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Abstract

Background: Response to modern treatment strategies, which combine cytotoxic compounds with immune
stimulatory agents and targeted treatment is highly variable among MCL patients. Thus, providing prognostic and
predictive markers for risk adapted therapy is warranted and molecular information that can help in patient
stratification is a necessity. In relapsed MCL, biopsies are rarely available and molecular information from tumor
tissue is often lacking. Today, the main tool to access risk is the MCL international prognostic index (MIPI), which
does not include detailed biological information of relevance for different treatment options. To enable continuous
monitoring of patients, non-invasive companion diagnostic tools are needed which can further reduce cost and
patient distress and enable efficient measurements of biological markers.

Methods: We have assessed if serum-based protein profiling can identify immune related proteins that stratify
relapsed MCL patients based on risk. Overall, 371 scFv targeting 158 proteins were assessed using an antibody
microarray platform. We profiled patients (n =44) who had been treated within the MCL6-Philemon trial combining
targeted and immune-modulatory treatment.

Results: The downstream processing led to the identification of the relapsed immune signature (RIS) consisting of
11 proteins with potential to stratify patients with long and short overall survival (OS). Moreover, in this population,
MIPI alone failed to separate high, intermediate and low risk patients, but a combined index based on MIPI
together with RIS, MIPl;s, showed improved performance and significantly stratified all three risk groups based on
OsS.
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Conclusions: Our results show that addition of biological parameters to previous prognostic indices improves
patient stratification among patients treated with BTK inhibitor triplet combination, particularly, in the identification

of an extreme high risk group.
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Background

An effective anti-tumor immune response plays a major
role for the outcome of cancer treatment [1]. This is ex-
emplified by the success of immuno-oncology drugs [2]
and the prognostic impact of immune cells, such as T-
cells and macrophages in a wide range of cancer sub-
types [3, 4]. Thus, methods to assess immune profiles in
patients are in high demand.

To be able to select the optimal treatment for a pa-
tient, novel efforts to use information from liquid biop-
sies are of major interest, as they represent a minimally
invasive method that can mirror the systemic immune
response to the tumor and also contain circulatory pro-
teins and DNA secreted from the tumor itself [5]. They
allow the possibility to follow the patient status over
time, thus monitoring temporal variation of treatment
response.

Additionally, diagnostic/prognostic tests need to be ro-
bust to be useful for their intended specific group. Un-
fortunately, single biomarkers often have low accuracy.
Thus, the approach of utilising signatures over single
biomarkers for gaining diagnostic and prognostic infor-
mation, has successfully been employed in a number of
studies [6-15]. The rationale is that a combination
would provide far more mechanistic information, higher
discriminatory power and improved biological insight
[16]. Thus, the use of signatures in therapeutic decision
making, development of companion diagnostic tools and
personalized medicine is being explored.

In this study, we have combined three important con-
cepts of immune focused analysis; minimally invasive
sampling to evaluate if combination of proteins detected
in serum can be used to risk stratify patients diagnosed
with relapsed mantle cell lymphoma (MCL). The goal is
to define a minimally invasive method that can help
stratify patients and allow treatment selection in order
to optimize outcome and reduce treatment related side-
effects.

The current golden standard in the clinic today for
prognostication in MCL is the mantle cell lymphoma
index, MIPI [17], which was developed for diagnostic pa-
tients and its applicability in relapsed patients is unclear.
In general, the number of scientific studies focusing on
relapsed MCL patients and prognostic information is
limited. Few risk factors have been studied and are
limited to Ki-67 and MIPI [18, 19]. The lack of tumor

material from relapsed/refractory patients is a limiting
factor for studies of molecular characteristics associated
with relapse and refractory disease. Although it is not
known how much the biology changes for the individual
patient during the course of the disease, it is hypothe-
sized that additional molecular factors can contribute to
outcome. Today, when a wide range of treatment
options are available in the relapsed/refractory setting,
improved information on molecular features and related
risk in relapsed patients is important. It is also essential
that clinical tools for decision making are developed
based on information gathered in homogenously treated
cohorts of patients, to understand the relationship be-
tween molecular features and outcome in relapsed/re-
fractory patients.

To identify protein signatures correlated to survival
and improve patient stratification based on immune and
clinicopathological parameters, we have profiled serum
protein markers in a cohort of relapsed MCL patients
previously collected during the Philemon trial conducted
by the Nordic Lymphoma group [19]. In that trial, re-
lapsed patients were treated with lenalidomide, rituxi-
mab and ibrutinib based on R2 induction therapy, as
previously described in Ruan et al [20]. Proteins were
detected using the affinity-based proteomic platform
IMMray [13, 14, 21-24], which allowed us to analyze
371 proteins in serum samples collected prior to treat-
ment initiation. Downstream analysis led to the identifi-
cation of an 11 protein signature, which in combination
with MIPI, robustly separate patients based on risk. The
new index, referred to as MIPI;, (relapsed immune
signature combined with MIPI) could significantly differ-
entiate the high-risk patient subgroup and improve the
overall patient stratification in this relapsed MCL patient
cohort compared to either MIPI or the immune signa-
ture alone.

Methods

Patient cohort

Relapsed/refractory (R/R) MCL patient serum samples
were collected from the phase two MCL6-Philemon trial
(NCT02460276) (https://clinicaltrials.gov/ct2/show/
NCT02460276) conducted by the Nordic Lymphoma
group. The study period was 2015-2018. Samples were
collected from ten clinical sites within Sweden,
Denmark, FInland and Norway. Patient eligibility criteria
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included age > 18 years, at least one previous regimen
with rituximab and measurable site of disease [19]. Pa-
tients were treated with an induction phase of 12 cycles
(28 days each) with rituximab (1400 mg subcutaneously
or 375 mg/m2 intravenously; once during week one and
then once every eighth week), ibrutinib (orally, 560 mg
daily) and lenalidomide (orally 15mg per day, 1-21 in
each cycle). This was followed by a maintenance phase
(56 days) where the patients were given ibrutinib and ri-
tuximab only. Patients were enrolled at ten clinical sites
in the Nordic countries during April 2015 and June
2016, and were followed for two years. The overall treat-
ment response rate was evaluated using PET and CT.
Overall survival (OS) was calculated as the time from
study enrolment to the date of death/last follow-up;
whereas progression free survival (PFS) was calculated as
the time from study enrolment to date of disease pro-
gression/last follow-up/death [19]. The relapsed samples
included in the study were collected at the time of enrol-
ment in the clinical trial, prior to initiation of any treat-
ment cycle and with a minimum of 30 days since last
front-line therapy. Serum samples were stored at — 80 °C
until the day of the experiment.

Labelling of serum samples

Serum samples were biotinylated using previously opti-
mized protocols. In brief, serum samples were first di-
luted (1:5 in 1XPBS) and placed on an orbital shaker at
300 rpm, 4°C for 10 min. The samples were then la-
belled with equal volume of 2.56 mM of Biotin solution
(EZ-link Sulfo-NHS-LC-Biotin (Pierce, Rockford, IL,
USA)) for two hours at 4°C on an orbital shaker. Tris-
HCL (0.5 mM) was used for termination of the biotinyl-
ation reaction, for 20mins at 4°C on an orbital shaker.
Along the labelling process, three replicates of a refer-
ence serum sample were included as process control.
The biotinylated samples were finally aliquoted and
stored at -80 °C until further analysis.

Production of human recombinant antibodies

In total, 371 human recombinant His-tagged single
chain variable fragments (scFv) targeting 158 immuno-
regulatory and tumor-associated serum proteins (Sup-
plementary Table 1), were produced and harvested in E.
coli, and purified using MagneHis protein purification
system (Promega, Madison, WI) and Zeba 96-well desalt
spin plates (Thermo Fisher Scientific), according to
manufacturer’s protocol. Nanodrop quantification and
SDS-Page was used to measure the protein yield and
purity respectively.

The specificity, affinity, and on-chip functionality of
the scFv’s has been assured using stringent phage display
selection protocols [25, 26], multiple clones (one to
nine) per target, and a molecular design adapted for
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microarray application [27]. In addition, the specificity
of several of the antibodies has previously been validated
using well-characterized human samples and multiple
orthogonal methods [22, 23, 26, 28].

Detection of serum proteins using antibody microarrays
The purified scFv fragments were further printed on
black polymer MaxiSorp microarray slides (NUNC,
Roskilde, Denmark) using a non-contact printer SciFlex-
arrayer S11 (Scienion, Berlin, Germany). Two columns,
each containing seven identical subarrays were printed
on each microarray slide. Each scFv analyte was printed
in three replicates within each subarray (Supplementary
Figure S1). BSA-biotin and PBS were used as positive
and negative controls, respectively. A total of seven sam-
ples could be analyzed on one single slide.

The entire protocol has been previously optimized and
standardized [13, 21, 24]. Briefly, each slide was
mounted in individual hybridization gaskets. Slides were
blocked for 1h with constant shaking, using a blocking
solution of 1% (w/v) milk in PBST (1% v/v Tween20 in
1XPBS) and washed with four cycles of PBST (Tween20
in 1XPBS, 0.05% v/v). Biotinylated serum samples, di-
luted 1:50 in blocking solution were then added onto the
slides and incubated for 2 h with constant agitation, to
allow the serum proteins to conjugate to their respective
scFv fragments. Six serum samples and one quality con-
trol sample was added to each slide. The slides were
again washed four times with PBST and then incubated
for 1h with 1pug/ml of Streptavidin tagged with Alexa
Fluoro 647 (Invitrogen). After the last washing step, the
slides were immersed in distilled water and quickly dried
with a stream of nitrogen gas and scanned immediately
using Innoscan 710 (Innopsys, France) at 635 nm.

Antibody microarray data pre-processing

To quantify spots and evaluate signal intensities, the
IMMray Evaluation Software (IES, Immunovia AB,
Lund, Sweden) was used. Primarily, each scanned subar-
ray was carefully assessed for their overall quality and
signal quantification. For any defects detected (back-
ground variation, uneven spots, slide scratches, spot
leakage etc.) that affected any spot, the spot was re-
moved from the downstream analysis. If >30% of the
spots in a subarray were discarded due to poor quality,
the assay for that particular sample was repeated. Finally,
local background was removed, and signals were ex-
tracted as an average over three replicates when the cu-
mulative variation (CV) was below 15%. If the CV was
above 15% the outlier replicate was eliminated, and the
final signal represented the average of the remaining two
replicates. In addition, all mean signals were trimmed,
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meaning that 5% of the lower and upper extreme values
were discarded.

For the initial analysis, the raw signals were log2-
transformed and potential batch variations were
assessed. Analysis and visualization was performed using
three dimensional principal component analysis (PCA)
with variance filtering and hierarchical clustering on
Qlucore Omics Explorer (Qlucore, Lund, Sweden) and
orthogonal partial least square supervised clustering on
SIMCA 15 (Umetrics, Sartorius). Several technical and
clinical parameters were tested for batch effect identifi-
cation. Scan date (three array days) and slide batch (two
slide batches printed on different days but using the
same set of antibody production) were shown to cause
batch effects, with scan date being the dominant factor.
ComBat normalization which uses empirical Bayes
framework [29] using R (Surrogate variable analysis
(SVA) package, www.r-project.org) with scan date as a
covariate was used to remove the batch effect.

Antibody microarray data analysis

Two parallel regression methodologies were employed
to minimize false positive analytes being identified, as no
validation cohort was available. In the first approach, the
prognostic relevance (OS) in relation to each protein
analyzed was evaluated by univariate cox regression ana-
lysis. The applicability of the cox regression model was
validated by testing the independence between scaled
Schoenfeld residuals with respect to time. A non-
significant correlation for all parameters certified the
validity of the proportionality hazard assumption. The
list of biomarkers identified through cox regression
underwent a secondary step for further variable reduc-
tion using stepwise backward elimination algorithm
complemented with support vector machine and leave-
one-out cross validation, using receiving operator char-
acteristics (ROC) as the error metric. The full process,
from now on referred to as Cox-BE, is described in
detail in Supplementary Materials and Methods.

The second approach utilized elastic net regression
(ENR) to identify key prognostic (OS) proteins. The
dataset was randomly split between training (80%) and
test (20%) groups. Multiple models were developed with
varying elastic net mixing parameter (a€[0, 1] with incre-
ments of 0.1; for ridge regression a =0 and for lasso re-
gression o =1). Each model performance was estimated
by the root mean square error (RMSE) and R? values.
The model with the least RMSE and highest R* value
was selected. Elastic net regression shrinks the coeffi-
cient to zero for redundant variables, thus, reducing the
variable list providing a condensed panel of proteins as-
sociated with OS. The final signature (n=11) was se-
lected based on the overlap in proteins identified using
the two separate methods. A summary of the
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experimental and bioinformatic pipeline is shown in
Supplementary Figure S2.

Analysis of condensed protein signature and
development of combined risk score

Pathway analysis (STRING: The Search Tool for the Re-
trieval of Interacting Genes/Proteins, (http://stringdb.
org) was used to analyse the protein interaction and
functional overlap between the serum proteins defining
the signature. Additionally, the signature panel was used
to define a protein signature score (Supplementary
materials and methods S2.) based on the predicted re-
gression coefficients from the univariate cox analysis.
The signature score was determined in a way that en-
abled partially categorical, ternary division of the dataset
(n = 44) (Supplementary materials and methods S2). This
signature score was further used to define the new
MIPL;, index (Supplementary materials and method
S2.). To categorize the dataset into various risk groups
based on the new model, cut-off points were determined
by maximizing log rank statistic by minimizing the asso-
ciated p-value. Visually, Kaplan-Meier survival curves
(SPSS, SPSS Inc., Chicago, USA) were used to assess the
risk stratification with respect to the OS of this patient
cohort in comparison to previous prognostic indices.
Harrell’s concordance index and log-rank statistics were
used to compare the various signatures and models. The
high and low risk groups identified were further analysed
using PCA and hierarchical clustering in R and Qlucore
Omics explorer.

Results

Patient characteristics

Serum samples from 44 out of 50 patients were available
for the present analysis and collected from seven out of
ten original clinical sites. Patients characteristics for the
original and present cohort is presented in Table 1. The
median follow-up time was 15 months with 18 deaths by
the end of the study in 2018. The median age was 69
years with 73% of the patients above 65 years and 70%
male patients. The median OS and PFS was about 15.0
and 13.7 months, respectively, similar to what has been
previously reported by Owen et al, for relapsed MCL co-
horts [30]. Among these 44 patients, three patients had
missing information on MIPI and 12 lacked information
on Ki-67. Within the MIPI distribution, 15% of the pa-
tients were low risk, 30% intermediate risk, and 50%
high risk. More than 60% of the patients were attributed
to high proliferation and Ki-67 was associated with in-
creased risk (Table 1).


http://www.r-project.org
http://stringdb.org
http://stringdb.org

Lokhande et al. BMC Cancer (2020) 20:1202

Table 1 Patient information
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N (%) Clinical trial Cohort Present study
Overall 50 (100) 44 (100)
Gender Male 36 (72) 31 (70.5)
Female 14 (28) 13 (29.5)
Age at diagnosis =<65 15 (30) 14 (32)
> 65 35 (70) 30 (68)
MIPI Low risk 8 (16) 7 (16)
Medium risk 15 (30) 13 (29.5)
High risk 23 (46) 21 (47.7)
Missing 4 (8) 3(6.8)
TP53 Wild-type 23 (46) 20 (45.5)
Deletions 17 (34) 14 (31.8°
Mutated 11 (25) 11 (25)°
Missing 1(2.3) 1(2.3)
Ki-67 < 30% 17 (34) 12 (27)
>30% 21 (42) 20 (46)
Missing 12 (24) 12 27)
Overall Survival (months) Median 15.08 15.08
Number of deaths 20 18
Time to progression (months) Median 13.65 13.65
Number of deaths 24 21
Median Overall Survival (months) 15.08 15.08
Median Time to Progression (months) 13.65 13.65

MIPI = Mantle Cell Lymphoma International Prognostic Index
#two patients had both TP53 deletion and mutation

Combined regression strategy, cox-BE and ENR, to
identify proteins associated with OS

To identify proteins that were associated with OS, uni-
variate cox regression and backward elimination (BE)
were used. From the full microarray panel consisting of
371 analytes, the cox regression yielded 43 analytes with
a p-value <0.05 (Supplementary Fig. S3). All analytes
were associated with improved outcome and had a
hazard ratio (HR) < 1 with a range of 0.25-0.39 (Supple-
mentary Fig. S3). Within this list of 43 analytes, there
were 38 unique proteins, with PRD14, MCP-1, HER2/
ERBB2, Eotaxin, Keratin19 having been identified by two
different scFv’s.

To reduce the number of false positives, the 43 ana-
lytes underwent a second regression; stepwise backward
elimination (see Materials and Methods for more de-
tailed description). Overall, for each 12 runs of BE, an
abridged version of condensed proteins was selected
based on Wilcoxon p-value <0.05 and was used for
training and testing SVM leave-one-out cross-validation
model. The average AUC across all runs was 0.67 with
each run having an average of approximately 38 analytes.

The 23 scFv’s that were identified in all 12 runs of BE
were selected for further analysis (Supplementary Fig.
S4). Among the 23 scFv’s, two clones were directed
against MCP1. For further analysis, the MCP1 scFv with
the superior p- value was selected. Thus, the final identi-
fied enriched panel as identified by Cox-BE contained 22
proteins.

To minimize false positive analytes, a secondary
approach for regression was also utilised. Elastic net re-
gression (ENR) was chosen as it is a relevant strategy
when working with small and multicollinear datasets.
Several ENR models (Materials and methods) were
tested using the full microarray panel of 371 analytes.
The optimal a = 0.5 was chosen based on lowest RMSE =
11.50 and the highest R*>=0.64. This gave a list of 29
scFv’s and their respective ENR coefficients (Supplemen-
tary Fig. S5). The identified proteins IL-4, STAP2 and
Factor B were represented by two clones each in the
analysis. For two of the proteins (STAP2 and IL-4) the
coefficient provided contradictory values. Both clones
that identified Factor B showed a negative correlation
(ENR coefficient for clonel = — 1.99 and clone2 = - 0.54)
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Table 2 Univariate cox regression analysis of RIS and previously
defined prognostic factors

n B HR (95% ClI for HR) P
MIPI 41 0.68 197 (12-3.23) 0.007
RIS 44 1.17 322 (133-7.77) 0.009
Ki67 32 0.02 1.02 (1-1.05) 003
Gender 44 =012 0.89 (0.33-2.37) 0.81
TP53 43 046 1.58 (0.58-4.3) 037
del TP53 43 -0.89 1(0.13-1.33) 0.14

HR Hazard ratio, S risk coefficient, P p-value

in contrast to most other analytes with a positive correl-
ation for OS. When multiple scFv’s were identified or
for any contradictory results, the data from Cox regres-
sion was used. The ENR approached resulted in a pro-
tein panel of 26 proteins.

Functional analysis and biological implication of the
enriched protein panel

From the two enriched panels identified above by Cox-
BE and ENR, a total of 37 unique proteins were identi-
fied (Fig. 1a). To understand the multicollinearity within
these 37 proteins and the possible biological interactions
between them, a pathway analysis was performed. Fig-
ure la shows the 35 protein nodes (CD40 and IgM la-
bels were unavailable). The results indicate that here is
high degree of functional interaction between the differ-
ent analytes. Of note, IL-4, IL-10, CCL2, CCL5, STAT-1
and IFNy have a large degree of molecular interactions.
The major functional activity of the proteins include
cytokine and chemokine activity (Fig. 1c).

Developing the relapsed MCL immune signature (RIS) and
score based on selected proteins

The combined Cox-BE and ENR strategy identified 11
proteins that together stratify patients based on OS (Fig.
1la). Additional signature lengths were evaluated, but the
overlapping signature of 11 proteins was validated to be
the most significant using univariate cox analysis and
Harrell’s concordance index.

Table 3 Multivariate cox regression analysis to compare the
significance of the RIS signature with respect to MIPI

n B HR Q
A MIPI 41 0.708 2.03 (1.24-333) 0.009
RIS 41 1.327 377 (1.38-10.3) 0.009
B MIPI 30 0.778 2.18(1.23-3.85) 0.023
RIS 30 1.201 332 (1.18-9.34) 0.034
Ki-67 30 0.017 1.02 (0.998-1.04) 0.081

HR Hazard ratio, S risk coefficient, Q g-value (FDR corrected p-value)
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For evaluating the efficacy of the signature in risk
stratification, these 11 identified proteins were used to
develop a relapsed MCL immune signature score (RIS
score) as described in the Supplementary Materials and
Methods. Univariate cox regression (OS, Table 2) was
used to compare the efficacy of the RIS score to MIPI,
Ki-67 (%), TP53 mutational status or TP53 deletion. It
was shown that MIPI, RIS and Ki-67 were identified as
significant factors associated with OS in this patient co-
hort (Table 2). However, the HR for Ki-67 barely
reached significance at 1.023 (95% CI = 1-1.05, P < 0.05),
probably due to limited number of patients. In compari-
son to MIPI with a HR of 1.97 (95% CI=1.2-3.23, P<
0.05), RIS exhibited a 3.2 fold increase (95% CI=1.33—
7.77, P <0.01), highlighting the strong association of the
RIS score with OS. Gender was non-significant in both
univariate and multivariate model and thus no impact
on the significant variables mentioned above. Of note,
univariate analysis of TP53 mutation or deletion to OS
was not significant in this patients cohort (Table 2) as
reported previously [19], most likely due to the non-
cytotoxic regiment used in the clinical trial protocol.

Comparison of the RIS to previous prognostic indices and
development of the combined MCL relapsed immune
signature index (MIPI)

To evaluate the impact of the developed immune-related
score, RIS, together with MIPI, multivariate cox regres-
sion analysis was performed. The HR and P for RIS was
3.77 and 1.327 respectively (q<0.01), nearly twice the
impact compared to MIPI with HR =2.03 and p = 0.708
(q<0.01) (Table 3). Proliferation lost prognostic rele-
vance in a multivariate model together with MIPI and
RIS (Table 3), which may be related to that information
on proliferation only was available for 30 patients which
reduce statistical power. We additionally checked the
performance of TP53 mutation/deletion against MIPI
and RIS in a multivariate analysis. However, it was non-
significant and did not contribute towards the hazard
risk. To evaluate the efficacy of a combined index taking
both biological and patient-related parameters into ac-
count, we combined information from the 11 proteins
constituting the RIS with the MIPL. The MIPI,;; was cal-
culated as weighted sum of the MIPI and RIS and the
weights were defined by the risk coefficients from the
multivariate analysis (Supplementary Material and
Methods). The new index was defined as: MIPI, =
[0.708 X MIPI] + [1.327 X S11].

The median value of the MIPI,;, score was 4.87 (3.21—
7.35). To trichotomize the data, potential cut-offs were
evaluated by testing several iterations and final optimal
boundary conditions were determined as 3.97 and 5.62
based on optimizing log-rank statistic and using minimal
p-value approach (X*>=12.883, P=0.0016). Thus, the
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dataset was stratified in three subgroups as the follow-
ing; low risk (LR) < 3.97, 3.97 < intermediate risk (IR) <
5.62, 5.62 < high risk (HR). The final patient distribution
was nine patients (22%) in the low risk group, 29
patients (61%) in the intermediate risk group and six pa-
tients (17%) in the high risk group.

MIPI alone failed to significantly divide the relapsed
patients into distinct risk groups (log-rank statistic =
4.279, df = 2, p = 0.118), with the survival curves for high
and the intermediate risk groups being undifferentiated
and only low risk group separated (Fig. 2a). The patients
were distributed over the different risk groups with
51.1% patients (n=21) in the high risk group, 31.70%
(n=13) in the intermediate risk group and 17.01% (n =
7) in the low-risk group. In contrast, the combined
MIPL,, could clearly and significantly differentiate be-
tween the three subgroups with a log-rank p-value of
0.0016 (Fig. 2c). Also for progression free survival (PES),
the MIPL;; had a stronger prognostic impact compared
to MIPI alone (p<0.0001 and p=0.034, respectively).
MIPL,;, could clearly separate the three risk groups with
the survival curves for high and the intermediate risk
groups clearly separated (Fig. 2c and d). Harrell’s

concordance index performance was slightly better for
MIPL, (0.714) compared to MIPI alone (0.662). Out of
the seven patients in the low-risk MIPI group, six
remained in the low-risk MIPI ;; group.

The overall risk distribution was visualized by PCA as
shown in Fig. 3a, again exhibiting the segregation of high
and low risk groups of the MIPI,;; by differential confi-
dence clusters The separation was primarily along the
first component axis, likely explained by the overlapping
functions of the individual RIS proteins as demonstrated
by the pathway analysis. The expression of the 11 pro-
teins in the defined RIS were increased in the low risk
group compared to the high risk group (Fig. 3b).

Discussion

Risk stratification is important for clinical practice, and
the golden standard today is MIPI which was developed
in 2008 for assessment of risk in newly diagnosed pa-
tients. The index is based on four parameters; age, LDH
levels, WBC count and ECOG status [17]. However,
MIPI does not take the biological heterogeneity into
account, as limited molecular data is included ([31].
Moreover, later studies where more modern treatment
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regimens are used, have shown that the index does not
differentiate between low, intermediate and high risk
groups of patients [32-35]. When combined with add-
itional molecular information specific to individual pa-
tients, combined indices have improved risk
stratification [31, 36-39]. The most widely used com-
bined index is the MIPI-b where proliferation based on
Ki-67 staining is added to the original MIPI [37]. Apart
from this, there are several other prognostic factors and
single markers identified in MCL such as the neural
transcription factor SOXI11 [40] and several secondary
mutations (TP53, MYC, ATM, NOTCHI etc.) [40];
among which TP53 mutational status has shown largest

impact on outcome [41]. However, there are limited
studies on how soluble immune-related proteins in
serum can contribute to assessment of risk, and stratifi-
cation of MCL patients. To our knowledge, only a single
study by Sonbol et al. has focused on cytokines in MCL
blood samples [42], where sIL-2Ra, MIP-1B and IL-8
were identified as prognostic factors.

Thus, we have assessed the potential of using informa-
tion in serum to associate combinations of proteins with
response of relapsed MCL patients to treatment with
immune-stimulatory agents. The identified signature,
RIS, includes PRD14, STAP2, Eotaxin, RPS6KA2, Kera-
tin19, MCP1, IL4, UBC9, IL1ra, RANTES and CD40.
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Most of the proteins have a known role in the immune
system, but the majority have not been studied in the
context of MCL biology or treatment response. Sonbol
et al, identified IL1ra levels to be elevated in relapsed
MCL in comparison to healthy controls, but was not
correlated to event-free survival in that study [42]. Few
of the RIS proteins have been studied in MCL tumor tis-
sue, and thus we cannot speculate if the protein is leak-
ing from the tumour cells, or altered as a response by
the immune system to the tumor. However, RANTES
(CCL5) has been reported to be overexpressed in MCL
tumor tissue and MCL cell lines, tentatively playing a
role in recruitment of T cells [43].

Several of the other proteins are well characterized in
relation to their role in the immune system. IL-4 is a
central hub for regulating immune behaviour and has
previously been attributed to cell proliferation through
the impact on CD40L [44]. CD40, a member of TNF re-
ceptor family plays an essential role in B cell prolifera-
tion, although it’s role in MCL has been under dispute
[45-47]. While some studies suggest the involvement of
CD40 in promoting MCL tumor cell proliferation, others
debate the potential role in growth arrest [45, 47].

Of interest, the transcription factor PR domain zinc
finger 14 (PRD14 or PRDM14), a regulator of pluripo-
tency and epigenetic reprogramming in embryonic stem
cells and germ cells [48-50], has not been studied in
MCL, but other reports link high PRD14 to oncogenic
behaviour in several cancer types including breast cancer
and colorectal cancer [51-56]. It has been proposed that
PRDM14 (corresponding gene) expression could influ-
ence G1/S transition thus enabling cell proliferation [49]
and facilitate cancer stem cell like properties and che-
moresistance. Thus, inhibition of PRDM 14 has also been
suggested as a potential target of treatment in cancer
therapy [53]. Importantly, it has been shown that
PRDM14 overexpression leads to lymphoma formation
in mice [57]. One of the other family members, PRDM1,
is a master regulator of B-cell differentiation and acts as
a tumor suppressor in DLBCL [58-60]. Potentially, it
would be interesting to study PRDM 14 in MCL tissue to
understand if it is expressed by the tumor cells or se-
creted by the immune system.

The first aim of the present study was to identify a
signature that could stratify patients according to risk.
This was assessed by calculating a patient-specific
score based on the individual intensities weighted by
their contribution in a combined multivariate analysis.
The patient’s RIS score could then be used to stratify
patients according to risk (OS). Additionally, we also
evaluated the prognostic value of established risk fac-
tors, including proliferation and MIPI together with
the RIS score. Both Ki-67 and MIPI were independ-
ently associated with OS in cox multivariate analysis
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together with RIS. However, RIS had a stronger im-
pact with an increased HR of 3.3 as compared to 2.1
for MIPI and 1.02 for Ki-67. As reported previously,
TP53 aberrations were not correlated to OS in uni-
variate analysis [19], potentially related to the fact
that a non-chemotherapeutic regimen was used that
do not depend on functional p53.

The second aim was to evaluate if risk stratification
could further be improved by combining information
from the RIS score with the clinically used MIPI. We
show that MIPI alone does not significantly stratify these
relapsed patients into distinct high, intermediate and
low risk groups. When combining RIS and MIPI scores,
and using optimized cut-offs, improved stratification was
achieved. We show that MIPI,;; can improve separation
between low, intermediate and high risk patients com-
pared to MIPI alone, emphasizing that non-invasive
sampling of immune-related serum proteins can be used
to improve risk stratification in relapsed/refractory MCL
patients. This newly defined index had a stronger impact
than MIPI and MIPI-b in stratification using cox ana-
lysis, KM survival curves, log-rank statistics and Harrell’s
concordance index.

Already today in the clinic, risk adapted therapy regi-
mens based on MIPI are being explored [31]. In the
diagnostic setting, low MIPI score patients are consid-
ered for wait-and-watch strategy whereas the intermedi-
ate or high risk group are proposed to be treated with
combination chemotherapy (CHOP) and immune
therapy (Rituximab), dosage depending on additional
prognostic factors such as TP53, Ki-67 etc. [61]. Thus,
improving stratification through addition of biological
information can potentially enable better decision mak-
ing for treatment regimens in both the diagnostic and
relapsed setting.

The potential of including information on immune-
related proteins is increasingly important for novel treat-
ment strategies that often include immune stimulatory
agents or strategies in both the diagnostic and relapsed
setting. Most likely, the RIS protein panel is related to
the specific treatment that the patients received, and the
global applicability of such specific panels needs to be
investigated in cohorts of patients receiving other treat-
ment protocols.

Conclusion

In this proof-of concept study, we have used three
important concepts to risk-stratify patients, and enable
improved clinical decision making through (i)
minimally-invasive patient sampling, (ii) combined pro-
tein signature in contrast to single biomarkers and (iii)
focus on immune-related information relevant to treat-
ment outcome. We show that information from
immune-related proteins in serum can be used alone or
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in combination with clinical parameters to improve
stratification of patients treated with
stimulatory and targeted agents.

immune-
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