switzerland). For the second replicate run of each sample, PQ500 Reference
Peptides Kit (Biognosys AG, Schlieren, Switzerland) was added. 3 μL (1 μg) of each
sample was subjected to LC-MS/MS analysis. The MS scan was performed with the
following parameters: scan range (m/z)= 350–1650; resolution= 60,000; AGC
target= 3e6; maximum injection time= 20 ms. The HCD MS/MS scan was
performed with the following parameters: resolution= 30,000; AGC target= 1e6;
collision energy= 27; stepped collision energy= 5%. DIA was performed with 42
variable isolation windows with 1 Da overlap, and the total cycle time was 3 s. The
other MS parameters as well as LC gradient conditions and LC column were the
same as those in DDA.

Database searching of DDA data. The DDA data were analyzed with Spectro-
Mine (version 1.0.21621, Biognosys AG, Schlieren, Switzerland) assuming Trypsin/
P as the digestion enzyme with maximum missed cleavages set to 2 and peptide
length range set from 7 to 50. Carbamidomethyl (C) was specified as the fixed
modification, and no variable modifications were specified. The HeLa, HEK293 and
serum DDA data were searched against the SwissProt Homo sapiens database
(access date 2018-04, 20,301 entries) downloaded from UniProt. The mouse data
were searched against the SwissProt Mus musculus database (access date 2019-02,
17,006 entries). Q-value cutoff on precursor and protein level was applied 1%.
Other parameters were default values.

Training and validation of the deep neural networks. HCD MS/MS spectra of
peptide precursors were collected from the HeLa1 (17 runs), HeLa2 (12 runs),
Mouse1 (23 runs), and Mouse2 (15 runs) DDA data (Supplementary Table 1). For
each peptide precursor, only one peptide spectrum match (PSM) with the mini-
mum Q-value was kept. Singly charged peptides (6206 in HeLa1, 1278 in HeLa2,
9688 in Mouse1, and 26,700 in Mouse2) and peptides with charge states higher
than 3+ (5683 in HeLa1, 11,827 in HeLa2, 10,105 in Mouse1, and 22,695 in
Mouse2) were excluded because the amount of these precursors was too small for
training and testing. As a result, PSMs of 69,577 peptides (57,198 doubly charged
precursors and 27,468 triply charged precursors), 88,462 peptides (67,053 doubly
charged precursors and 37,480 triply charged precursors), 72,282 peptides (50,792
doubly charged precursors and 27,584 triply charged precursors), and 171,832
peptides (132,854 doubly charged precursors and 76,588 triply charged precursors)
were obtained from HeLa1, HeLa2, Mouse1, and Mouse2, respectively. Peaks of
singly charged and doubly charged b/y product ions were extracted, as well as
corresponding neutral loss (loss of ammonia or water) peaks.

A hybrid model based on CNN44 and BiLSTM networks45 were constructed for
MS/MS spectrum prediction. The model takes a peptide sequence as input and
converts it by one-hot encoding to a bit matrix. In the matrix, each row represents
a kind of amino acid residue (20 rows in total), while each column stands for a
residue position. The maximum sequence length is 50, and zero vectors are padded
to peptides with length < 50 for the empty positions. Then a convolution layer
(with 64 filters of size 2) scans across the input matrix to extract features from
adjacent amino acid residues. A BiLSTM layer (128-dimensional) is used to model
the sequential patterns of each cleavage position. A dropout layer (with rate of 0.5)

is added to the model to avoid over fitting46. Through a dense layer (12
dimensional) with activation function of rectified linear units (ReLU)47, the model
finally outputs an intensity matrix with each row for a type of product ion (b and y,
including loss of water and ammonia, with charge states of 1+ and 2+, 12 rows in
total) and each column for a cleavage site (49 columns in total). The model was
compiled with loss function of mean square error (MSE) and the optimizer of
adaptive moment estimation (Adam)48. Models for 2+ and 3+ precursors were
trained separately. Each dataset was randomly partitioned into two subsets, where
2/3 were used for training and the remaining 1/3 for validation. Dot product
(DP)33 was calculated between the predicted and experimental peak intensities.

The model for RT prediction was very similar to that for MS/MS spectrum
prediction, except that kernel size of the convolution layer was set to 5 and the
dimension of the dense layer was changed to output scalar values, i.e. normalized
RT. The model to predict the detectability of peptides by mass spectrometry
(Supplementary Fig. 8a) was similar to that for RT prediction, except slight
modifications that the input sequence included not only the peptide, but also seven
amino acids (pad with a blank if no amino acid is at the position) before and after
the N-terminal and C-terminal cleavage sites, respectively, separated by a dot, e.g.
“___MASK.LLRAVILGPPGSGK.GTVCQRI”, and thus the dimension of input
layer is 22 (20+ 2). More details on the model to predict the detectability of
peptides by mass spectrometry can be found in the Supplementary Note 5.

The models were implemented in Python (Anaconda distribution version 4.2.0)
using Keras (version 2.2.4) with TensorFlow (version 1.11.0) backend. Data
preprocessing and visualization were conducted with R (version 3.5.1). Running
time for model training is described in Supplementary Note 7.

Spectral library generation. Spectral libraries were generated from DDA search
archives using Spectronaut (version 12.0.20491 and 13.3.190726, Biognosys AG,
Schlieren, Switzerland) with default settings. For the generation of in silico spectral
libraries, a list of sequences of target peptides, collected from DDA results or
protein sequences by in silico digestion, was input to the deep neural networks for
prediction of fragment intensities and iRT, which was written to a comma-
separated values (CSV) file, and then imported to Spectronaut with default settings.
Protein sequences were digested using Protein Digestion Simulator (version
2.2.6794). For in silico libraries without detectability filtering, Trypsin and Trypsin/
P were set as the digestion enzyme with no missed cleavages, respectively, and the
results were combined. For libraries with detectability filtering, Trypsin/P was set as
the digestion enzyme with missed cleavages ≤2. Only peptides with length from 7
to 50 amino acids with mass ≤ 6000 Da were kept.

DIA data analysis. Raw data of DIA were processed and analyzed by Spectronaut.
Retention time prediction type was set to dynamic iRT. Data extraction was
determined by Spectronaut based on the extensive mass calibration. Decoy gen-
eration was set to mutated. Interference correction on MS2 level was enabled.
Peptide and protein level Q-value cutoff was set to 1%. For mixed proteome
samples, SwissProt H. sapiens isoform database (access date 2018-06, 42,356
entries), UniProt Proteome C. elegans isoform database (access date 2019-03,
28,302 entries), SwissProt S. cerevisiae (strain ATCC 204508 / S288c) database
(access date 2019-03, 6,721 entries) and SwissProt E. coli (strain K12) database
(access date 2019-03, 4,480 entries) were used as protein sequence databases. For
other datasets, protein database was set the same as those used in DDA searching.

For large spectral libraries, machine learning was performed across experiments,
and protein groups with single hit (i.e. only one stripped peptide sequence) in each run
were excluded. An entrapment strategy37 was used to compare false positive
identification rates under the given Q-value. An entrapment library was built using
proteins from other organisms with roughly equivalent size to the organism specific
library (see Supplementary Table 2 for details). The organism specific library and the
entrapment library were merged and used as the target library. Identification results
were filtered by 1% Q-value by a target-decoy approach implemented by Spectronaut.
The generation of decoy was on the whole target library including entrapment. As we
introduced the entrapment entries in the target database, the entrapment hits in
filtered target hits were considered as false positive results. Thus, we used entrapment
percentage (percentage of the number of entrapment hits to the target hits) to compare
the false positive rates relatively. It should be noted that the true error rate is higher
than the entrapment percentage.

Peptide and protein reports were exported as CSV files, and subsequent statistic
and visualization were performed with R scripts.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
All raw mass spectrometry data, spectral libraries and search results are publicly available
at the ProteomeXchange Consortium. Raw data of HeLa, HEK-293, mouse and mixed
proteome samples are available with the dataset identifier PXD005573, PXD006932,
PXD004452, and PXD009875 (see Supplementary Table 1 for details). All the models for
MS/MS, RT and detectability prediction, the data used for model training to generate
PlasmaPredicted (see Supplementary Table 2 for details), raw data of serum samples, all
in silico spectral libraries and the saved projects from Spectronaut have been deposited to
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ProteomeXchange via the iProX49 partner repository with the dataset identifiers
PXD014108 and IPX0001628000. The source data underlying Figs. 2c-d and 3b-d, as well
as Supplementary Fig. 1, 2, 3b-c, 4b-c, 5b-c, 7, 8c and 10b are provided as a Source Data
file. All other data are available from the corresponding author on reasonable request.

Code availability
DeepDIA is open source and freely available on GitHub.
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