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Outer membrane phospholipase A (OMPLA) is an enzyme located in the

outer membrane of Gram-negative bacteria. OMPLA exhibits broad sub-

strate specificity, and some of its substrates are located in the cellular

envelope. Generally, the enzymatic activity can only be induced by pertur-

bation of the cell envelope integrity through diverse methods. Although

OMPLA has been thoroughly studied as a membrane protein in Escherichia
coli and is constitutively expressed in many other bacterial pathogens, little is

known regarding the functions of OMPLA during the process of bacterial

infection. In this study, the proteomic and transcriptomic data indicated

that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial

membrane and is involved in bacterial infection under ordinary culture con-

ditions. A series of physiological assays substantiated the disorganization of

the bacterial outer membrane and the periplasmic space in the DpldA mutant

strain. Furthermore, the DpldA mutant strain showed decreased levels of

type III secretion system expression, contributing to the reduced internaliz-

ation efficiency in host cells. The results of this study support that PldA,

which is widespread across Gram-negative bacteria, is an important factor

for the bacterial life cycle, particularly in human pathogens.
1. Introduction
The outer membrane proteins (OMPs) of Gram-negative bacteria are unique mem-

brane proteins that generally contain a b-barrel fold and range in size from 8 to 26

strands [1,2]. OMPs are synthesized in the cytoplasm, and transported to and

inserted into the outer membrane (OM), an asymmetrical bilayer comprising lipo-

polysaccharide (LPS) in the outer leaflet and different types of phospholipids (PLs)

in the inner leaflet [3,4]. Several OMPs provide a variety of functions, such as signal

transduction, catalysis, immunity and pathogenicity [5–8].

Outer membrane phospholipase A (OMPLA) comprises a family of b-barrel

proteins embedded in the OM of bacteria that hydrolyse membrane PLs and

remove the ester bonds at the stereochemical numbering (sn) positions sn-1

(first carbon) or sn-2 (second carbon) from the glycerophosphodiester backbone

of both PLs and lysophospholipids [9,10]. The crystal structure of the OMPLA

isolated from E. coli indicated that this enzyme is a serine hydrolase with a

His142-Ser144-Asn156 catalytic triad located on the exterior of the b-barrel.

The activity of this enzyme is regulated by reversible dimerization and requires

calcium as a cofactor [11,12].

OMPLA, in combination with other bacterial components, plays a pivotal

role in the maintenance of the OM structural integrity and stability [13]. In

E. coli, OMPLA is constitutively expressed, and computational studies indicate

that PldA interacts with LPS and maintains lipid asymmetry in outer mem-

branes under homoeostatic conditions [13,14]. Nevertheless, there is scarce
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experimental evidence addressing whether and how the

constitutively expressed PldA affects the OM integrity

under normal growth conditions. In some human pathogens,

OMPLA also functions as a virulence determinant with various

mechanisms. For example, in Helicobacter pylori OMPLA deter-

mines the initial fitness for colonization and subsequent niche

adaptation, and in Campylobacter coli this enzyme is considered

as a major haemolytic factor [15–17].

OMPLA is also constitutively expressed in Shigella flexneri
(termed PldA), which is the leading cause of bacillary dysen-

tery in humans [18]. Genome sequencing revealed that

S. flexneri possesses a mega virulence plasmid, which encodes

the invasion plasmid antigen IpaACDB and the Mxi-Spa-type

III secretion system (T3SS) [19,20]. Shigella flexneri uses the

T3SS, a needle-like structure, to invade epithelial cells from

the basolateral side and inject effectors into the host cell cyto-

plasm. These effectors can influence host cellular function,

subvert host–cell signalling pathways and regulate inflam-

matory responses [21–24]. Upon invasion, S. flexneri lyses

the vacuole membrane, replicates within the host cell cyto-

plasm and spreads to adjacent cells [25,26]. In addition to

the plasmid-borne virulence determinants, many metabolic

pathways and OMPs are important for pathogen invasion,

intracellular growth and cell-to-cell spread, including

carbon metabolism pathways, the synthesis of amino acids

and nucleotides, OmpA and OmpC, and other molecules

[5,6,27,28]. Previously, proteomic analyses revealed that

intracellular S. flexneri exhibits increased expression levels

of PldA protein [29], indicating that PldA is probably

involved in the pathogenicity towards host cells. However,

there has been no experimental evidence showing that

PldA regulates S. flexneri invasion and pathogenesis.

An understanding of shigellosis pathogenesis is impor-

tant for vaccine development and treatment. In this study,

we report that Shigella PldA plays an important role not

only in OM structural integrity and stability but also in

S. flexneri internalization into epithelial host cells. Through

comprehensive proteomic and transcriptomic comparisons

between wild-type (WT) and pldA knockout S. flexneri strains,

we demonstrated that PldA deficiency affected the integrity

of the bacterial membrane, leading to the generation of less

vigorous pathogens. Furthermore, the PldA deletion also

affected the T3SS-related invasion efficiency, resulting in the

decreased pathogenicity of S. flexneri. Moreover, intracellular

S. flexneri delivers PldA into the host cell cytosol. Further-

more, homologues of PldA are encoded in diverse bacterial

pathogens, including H. pylori and C. coli, suggesting that

these proteins are probably important in host pathogenicity.

Taken together, these findings determine multiple mechan-

isms for the contribution of PldA to the membrane integrity

and pathogenicity of S. flexneri.
2. Results
2.1. Shigella flexneri wild-type and DpldA mutant

strains show distinct secretomic components
Previous studies have shown that PldA is located in the bac-

terial OM and interacts with the OM components [11–13]. To

investigate the role of PldA protein on the cellular membrane,

we applied proteomic assays to examine the secretomes of

the WT and DpldA mutant strains. Because WT and DpldA
mutant strains exhibited similar growth rates (electronic sup-

plementary material, figure S1), we analysed the components

precipitated from the culture supernatant of WT and mutant

strains in the exponential growth phase using mass spec-

trometry (MS). The majority of the secreted proteins in

samples from each of the three replicates were present in

the supernatants from each of the strains and showed good

technical and biological reproducibility. By setting a cut-off

of two or more unique peptides per protein, we identified

448 secreted proteins in the DpldA mutant supernatant and

299 secreted proteins in the WT supernatant (figure 1a and

electronic supplementary material, table S2). Among the 149

additional proteins secreted by the mutant, the majority were

cytoplasmic proteins (130 proteins). The remaining proteins

included 10 periplasmic proteins, 7 membrane proteins and 2

proteins predicted to have extracellular locations (figure 1b).

Additionally, the unique proteins in the DpldA supernatant

corresponded to functional categories associated with ‘post-

translational modification/protein turnover/chaperones’,

‘cell wall/membrane/envelope biogenesis’, ‘macromolecule

transport and metabolism’ and ‘poorly characterized proteins’

(figure 1c). Thus, the profound changes in the S. flexneri DpldA
mutant secretome implied that abolishing the S. flexneri pldA
gene could lead to the impairment of cell wall integrity,

decreased membrane stability and the subsequent leakage of

the bacterial cytoplasmic components, which might affect the

invasion capability of this bacterial pathogen.
2.2. PldA is required for maintaining proper bacterial
morphology

The secretome profile of the WT and the DpldA mutant indi-

cated that PldA played a critical role in maintaining the cell

wall architecture. To further investigate the function of PldA

in maintaining the S. flexneri OM, we examined the bacterial

shape of S. flexneri WT and DpldA mutant using confocal

microscopy. Compared with the rod-shaped WT strain, the

DpldA mutant exhibited a more spherical, round shape

(figure 2a,b). The complementation of PldA in the DpldA
mutant restored the rod-like shape (figure 2a,b). This distinct

shape of the DpldA mutant presumably reflected the disorgan-

ized structure of the bacterial OM. The spherical appearance in

the mutant therefore suggests that PldA is required for the

maintenance of the rod-like shape of S. flexneri, typically

defined by the mechanically stiff exoskeletal cell wall [30].

Bacterial cell envelope stability is also associated with the

morphology of the bacterial colonies and the osmotic stress

response. To further substantiate these findings, we assayed

the bacterial colony morphology under different osmotic

pressures. Under normal culture conditions, the deletion of

pldA gene resulted in the formation of larger colonies than

those observed with the WT strain (figure 2c,d ). Interestingly,

the presence of 400 mM salts in the medium reduced the

colony diameter of the DpldA mutant to a size similar to

that observed in the WT colony (figure 2c,d ), indicating

that salt concentration resulted in more balanced osmotic

pressures on both sides of the cell membrane in the mutant.

These data suggested that the DpldA mutant was more fragile

and sensitive to osmotic pressures, probably reflecting the

loss of an intact OM. The complemented DpldA strain exhib-

ited a similar colony size as the WT strain (figure 2d ).

Moreover, in SDS-EDTA permeability assays, the DpldA
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Figure 1. Identification of proteins in the culture supernatants of S. flexneri WT and DpldA strains using MS. (a) Venn diagram representing the relative abundance
of proteins detected in the culture supernatant of the DpldA strain compared with the WT strain. In total, 299 proteins were identified in both WT and DpldA
supernatant proteomes, while 149 proteins were unique to the DpldA supernatant proteome. (b) Pie chart predicting the cellular distribution of proteins unique to
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mutant was more resistant to SDS lysis in the presence of

EDTA compared with the WT strain. The complemented

DpldA strain displayed similar phenotype as the WT strain

(figure 2e). The OM profile was also analysed by MS identifi-

cation, and approximately 30% of OMPs were undetectable in

the DpldA strain (electronic supplementary material, table S3).

These results suggested a disorganized OM structure in the

mutant bacterium. Taken together, these results support the

conclusion that PldA is required for maintaining bacterial

morphology through the maintenance of the integrity of the

bacterial OM.

2.3. Loss of PldA results in antibiotic and acid resistance
Because the pldA deletion disrupted the integrity of the bac-

terial OM, we hypothesized that this disruption would

further impair the organization of the periplasmic space. To

examine this hypothesis, we determined the susceptibility of

the WT and DpldA mutants to antibiotics acting through differ-

ent antimicrobial mechanisms. When treated with antibiotics

targeting bacterial cell walls, such as ampicillin or carbenicillin,

the DpldA mutant exhibited approximately 50% higher survi-

val rate than the WT strain (figure 3a,b). This effect might

reflect the loss of natural targets in the periplasmic space. How-

ever, treatments with kanamycin, gentamicin or streptomycin,

which interrupt intracellular protein synthesis, resulted in the
similar survival of WT and DpldA strains (figure 3c and

electronic supplementary material, figure S2).

Previous reports showed that high acidity results in the

denaturation or aggregation of periplasmic proteins, and bac-

teria can induce several factors that counteract the low pH

environment [31–33]. We hypothesized that the periplasmic

damage in the DpldA mutant might upregulate factors that

would confer resistance to low pH. We therefore measured

the acid stress sensitivities of both strains. Cultures of the WT

and DpldA mutant strains were incubated for 20 or 40 min at

378C at either pH 2.0 or pH 3.0, and cell viability was deter-

mined after measuring bacterial colonies on LB plates. While

both WT and mutant strains showed minimal survival at pH

2.0 following 40 min incubation, the DpldA mutant exhibited

better survival than the WT strain at pH 2.0 for 20 min. Further-

more, the survival rate of the DpldA mutant was at least an

order of magnitude higher than that of the WT strain after

either 20 or 40 min incubation at pH 3.0 (figure 3d,e),

suggesting that the loss of PldA contributes to the higher resist-

ance of S. flexneri to acid conditions. In summary, alterations of

the antibiotic and acid resistance profile of the DpldA mutant

strain indicate that PldA affects the periplasmic organization

of S. flexneri. Considering that the pldA deletion affects OM

integrity (figure 2; electronic supplementary material, table

S3), it is likely that this periplasmic disorganization also reflects

the dysfunctional bacterial OM.

http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/COG/
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2.4. Transcriptional profiling of wild-type versus DpldA
mutant Shigella flexneri strains

To identify the pathways and genes regulated by S. flexneri
PldA, we used an RNA-seq-based approach to compare the

transcription profile differences between WT and DpldA
strains. The total number of high-quality (Q20) reads generated

for each sample ranged from 5.7 to 10.6 million, of which

approximately 99% of the reads were successfully mapped to

the genome of S. flexneri. An overview of the results obtained

from the transcriptome is shown in figure 4a,b and electronic

supplementary material, table S4. A comparison of the DpldA
and WT strains revealed that the expression of the 218 S. flexneri
genes examined in this analysis were significantly downregu-

lated (fold change . 2) after pldA deletion. Among these

genes, 57 genes were associated with the T3SS apparatus of

this pathogen (red dots in figure 4a). For example, ipaA, ipaC,

ipgC and ipaD, which, respectively, serve as T3SS machinery

or effectors, were downregulated in the DpldA strain.

This result indicates that PldA is required for the maintenance

of a functional T3SS, which mediates the pathogenicity of
S. flexneri. To validate these results, we further measured the

expression levels of selected T3SS genes using quantitative

RT-PCR (figure 4c). Similar to the results of the transcriptomic

assay, we observed that the four targets (ipaC, ipaA, ipgC and

phoN2) selected for analysis were also downregulated in

the DpldA strain. Taken together, these data indicate that a

mutation in pldA impacts membrane stability which in turn

impacts regulatory networks controlling the expression of

T3SS components and associated effectors.

2.5. Shigella flexneri PldA regulates the T3SS and the
bacterial invasion of epithelial cells

Transcriptomic data suggest that PldA may contribute to the

functions of S. flexneri T3SS. To examine this finding, several bac-

terial strains were grown on a Congo Red TSA plate (figure 5a),

showing that the Congo Red-positive phenotype in the WT

strain could not be observed in the pldA, spa47 (ATPase for

T3SS) or pldA&spa47 mutant strains. Trans-complementation

of pldA in the DpldA strain restored the red colour on the

Congo Red plate. Further experiments were conducted to
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validate the influence of PldA on T3SS secretion. The secretome

of WT, DpldA and Dspa47 strains in the presence of Congo Red

was subsequently monitored. As shown in figure 5b, although

the secretion of SepA, which is an autotransporter independent

of the T3SS, was not affected, the secretion of major effectors of

T3SS, including IpaA, IpaB, IpaC and IpaD, were all significantly

downregulated after pldA deletion. Also, much of the T3SS-

related proteins were undetectable in the DpldA mutant by MS

analysis (electronic supplementary material, table S5). As

for the negative control, these T3SS effectors could not be

detected in the Dspa47 or DpldA&spa47 supernatant (figure 5b
and electronic supplementary material, table S5). Hence, these

results showed that PldA significantly impacts the T3SS function

in Shigella.

Because T3SS plays a critical role in the pathogenesis

of Shigella, the effect of PldA upon the internalization of

S. flexneri was also investigated. We infected human epithelial

HeLa cells with various DsRed-expressing bacterial strains. As

shown in figure 6a, we observed fewer bacteria in host cells

infected with the DpldA strain compared with those infected

with the WT strain. We used the Dspa47 strain, which lacks a

functional T3SS, as a negative control; this mutant was

unable to infect HeLa cells (figure 6a). To validate the relation-

ship between PldA and the pathogenicity of S. flexneri using
another approach, we performed gentamicin protection assay

during host cell infection. We infected HeLa cells with S. flex-
neri strains in the exponential phase and measured the

internalized colony-forming units (CFUs). We observed that

the invasion ability of the DpldA mutant dramatically

decreased compared with the WT strain (figure 6b). As a nega-

tive control, the Dspa47 and DpldA&spa47 strains displayed no

invasion efficiency (figure 6b). To establish that PldA directly

affected invasion, we complemented the DpldA mutant PldA

via an IPTG (isopropyl-beta-D-thiogalactopyranoside)-induci-

ble plasmid. The invasion efficiency increased in an IPTG

concentration-dependent manner up to 0.1 mM IPTG

(figure 6c). Additionally, we observed no significant difference

in cell adhesion and cytotoxicity as measured based on the

LDH release among the strains examine above (electronic sup-

plementary material, figure S3a,b). It is likely that S. flexneri
PldA regulates host cell invasion and cellular internalization

through the manipulation of T3SS functions.

2.6. Intracellular Shigella flexneri delivers PldA into the
epithelial cell cytosol

In addition to the functions of PldA in the prokaryotic cell, the

performance of this enzyme inside the eukaryotic host was also
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investigated. A previous study showed that the intracellular

PldA levels significantly increased during the infection of

HeLa cells with S. flexneri [29]. We therefore assumed that

PldA might also play a direct role in the eukaryotic cell inva-

sion and delivery of PldA into HeLa cells, assayed using

b-lactamase (Bla) fused with PldA. Epithelial cells infected

with the S. flexneri strain expressing the PldA–Bla fusion

protein were treated with CCF2-AM, a fluorescent b-lactamase

substrate that emits blue fluorescence after cleavage with

b-lactamase. Consistently, HeLa cells infected with the

S. flexneri DpldA strain expressing the PldA–Bla fusion pro-

tein exhibited higher blue/green fluorescence ratios than

those infected with WT strain or with the DpldA mutant

strain (figure 7a,b). Additionally, the fluorescence ratio of

DpldA&spa47 double mutant expressing pldA–bla decreased

to the basal level of mock control, suggesting that T3SS is

important in the process of PldA transport. The PldA secretion

into the host cell was further validated by confocal microscopy

(figure 7c). After infection with S. flexneri harbouring plasmids

expressing pldA–gfp, HeLa cells were fixed and examined

using confocal microscopy. The GFP signal was observed in

the cytosol around the internalized bacteria. As a negative
control, cells infected with S. flexneri producing GFP protein

alone did not exhibit any scattered green signal. Thus, these

results indicate that intracellular S. flexneri secretes PldA into

the host cell cytosol.

2.7. PldA homologues are widely distributed in bacteria
The phospholipase A protein family in bacteria comprises a

large number of hydrolases, which play a critical role in viru-

lence [17]. A variety of phospholipase A effectors, such as

yplA in Yersinia enterocolitica and phlA in Serratia marcescens,

were secreted from the pathogens [34–38]. We conducted a

phylogenetic analysis to examine the membrane bound and

secreted phospholipase A. Using an exhaustive search in

the public domain, we identified PldA homologues among

828 bacteria species of 284 genera, among which the majority

(84%) are bacteria from the Proteobacteria phylum, the lar-

gest group of Gram-negative bacteria. And 26 genera of

these organisms also possess T3SS (electronic supplementary

material, table S6). Phylogenetic analysis groups all PldA

homologues in a distinct clade from secreted phospholipase

A proteins (figure 8). Indeed, although the overall sequence
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similarities between different PldA homologues were as low

as approximately 13%, the catalytic motif of phospholipase A

was highly conserved with an HxSNG pattern in all bacteria
(figure 8). By contrast, the secreted phospholipase A proteins,

located in a distinct clade, shared a GxSxG catalytic motif as

suggested in a previous study [39].
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3. Discussion
PldA is widely distributed and well conserved in Gram-

negative bacteria, indicating that this enzyme may play an

important role in bacterial survival. In E. coli, PldA is a consti-

tutively expressed, predominantly outer membrane protein

with phospholipase A activity and is considered as a house-

keeping gene [17]. While there have been several reports

addressing the PldA function under stress conditions, there is

less attention on the effects of this enzyme during homoeosta-

sis. In this study, we report a comprehensive validation of how

S. flexneri PldA functions under standard growth conditions

using proteomic and transcriptomic approaches. Furthermore,

we define the role of this enzyme as a virulence determinant

during S. flexneri internalization into epithelial host cells.

A biophysical model showed that PldA affected the asym-

metric OM under normal conditions [13,14]. Here, we

characterized the extracellular proteome for both S. flexneri
WT and DpldA strains during the exponential growth phase
through MS to detect the membrane integrity and cellular con-

tent leakage. The results showed that 149 proteins were

exclusively present in the extracellular proteome of the DpldA
strain and suggest that the PldA disruption either directly or

indirectly leads to the damage of bacterial inner and/or outer

membrane and the subsequent secretion of additional proteins

into the culture supernatant. PldA deficiency affected proteins

from multiple functional categories, such as the ABC (ATP-

binding cassette) transporter and associated substrate binding

proteins (ArtI, OppA, PotD, HisJ, PstS and YrbC) located in the

periplasm, which undergo conformational changes upon sub-

strate binding in the bacteria. Therefore, PldA may regulate the

physiological function of ABC transport systems. The culture

supernatant of DpldA strain also showed elevated levels of

BamC (NlpB) and BamD. In Gram-negative bacteria, the

BAM (b-barrel assembly machinery) complex is responsible

for the folding and insertion of b-barrel proteins into the OM

[40]. In Salmonella, BAM is also involved in the OMP biogenesis

and the expression of the T3SS [41]. Together, the loss of PldA
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would disrupt the bacterial OM through multiple mechanisms

and confer adverse effects on the virulence of the pathogen.

The important roles of PldA in stabilizing cell wall integ-

rity could explain the phenotypes we observed. In the

absence of OM protection, proteins in the periplasmic space

would become denatured or aggregate without causing cell

death (electronic supplementary material, figure S1b). Penicil-

lin-binding proteins (PBPs) are a group of proteins essential

for bacterial peptidoglycan biogenesis in the periplasm and

are binding targets of b-lactam antibiotics [42]. The dysregu-

lation in PBP conformation would lead to the reduced affinity

of PBPs for b-lactam antibiotics and consequently result in

resistance to these types of antibiotics in bacteria. The best-

characterized bacterial form containing deficient cell wall

architecture is termed the L-form and can be observed in

both Gram-positive and Gram-negative species. These bac-

teria are indeed osmotically sensitive and generally resistant

to b-lactam antibiotics, reflecting cell wall perturbations.

Additionally, in Listeria monocytogenes, stable L-forms exhibit

the dramatic attenuation of pathogenicity towards host cells

[43]. These L-form properties are similar to those we

observed in the S. flexneri DpldA mutant.

The observation that the DpldA strain displayed increased

viability upon acid stress might also reflect OM defects. Two

periplasmic proteins (HdeA and HdeB) were defined as key

factors in bacterial acid resistance [31–33]. These proteins

serve as chaperones and prevent the aggregation of periplas-

mic proteins exclusively below pH 3. We reasoned that the

denaturation status of periplasm proteins in the DpldA
strain caused by OM changes led to the upregulation of

hdeA and hdeB genes and thereby enhanced the acid resist-

ance capacity of the DpldA strain. The results of RNA-seq

validated this hypothesis, as the transcription levels of hdeA
and hdeB were significantly upregulated in the DpldA strain

(figure 4b).

To identify genes regulated by PldA, we investigated the

transcriptome profiles of S. flexneri WT and DpldA strains

using high-throughput RNA-seq technology. RNA-seq

results demonstrated that PldA greatly influences the tran-

scription levels of genes encoded in both the bacterial

genome and in the virulence plasmid. A number of viru-

lence-associated loci were downregulated in the DpldA
mutant, including ipaC, ipgC, ipaB, ipaA and the virulence

gene transcriptional activator virB. Given that the secretion

of these effectors was also downregulated in the DpldA
mutant, we speculate that the disorganized OM structure

and the altered periplasmic space of the DpldA mutant

might hinder the precise assembly and secretion of the

T3SS apparatus, and consequently the decreased invasion

ability. In addition, significant transcriptional changes were

observed for genes involved in various metabolic pathways.

According to the KEGG pathway analysis (http://www.

kegg.jp/), the most downregulated genes in the DpldA
mutant strain were associated with nitrogen metabolism

(nirB, nirC, nirD, narG, narH and narJ), carbon metabolism

( frdA, frdB, frdC and frdD) and osmotic response (osmC and

osmE). PldA deficiency also resulted in the downregulation

of OMP gene transcripts (ompA and ompX). By contrast,

http://www.kegg.jp/
http://www.kegg.jp/
http://www.kegg.jp/
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genes encoding acid resistance proteins (hdeB and hdeA) and

sulfur metabolism-related proteins (cysN, cysD, cysI and cysH)

were upregulated by PldA deficiency. For pathogens to effi-

ciently survive and replicate in the host cell, it is important

that these organisms coordinate their metabolic system to

adapt to the host cell physical conditions [44,45]. Further-

more, several OMPs regulated by PldA were associated

with pathogen virulence. In S. flexneri, OmpA plays a role

in protrusion formation and inter-cellular spreading [5]. In

conclusion, the expression of several genes encoding T3SS-

related proteins, metabolism-related proteins and OMPs are

disrupted in the pldA knockout mutant, consistent with the

finding that the DpldA strain exhibited decreased invasion

capacity into HeLa cells.

Gram-negative bacteria possess several secretion mechan-

isms for translocating virulence factors. A particularly

important mechanism is vesiculation, where the outer mem-

brane vesicles (OMVs) bud from the OM; these vesicles

contain the OM and entrapped periplasmic contents [46].

Various OMPs were observed in the OMV proteomes from

bacteria, such as Pasteurella multocida [47] and Vibrio cholerae
[48]. Through proteomic analysis, PldA was detected in the

OMV of S. flexneri [49]. Using a TEM-1 fusion PldA and con-

focal microscopy observation, we determined that PldA is

delivered into HeLa cell cytosol in the presence of functional

T3SS after bacterial internalization. As PldA is not a T3SS

effector but is abundantly expressed intracellularly [29], it is

possible that PldA may be induced for proper membrane

organization in intracellular conditions and/or delivered

through additional mechanisms during the intracellular

growth of Shigella. This latter phenomenon might be accom-

plished via OMV production. In Legionella pneumophila, the

secreted effector VipD with phospholipase A1 activity

binds Rab5 and Rab22 in host cell endosomes and conse-

quently protects the bacteria from endosomal fusion [50,51].

Therefore, following infection, the PldA from S. flexneri may

also participate in the interaction between the bacteria and

the host cell. Future work is needed to elucidate how PldA

interacts with the host factors within the cell cytoplasm.

The phospholipase A proteins are widely distributed in

species ranging from bacteria to mammals [39]. Hence, the

potential roles of PldA protein in both prokaryotic and eukary-

otic cells are intriguing. In prokaryotic cells, PldA is required

for stabilizing the bacterial cell wall structure. The loss of

this protein in the OM of S. flexneri results in dysregulated bac-

terial morphology, cytoplasmic content leakage, alteration of

periplasmic space and, eventually, the attenuation of patho-

genicity. However, PldA might also interact with eukaryotic

host cells in a similar manner as its counterparts in Serratia
spp. or Y. enterocolitica [39]. Indeed, PldA is present in the

OMVs of S. flexneri [49], and the expression level of this protein

is greatly elevated after S. flexneri internalizes into epithelial

cells [29]. These findings suggest that PldA may also be func-

tional in mediating bacterial pathogenicity.
4. Material and methods
4.1. Bacterial strains, plasmids and growth conditions
Bacterial strains and plasmids used in this study and their rel-

evant characteristics are listed in the electronic supplementary

material, table S1. All strains were routinely cultured at 378C
in Tryptic Soy Broth (TSB) and Luria-Bertani (LB) medium

(for S. flexneri and E. coli, respectively). LBG medium (buffered

LB medium containing 0.4% glucose) was used in the acid

resistance assay. Antibiotic supplements were used at the

following concentrations: 25 mg ml21 chloramphenicol for

S. flexneri (except for the antibiotic sensitivity assay, in which

the appropriate antibiotics were diluted to the indicated con-

centrations), and 25 mg ml21 chloramphenicol, 100 mg ml21

ampicillin and 25 mg ml21 kanamycin for E. coli. Plasmid

pKO3 was used to construct S. flexneri pldA and pldA&spa47
deletion mutants as described previously [52]. In-frame chro-

mosomal deletion of pldA and spa47 genes was constructed

according to the pKO3 gene replacement protocol.
4.2. DNA manipulation and plasmid construction
Standard protocols were used for PCR amplification and for bac-

terial transformation as described [53]. DNA amplification was

carried out using Q5 high-fidelity DNA polymerase (New Eng-

land Biolabs). Escherichia coli strain DH5a was used for cloning;

pldA gene was amplified from S. flexneri 2a str. 301 genome,

cloned into pVTRA’ expression vector with a 30 hexahistidine

tag for complementation expression. For the construction of

pldA–gfp or pldA–bla, amplicons of pldA, gfp and bla were gener-

ated and overlap PCR was applied to produce the recombinant

pldA–gfp or pldA–bla fragment ( pldA in 50 ends). The products

were then ligated into the pVTRA’ vector for expression.
4.3. SDS-EDTA permeabilization assay
Experiments were carried out as described previously [54].

Briefly, bacterial cells from overnight culture were sub-

inoculated into TSB broth and grown to exponential phase.

Cells were subjected to treatments with 1.5 mM EDTA for

20 min at 378C in the microtitre plate wells. The wells were

pre-loaded with 0.5% SDS or buffer only controls. Turbidity of

the cell suspensions was monitored with a microplate reader.
4.4. Antibiotic sensitivity assay
After overnight (20 h) growth in the TSB medium, cultures of

S. flexneri WT and DpldA strains were sub-cultured and

grown with aeration at 200 r.p.m. When grown to exponential

phase (OD600 � 0.5), cultures were diluted 1 : 200 and added

into the TSB media with titrated antibiotics in 96-well plates.

The cultures were then grown at 378C without shaking.

OD600 was recorded after 24 h growth.
4.5. Acid resistance assay
After overnight (20 h) growth in the LBG medium (pH 7.0),

cultures of S. flexneri WT and DpldA strains were sub-cultured

and grown with aeration at 200 r.p.m. When grown to expo-

nential phase an aliquot of the culture was diluted 1 : 100 into

the LBG medium at the indicated pH and incubated at 378C
for 20 or 40 min. The cells were diluted in the LB medium,

plated on LB agar and incubated at 378C for 15 h before

colony counting. As a control, the overnight culture grown

at regular pH was diluted in LB medium, plated on LB

agar and incubated at 378C for 15 h. Colonies were counted

to calculate the percentage survival of S. flexneri.
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4.6. Cell invasion assays
HeLa cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM, Thermo Scientific) supplemented with 10%

fetal bovine serum (FBS) on 12-well plates. When grown to

70% confluence at 378C (5% CO2), cells were washed with sterile

PBS and infected with the indicated S. flexneri strains from expo-

nential phase culture at a multiplicity of infection (MOI) of 50 : 1.

Following infection for 30 min, HeLa cells were washed and

treated with 50 mg ml21 gentamicin for 2 h. Finally, cells were

permeabilized with 0.1% Triton X-100 on ice for 30 min. After

serial dilution, CFUs were counted to determine the number

of internalized bacteria in the epithelial cells.

4.7. Confocal microscopy
HeLacells were cultured overnight in DMEM with 10% FBS. Fol-

lowing bacterial infection for 30 min, cells were washed, treated

with gentamicin, fixed with 4% paraformaldehyde, stained with

DAPI or Hoechst (Sigma) and examined by microscopy. Images

were captured using a Leica TCS SP5 confocal microscopy.

4.8. Outer membrane purification
Overnight cultures of S. flexneri WT and DpldA strains were

sub-cultured and grown to exponential phase with aeration

at 200 r.p.m. in 10 ml TSB medium. Bacteria were then har-

vested (4000 r.p.m. centrifugation for 10 min), and the OM

was purified according to the protocol previous described [55].

4.9. Mass spectrometric analysis
Overnight cultures of S. flexneri WTandDpldA strains were sub-

cultured into the TSB medium, and grown to exponential

phase. Cultures were pelleted by centrifugation at 4000g for

10 min. To prepare the Congo Red induced supernatant,

0.003% Congo Red was added when grown to exponential

phase and culture was harvested after 1 h induction. The cul-

ture supernatants were passed through 0.2 mm filters to

eliminate the residual S. flexneri, and the extracellular proteins

were collected by precipitation with 10% trichloroacetic acid.

In-gel protein digestion and MS analysis were completed

according to the protocol as described previously [56]. An

LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scienti-

fic, Germany) was used for MS/MS spectra analysis. The raw

data from the analysis were processed using PROTEOME

DISCOVERER software (v. 1.4.1.12; Thermo Fisher Scientific,

Waltham, MA, USA) with two different search algorithms,

MASCOT (v. 2.3.02, Matrix Sciences, UK) and SEQUEST

(Thermo Fisher Scientific). The MS/MS spectra were searched

against the Shigella protein database from NCBI (RefSeq

NC_004337.2 and NC_004851.1). All of the raw mass spectra

files and merged peak list files in this study have been depos-

ited into the publicly accessible database PeptideAtlas and

are available under dataset Identifier PASS00838. The subcellu-

lar locations of the identified proteins were predicted using the

bioinformatic algorithms PSORTb, SignalP and TMHMM and

their functional annotations categorized according to the

KEGG pathway analysis (http://www.kegg.jp/).

4.10. RNA sequencing (RNA-seq) and data analysis
Total RNA was extracted from exponential cultures of

S. flexneri WT and DpldA strains. RNA was isolated with the
RNeasy Mini kit (Qiagen) and eluted with 20 ml of RNAse-

free water. DNA was removed by TURBO DNA-free Kit

(Ambion), and rRNA depleted by Bacteria Ribo-Zero rRNA

removal kit (Epicentre) according to the manufacturer’s

instructions. Double strand cDNA was synthesized using the

PrimeScript Double-Strand cDNA Synthesis Kit (TaKaRa).

DNA quantity and quality was assessed by Agilent 2100 Bio-

Analyzer. High-throughput sequencing was performed using

an Illumina HiSeq 2500 sequencer (single end, 101 bp read

length). Samples were prepared and sequenced in duplicate.

All of the raw data have been deposited in the Sequence

Read Archive (SRP071559). Sequencing data are summarized

in the electronic supplementary material, table S4.

4.11. Quantitative RT-PCR analysis
Total RNA was extracted and DNA removed by TURBO

DNA-free Kit (Ambion), and cDNA was reverse-transcribed

using SuperScript VILO Master Mix (Invitrogen). Quantitat-

ive RT-PCR was performed using Power SYBR Green PCR

Master Mix (Applied Biosystems) and the values normalized

to 16S rRNA. RNA expression was quantitatively measured

using the Livak (22DDCT) method.

4.12. Growth curve analysis
Overnight cultures of S. flexneri WT and DpldA strains were

sub-cultured into the TSB medium and grown with aeration

at 200 r.p.m. OD600 was recorded at different time points

to evaluate growth rate. At each time point, the bacterial cul-

ture was serially diluted in TSB and spread onto a TSA plate

for viable colony number counting.

4.13. Cell adhesion and cytotoxicity assays
HeLa cells were used in both assays. Adhesion assays were per-

formed using a procedure similar to the cell invasion assay;

however, gentamicin incubation was omitted. For cytotoxicity

assays, cells were cultured on 96-well plates in DMEM medium

deprived of sodium pyruvate. After 1 h infection with the indi-

cated bacteria at an MOI of 50 : 1, the cytotoxicity was

measured using CytoTox-ONE homogeneous membrane

integrity assay kit (Promega).

4.14. Translocation assay
HeLa cells were grown on 12-well plates to 70% confluence,

washed twice with PBS, then infected with the bacterial strains

expressing PldA–Bla fusion proteins (at an MOI of 50 : 1) for

30 min. After infection, cells were washed twice with HBSS

and treated with CCF2-AM (Invitrogen) for 90 min at room

temperature. Fluorescence was quantified using a microtitre

plate reader following excitation at 405 nm according to the

manufacturer’s instructions. Translocation was expressed as a

ratio of signals obtained from cleaved (460 nm, blue) and

uncleaved (530 nm, green) fusion proteins. Translocation was

further assessed using a Nikon fluorescence microscope.

4.15. Bioinformatic analysis
Bacterial homologues of PldA were extracted from the non-

redundant protein database (NR) using the position-specific

iterated BLAST algorithm (PSI-BLAST) available from the

NCBI website [57]. The PldA sequence of S. flexneri 2a str.

http://www.kegg.jp/
http://www.kegg.jp/
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301 (GenBank accession: AAN45334.1) was used as the initial

query for PSI-BLAST. The iterated searches were limited to

Bacteria domain with a maximum number of hits to 10 000

per round. A total of 3599 homologues were retrieved by

PSI-BLAST with a statistical significance threshold of 0.005

before the iterations reported no additional valid hits. Then

all PldA homologues were downloaded and screened to

exclude sequences without explicit taxonomic information

(i.e. those from uncultured or environmental samples). For

brevity, only one PldA homologue of each bacterial species

(the best hit) was kept for further analysis. Two well-studied

secreted phospholipase A proteins from Yersinia enterocolitica
and Serratia proteamaculans were initially collected based on

the original literature [34,35,37]. Representative homologues

of the two secreted phospholipase A proteins from other bac-

teria species were manually selected based on the BLASTP

searches amongst the NR databases. The final bacterial

phospholipase A dataset includes 828 PldA homologues

and 30 secreted phospholipase A proteins. Multiple sequence

alignment was conducted with MUSCLE 3.8 [58]. Maximum-

likelihood phylogenetic tree was then inferred from the

alignment using FASTTREE 2.1 with default parameters [59].

Sequence logos for the catalytic motifs of phospholipase A

were produced by WEBLOGO 2 [60].
4.16. Statistical analysis
A two-tailed Student’s t-test was used to confirm statistical

significance at 95% confidence between the two samples com-

pared. A p-value of less than 0.05 was considered to be significant.
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