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Abstract

In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure,
pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when
interpreting results of this kind is that the observed structural properties are present to enable the brain’s function.
However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and
metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain’s
connectivity, which must be characterized in order to understand the true relationship between brain structure and
function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the
brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its
connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-
resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length
preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation
markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced
surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our
results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly
segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club
structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially
attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical
network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain.
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Introduction

The physical brain is a network of extraordinary complexity on

multiple spatial scales. On the macroscopic scale, regions are

connected by a large number of white-matter projections that form

an intricate system: the connectome [1]. Understanding the prin-

ciples of the large-scale architecture of the brain, how this archi-

tecture shapes brain dynamics to in turn support brain function

and human behaviour, is a central challenge for contemporary

neuroscience [2,3].

Recent advances in non-invasive anatomical [4–6] and func-

tional [7] imaging techniques, along with the development of

automated, high throughput post-processing methods [8] now

allow the application of complex network science as a principled

and systematic framework for studying the connectome [2,3].

Accordingly, numerous principles of organisation in the large-scale

structural anatomy of the brain have been characterized, including

small-world properties [9], hierarchical architecture [10], modular

structure [11], the existence of a strong structural core [12] and a

so-called ‘rich-club’ organisation [13]. Exposing both the struc-

tural origin and functional relevance of these properties of the

human connectome is an essential, but difficult step towards a

deeper understanding of the large-scale organisation of the brain.

A common approach to evaluating the significance of a par-

ticular network property, observed in a particular network, is via

surrogate or null-hypothesis comparison [14,15]. In this approach,

a set of surrogate networks represents a null-hypothesis for the

target network property by preserving some a priori chosen

properties of the network under investigation, while randomizing

other network properties. Quantitative comparison of the original

network with the ensemble of surrogate networks allows drawing

conclusions on the significance of the target property of the net-

work with respect to those properties preserved in the ensemble.

Therefore, in its essence, surrogate network comparison allows

testing if some, usually very elementary, properties of the target

network induce, or at least contribute to, the expression of some of

its more global and complex network properties.

When choosing appropriate surrogate networks, the most

widely used null-hypothesis properties are size (number of nodes),

connection density (number of edges) and degree distribution (the

number of connections of each node). This approach – which we

term the ‘random surrogate’ approach – has illuminated the topological
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investigation of many abstract, spatially-unembedded networks,

including the World Wide Web, semantic networks, food-webs, and

gene-regulatory and metabolic networks [14,16]. It is also routinely

applied in the analysis of brain networks in order to demonstrate

that global, ‘higher order’ network property of brain maps, such as

modularity or ‘small-worldness’, cannot be attributed solely to these

basic network properties [10,11,17].

Physical networks like the brain are, however, embedded into

physical space and are therefore subject to additional constraints

deriving from the costs of developing and maintaining connections

[18] which are not conserved by random surrogates. Random

surrogates therefore represent a rather loosely constrained null-

hypothesis set for physical networks. Specifically, they tend to

possess a large number of long-range connections because they

‘smooth’ local inhomogeneities of physical networks. They thus

form highly and rather homogeneously integrated networks, while

at the same time lacking the high topological segregation (locally

dense, globally sparse inter-connectivity) associated with predom-

inantly local connectivity, which is one of the most prominent

features of brain networks [19]. When compared against random

surrogates, then, certain properties of brain networks may appear

to be highly distinctive even though they can be attributed to the

spatial constraints of its embedding into the physical world (wiring

cost) and/or of the economic pressure of minimising the number

of the energetically expensive long-range connections (metabolic

cost) [18].

To address this problem, so-called ‘lattice surrogates’ have been

introduced [15,20–22] to preserve (or rather increase) the high

segregation of brain networks. The motivation behind lattice

surrogates, originating from the Watts–Strogatz notion of ‘small-

worldness’ [23], was to represent a lattice-like, topologically over-

segregated (and thus under-integrated) surrogate network type, the

opposite of random surrogates in a sense, and to compare the

target network with these two extremes. This is reflected in the rule

commonly used to generate lattice surrogates from the connectiv-

ity of a brain network (during a ‘random’ network rewiring

process, edge swaps are only made if the nonzero entries of the

resulting connectivity matrix are located closer to the main

diagonal [15,20]), which is only indirectly linked to physical

distance through some arbitrary spatial ordering of the network

nodes. For this reason, lattice surrogates are only partially

appropriate as a null-hypothesis network set for physical wiring

constraints of brain networks. Furthermore, lattice surrogates are

designed to reduce, rather than preserve, network connection

lengths thus further undermining their utility in assessing the

effects of wiring constraints on cortical network properties.

In this paper, we introduce two new classes of surrogates, spatial

surrogates and reduced surrogates, Like random surrogates, spatial

surrogates preserve network size, connection density, and degree

distribution, but (unlike random surrogates) they also preserve the

wiring length distribution of the target network. Reduced

surrogates are like spatial surrogates with the difference that they

do not preserve but actually reduce overall network wiring, in

similar way to traditional lattice surrogates, but in a spatially well-

defined and controlled manner. We reasoned that in virtue of

these properties, these surrogates provide improved baselines by

which to assess the extent to which a target network property can

be attributed to cortical wiring constraints [18].

This approach enables us to evaluate a number of prominent

findings regarding the structural properties of the connectome (see

Figure 1) with respect to the extent to which these properties are

preserved in the novel spatial surrogates as compared to random

and connection length optimised (reduced) surrogates. To ensure

robustness we perform these analyses on both weighted and

unweighted (binary), and on the full resolution (998 regions) as well

as on a lowered resolution (66 regions) version of the cortical

structural connectivity data set provided by Hagmann et al. [12].

Overall, the method allows us to distinguish those significant

network properties of the connectome that are derivable from its

predominantly local, spatially segregated connectivity (as indicated

when both the cortical network and its spatial and reduced

surrogates differ from random surrogates) from those that are the

consequences of some other, primarily not (or not only) spatial, but

potentially more functionally relevant organisation principle of

cortical connectivity (as indicated when the cortical network differs

from all of its surrogate groups).

Specifically, during the evaluation of each specific network

property, the logic of our surrogate analysis is the following (see

Table 1). We measure the expression of the network property in

the cortical network and every surrogate group by an appropriate

complex network metric. If all surrogate groups exhibit similar

metric indices to that of the cortex, then the basic network

properties preserved in all surrogates (the number of regions,

number of white-matter projections and regional degree distribu-

tion of the cortical network) appear to be sufficient for the

observed expression of the investigated network property. If,

however, all spatially constrained networks (cortical network,

spatial and reduced surrogates) exhibit similar values, but differ

from random surrogates, we reason that cortical wiring constraints

may account for the level of expression of that network property in

the cortical network. Additionally, if the cortical network is more

similar to spatial than to reduced surrogates, we reason that solely

the presence of long-range connections in the cortex may facilitate

the network property, irrespectively of the specific arrangement of

these connections in the cortex. If, however, the cortical network is

more similar to reduced than to spatial surrogates, then we reason

that the predominantly local (short-range) connectivity of the

cortex can account for the expression of the network property even

in the absence of long-range cortical connections (as indicated by

the similarity between the cortical network and reduced

surrogates). In addition, this case also indicates that the particular

Author Summary

Macroscopic regions in the grey matter of the human brain
are intricately connected by white-matter pathways,
forming the extremely complex network of the brain.
Analysing this brain network may provide us insights on
how anatomy enables brain function and, ultimately,
cognition and consciousness. Various important principles
of organization have indeed been consistently identified in
the brain’s structural connectivity, such as a small-world
and modular architecture. However, it is currently unclear
which of these principles are functionally relevant, and
which are merely the consequence of more basic
constraints of the brain, such as its three-dimensional
spatial embedding into the limited volume of the skull or
the high metabolic cost of long-range connections. In this
paper, we model what aspects of the structural organiza-
tion of the brain are affected by its wiring constraints by
assessing how far these aspects are preserved in brain-like
networks with varying spatial wiring constraints. We find
that all investigated features of brain organization also
appear in spatially constrained networks, but we also
discover that several of the features are more pronounced
in the brain than its wiring constraints alone would
necessitate. These findings suggest the functional rele-
vance of the ‘over-expressed’ properties of brain architec-
ture.
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arrangement of long-range cortical connections appears to be such

that it does not interfere with (strengthen or hinder) the expression

of the network property (as indicated by spatial surrogates, with

randomised long-range connections, being different from both the

cortical network and reduced surrogates). Finally, if the cortical

network differs from every surrogate ensemble, we reason that the

network property is specific to the particular connectivity of the

cortex, it cannot fully be attributed to the topological properties

and wiring constraints that are conserved in the surrogates, but

instead may be a more functionally relevant organisation feature

of cortical connectivity.

Methods

Cortical connectivity dataset
We use the cortical connectivity network of Hagmann et al. [12]

(Figure 2). This data was obtained by non-invasive tracing of

white-matter projections linking pairs of cortical sites in the brains

of five human subjects, combining magnetic resonance imaging

(MRI) and diffusion spectrum imaging (DSI) techniques, semi-

automated brain parcellation, diffusion tractography and appro-

priate post-processing methods. The individual connectivity

networks of the five subjects were aggregated into a single network

in order to reduce the impact of inter-subject variability. The

resulting dataset is a compact network representation of cortical

grey matter regions as network nodes, and their connecting white-

matter fibre bundles as edges. For a detailed description of the

acquisition procedure and validation test results of the procedure,

see the original paper and [8].

By the nature of its processing pipeline, the network consists of a

two-level hierarchical parcellation of the cortex: it is composed of

66 anatomical regions at the higher level, and of 998 regions of

interest (ROIs) at the lower level. Each node on the level of ROIs

represents an area of the cortical surface of approximately 1.5 cm2

size (region), and there are a total of 17,865 undirected weighted

connections between these regions. These figures result in a fairly

Figure 1. Illustration of network organisation principles. (A) Modular structure composed of a set of highly intra-connected but sparsely inter-
connected group of regions (modules, clusters or communities). (B) A three level hierarchical structure composed of a central (high degree – low
clustering), an intermediate (medium degree – medium clustering) and a peripheral layer (low degree – high clustering). (C) Two core structures of a
network: rich-club (highest degree regions) and s-core (most densely intra-connected regions). Note that while the two structures are not necessarily
equivalent, they are likely to possess significant overlap.
doi:10.1371/journal.pcbi.1003557.g001

Table 1. Interpretation of analysis results for a generic network property for each configuration of relative metric indices between
the cortical network and its surrogates.

Relations between cortical and surrogate measure indices Interpretation

MC<MR<MS<Mrnd P is present equally in all surrogates and in the target network. Its expression can therefore be
attributed to basic network properties, namely the number of regions, number of white-matter
projections and regional degree distribution of the cortical network.

MC<MS<MR Mrnd P may largely be attributed to cortical wiring constraints alone.

MC<MS MR Mrnd P may largely be attributed to cortical wiring constraints and to the mere presence of sparse
long-range cortical connections, irrespectively of their specific arrangement.

MC<MR MS Mrnd P may largely be attributed to cortical wiring constraints (MC<MR) and to the specific
arrangement of long-range cortical connections which do not interfere with (strengthen or
hinder) the expression of P (MC MS).

MC MR MS Mrnd P cannot be fully accounted for in terms of basic topological cortical properties and cortical
wiring constraints, and hence determined by other evolutionary pressures, maybe because it is
more functionally relevant.

P: a generic network property; M: a complex network metric measuring the expression of P; MC: metric value of cortical network; MR, MS, Mrnd: mean metric value of
reduced, spatial and random surrogates, respectively.
doi:10.1371/journal.pcbi.1003557.t001
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sparse, 3.6% connection density network on the high-resolution

cortical parcellation (i.e., on the lower hierarchical level of the

segmentation). For the low-resolution network, similarly to [23],

we calculate the strength of the connection between every two-

region pair by summing the weights of all the high-resolution

connections linking the ROIs that compose the two cortical

regions. This method results in 574 aggregated white-matter fibre

bundles between the 66 regions on the low-resolution parcellation,

which increases the connection density of the low-resolution

cortical connectivity to 26.8%.

While a few studies on high-resolution structural connectivity

networks have appeared recently [e.g., 12,24,25], many earlier

results, in particular those based on the data set used here, have

relied on low-resolution data [e.g., 26,27,28]. Although focussing

on low-resolution data allows comparing to earlier low-resolution

studies on other brain networks [e.g., 11,20], utilizing the

information afforded by the available higher resolution connec-

tivity may influence the outcome of complex network analysis

[29,30] and has the benefit of maximizing usage of the available

information. Here, we primarily analyse the high-resolution, 998-

node anatomical connectivity network (see Figure 2), but we also

compare to lower resolution results where appropriate.

Surrogate network generation
We employ three types of null-hypothesis networks, namely

random, spatial and reduced surrogate networks. All three surrogate

types preserve the size (number of nodes), connection density

(number of edges) and degree distribution (the number of

connections of each node) of the cortical network, and differ from

each other only in their physical wiring constraints: random

surrogates are spatially non-constrained, spatial surrogates pre-

serve the total wiring length of the cortical regions (and thus that of

the entire cortical network globally), and reduced surrogates

possess reduced wiring lengths.

All three types of surrogate networks were generated by the

widely applied iterative rewiring algorithm [14,31], the basic

version of which proceeds as follows: Starting from the original

cortical network, in each iteration two connections, (r1, r2) and (r3,

r4), are randomly chosen (where ri refers to region i). After ensuring

that no self-connections or parallel links (multiple connections

between two regions) would be created, the two original

connections are swapped to (r1, r3) and (r2, r4).

The above basic rewiring algorithm is sufficient to generate

random surrogate networks. For the spatially constrained

surrogate network sets, we incorporated the following additional

rewiring conditions: each rewiring step is only executed if the

resulting total connection length of every region (i) does not

exceed that of the region in the original cortical network (for

spatial surrogates), or (ii) is reduced in every step (for reduced

surrogates). Because the complex curving trajectories of pathways

cannot be preserved during rewiring, connection lengths are

approximated by Euclidean distances between the positions of the

region-pairs, for both cortical and surrogate networks. In the case

of random and spatial surrogates, the procedure is terminated

when each connection has been rewired 20 times on average

(20 * ne/2 = 178650 connection swaps). For the most constrained

reduced surrogates this stopping criterion is too severe because, as

the algorithm progresses, progressively fewer rewiring operations

with connection length reductions can be found. As a compro-

mise, for this surrogate we chose to rewire each connection only

once on average (ne/2 = 8932 connection swaps), resulting in a

reasonably diverse (i.e., not overly self-similar) and yet well-

optimised set of reduced surrogate networks (see Results). On both

resolutions, we generated n = 20 networks for all three surrogate

types.

Assessing topological similarity
To assess the topological similarity between the cortical

connectivity network and its surrogates, we calculated the overlap

between the set of connections of the cortical network and the

surrogate networks, both in binary and weighted fashion. Spe-

cifically, we calculated the binary and weighted overlap between

the cortical network C and each of its surrogate S using a modified

version of the Sørensen similarity quotient QS [32], which

measures the similarity or relative overlap between two sets by the

quotient of their intersection and union. We define the binary

version of the similarity measure QSb as:

QSb C,Sð Þ~2
Cb\Sb
�� ��
Cbj jz Sbj j~

Cb\Sb
�� ��

Cbj j ~

P
i,j[N

Cb
ijS

b
ijP

i,j[N

Cb
ij

ð1Þ

where N is the (identical) set of all nodes in networks C and S, and

Cb (Sb) is the binarized connectivity matrix of C (S) with Cb
ij (Sb

ij)

being 1 if there is a link between nodes i and j in C (S) and 0

otherwise. Note that the number of connections in C and S, |Cb|

and |Sb|, are equal, and that the product Cb
ij Sb

ij is 1 if there is a

connection between node i and j both in C and S, and 0 otherwise.

Similarly, we define the weighted similarity quotient QSw as:

QSw C,Sð Þ~2
C\Sj j

Cj jz Sj j~
C\Sj j

Cj j ~

P
i,j[N

min Cij ,Sij

� �
P

i,j[N

Cij

ð2Þ

where Cij and Sij are the connection weights between regions i and

j in networks C and S, respectively (0 if the two regions are not

connected).

QSb and QSw measure the relative similarity between the

connection sets of two networks C and S that are defined on the

same set of regions. Both QSb and QSw are normalised similarity

quotients taking the value 0 if the two networks share no common

connection (minimal similarity), and 1 if the networks are

equivalent, that is, they are composed of exactly the same set of

binary/weighted connections (maximal similarity). We use both

measures because they assess network similarity of two networks in

a complementary manner: the overlap in the binary layout of the

two networks can only be assessed faithfully by QSb (if the

networks are different only in a small number of very high weight

links, QSw is already low, despite the high binary overlap), while

QSw accounts for the importance (weight) of the connections (if the

networks are different only in a number of very low weight links,

QSb is lower, despite the high weighted overlap).

Figure 2. Structural connectivity dataset. Visualization of the structural connectivity dataset [12] used in this study, illustrated using an abstract
radial layout (A), and on coronal and horizontal projections (B). In (A) the 998 considered cortical regions are arranged on the five outermost circles
and grouped by main anatomical structures (see sectors at perimeter). Black curved lines illustrate connections between cortical regions, ‘bundled’
together along the shared portion of their paths in the abstract layout (for a general introduction of the layout, see [97]). In (B) the brain regions are
shown in coronal and horizontal projections of the cortical anatomy, colour coded as in (A) according to large anatomical structures.
doi:10.1371/journal.pcbi.1003557.g002
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Assessing spatial similarity
We assess spatial network similarity between a network and its

surrogates as the average spatial replacement of the connections of

each region r, that is, the average change in the positions of all

topologically adjacent (linked) regions of r (its topological neigh-

bourhood) in the original and surrogate networks. The theoret-

ically optimal solution for measuring such spatial displacement of

the connections would require finding the ‘best matching pairing’

between the original and the rewired neighbour sets of r, i.e., the

pairing in which the sum of distances between the (original,

rewired) region-pairs is minimal. An exhaustive search for this

optimal pairing is however computationally infeasible (given that

the regions on average possess 35 connections, a lower estimate on

the average number of pairings to check per region is 35!<1040),

therefore we developed and utilized the following algorithm to find

an approximation of the optimal pairing.

Given the set of the original topological neighbours of region r

in the cortical connectivity, L = [l1, l2, …], and the set of r’s

rewired neighbours in the surrogate network, M = [m1, m2, …],

we calculate the pair-wise distances D(L,M) = [d(l1,m1), d(l1,m2),

…, d(l2,m1), d(l2,m2), …] between all element-pairs of the two sets.

Then we sort D(L,M) ascending (from the closest to the farthest

original-rewired neighbour pairs), and, while iteratively going

through the region-pairs of this sorted list, we put the current (li, mj)

pair into pairing list P if and only if neither li nor mj is currently

in P.

Although the resultant pairing P provided by the ‘greedy

algorithm’ above is not guaranteed to be the optimal pairing Popt

between L and M, i.e., the one having the lowest sum of (original,

rewired) pair-wise distances, it is expected to provide a reasonable

estimate on Popt given the close to homogeneous spatial distri-

bution of the regions of the cortical network on the spheroid

surface of the cortex [12].

Having obtained P for every cortical region r, we calculate the

global relative spatial displacement D between the cortical con-

nectivity C and its surrogate network S as:

D C,Sð Þ~ 1

Nj j
X
r[N

Dr C,Sð Þ

~
1

Nj j
X
r[N

1

Pr C,Sð Þj j
X

l,mð Þ[Pr C,Sð Þ

d l,mð Þ
d r,lð Þ

0
@

1
A ð3Þ

where N is the set of all regions in the networks (identical in C and

S), Dr(C,S) is the average displacement of r’s neighbours in C and

S, Pr(C,S) contains the (original, rewired) neighbour-pairs of r for

C and S, and d(a,b) is the spatial distance between regions a and b.

With the above definition, D measures the distances between the

original and the rewired neighbours of r (connection displacement)

normalised by the distance of the original (cortical) neighbour from

r, averaged over all connections and all cortical regions. D = 0 if

there is no spatial displacement between the two networks,

meaning that they are (both topologically and spatially) identical.

A low D value indicates that there is only minor spatial

displacement in the neighbour sets of the regions on average,

while higher D values indicate a greater neighbourhood displace-

ment, hence a larger difference in the spatial layout between the

cortical connectivity and its surrogate network. Generally, the

upper limit of D depends on the particular spatial distribution of

the nodes and edges of the original network as well as of the wiring

constraints of the rewired network in a complex manner. As a

simplifying rule for the sparsely and predominantly locally

connected (high-resolution) cortical network, however, we can

regard D values on the order of 1 as indicators of substantial

spatial neighbourhood displacement.

Global efficiency
A basic measure of network integration, global network effi-

ciency [33] is the average of the inverse of the shortest path lengths

dij between a node i and every other network node j, averaged over

all network nodes:

E~
1

n

X
i[N

Ei~
1

n

X
i[N

P
j[N,j=i

dw
ij

� �{1

n{1
ð4Þ

where Ei is the efficiency of node i, n is the number of nodes, and

dw
ij is the weighted shortest path length between nodes i and j (the

minimal of the weighted sums of constituent edges along each path

between i and j, where connection weights are the reciprocal of

their strength). High global efficiency implies that, on average,

nodes require fewer intermediate steps along stronger (higher

weight) edges to reach other nodes; therefore, networks with

higher global efficiency possess greater potential for efficient

internal information exchange and integration. The advantage of

efficiency as a measure for integration over the more traditional

measure of the mean shortest path length [15] is that efficiency can

be computed for networks with multiple components, and gen-

erally is a more balanced measure due to the fact that the mean

shortest path length can be strongly biased by the presence of only

a few, very long paths [34].

Clustering coefficient
A basic metric of network segregation, the clustering coefficient

[23] is the fraction of triangles around a node (the proportion of

the node’s topological neighbour pairs that are connected with

each other), averaged over all network nodes. The weighted

clustering coefficient [35], which we use in this study on weighted

networks, is defined as follows:

C~
1

n

X
i[N

Ci~
1

n

X
i[N

2tw
i

ki ki{1ð Þ~
1

n

X
i[N

P
j,h[N

wijwihwjh

� �1=3

ki ki{1ð Þ ð5Þ

where Ci is the clustering coefficient of node i, ki is the degree of i,

ti
w is the (weighted) geometric mean of triangles around i, wij is the

(normalised) connection weight between regions i and j (0 if i and j

are not linked). The clustering coefficient of a node is high (1) if

many (all) of its neighbours are also directly connected pair-wise

(by strength 1 connections in the weighted version of the measure),

and it is 0 if none of its neighbour-pairs are directly connected.

The clustering coefficient hence measures the (topologically) local

density of connectivity of a network.

Small-world index
Informally, a small-world network is a highly segregated (i.e.,

preferentially locally connected) and yet relatively highly integrat-

ed (i.e., easily traversable) network [23]. For the quantitative

assessment of small-worldness, the network’s high integration is

usually translated to relatively short path lengths, while strong

segregation is measured by a high level of clustering [36]. Among

the several formulae developed to assess the degree of small-

worldness of complex networks (e.g. [33,37]), we chose an altered

version of the Humphries–Gurney small-worldness index [37],

modified in the following way:

Influence of Wiring Cost on Cortical Connectivity
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SW~
C

Crnd

E

Ernd

ð6Þ

where C and Crnd are the clustering coefficient of the network and

its random surrogates, while E and Ernd are their global efficiencies,

respectively [15]. We note that Humphries and Gurney in [37] use

average shortest path lengths instead of efficiency; however we

prefer efficiency for the reasons stated above. A network is then said

to be small-world if its clustering coefficient is larger than those of its

random surrogates (C&Crnd), while their efficiencies (shortest path

lengths) are comparable (E<Ernd), resulting in SW&1 [37].

Measuring network hierarchy
Using the intuition that high degree nodes should occupy a

topologically central position in a hierarchical network as a starting

point, Ravasz and Barabási introduced the simple but elegant hier-

archy coefficient b for assessing hierarchical architecture in scale-

free networks [38]. Noticing a distinctively exponential relationship

between node degrees and clustering coefficients for various syn-

thetic and real-world scale-free networks, they proposed that the

exponent b of this relationship quantifies the tendency of high degree

nodes to be linked to a large but sparsely intra-connected neighbour

set (hence exhibiting low clustering) and thus effectively serving as

connector nodes between segregated parts of the network [38].

Unfortunately, the human cortical network under study, and

therefore also its degree-distribution preserving surrogates, exhibit

an exponential, rather than scale-free degree distribution [12], and

the node degree – clustering relationship does not show a clear

exponential shape, so that the b index of Ravasz and Barabási [38]

cannot be applied directly. However, their basic idea remains valid

irrespective of the specific shape of the functional degree to

clustering relationship. Therefore, we here characterize hierarchical

organisation by directly observing the degree to clustering relation-

ship in the cortical network and in its surrogates. Specifically, in

sparsely connected and locally highly clustered networks, (of the sort

studied here, see Results), high degree nodes of a network that possess

a lower than average clustering coefficient are typically in a position

to connect segregated parts of the network, suggesting a hierarchical

element of the architecture with these high degree nodes in its centre

(see Figure 1B). In contrast, equal or higher than average clustering

coefficients of high degree nodes indicate more homogeneous

architectures and the lack of the hierarchical organisation pattern

investigated in [38]. We note that the specific kind of topological

organisation described above is of course not the only conceivable

network architecture that exhibits hierarchical attributes. It is

nevertheless the one that has previously been discovered in many

sparsely connected, but highly clustered and modular real-world

networks [38], making it a good candidate to test for here.

Module partition detection
The modularity index Q, proposed by Newman [39], has

proved to be a highly accurate and powerful indicator of the

modularity strength of a given partitioning of a complex network

[16,40]. Given a set of node groups (modules or communities) M,

that fully partition the network without overlaps, the modularity

index Q of that partition is given by

Q~
X
u[M

Qu~
X
u[M

euu{
X
v[M

euv
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where Qu is the modularity index of module u, euv is the proportion

of all weighted edges wij between modules u and v in the network,

lw is the sum of all weights in the network, and ki
w is the sum of all

connection weights of node i.

Numerous algorithms have been developed to recover the

modular structure of complex networks utilising Q as a ‘fitness’

measure to be optimised by some means (for reviews, see [16,40]).

In this study, we use the simple and elegant spectral algorithm

developed by Newman [41]. Starting from the entire network as a

single module, this algorithm iteratively splits each module into

two, at each step finding the optimal bipartition by utilising a so-

called ‘modularity matrix’ derived from the network’s connectivity

matrix. The leading eigenvector of the modularity matrix

determines the node composition of the two sub-modules of each

module to be split. The algorithm stops when no more increase in

the global modularity index Q can be achieved by any additional

split [41]. Along with its high accuracy, Newman’s module detec-

tion procedure has the additional advantages of being a divisive,

deterministic and generalisable method with low computational

cost. See [41] for a detailed description of its implementation.

Consistency of module partitions
We measured the consistency of the cortical module partition in

surrogate networks with the scaled inclusivity index [42]. Application

of this measure capitalized on the fact that the cortical network

and its surrogates are defined on the same set of nodes (cortical

regions) and differ only in their connection sets. Additionally,

scaled inclusivity has the advantage of making no assumptions on

the investigated partitions, and is thus generically applicable even

on partition-pairs which differ in the number and sizes of modules

they contain. For other pair-counting, cluster-matching, and

information-theoretic techniques applied to compare module

(community) structures of different networks, see [43–45].

The calculation of the scaled inclusivity index proceeded as

follows. First, the individual module partitions of the cortical and

surrogate networks were identified independently by Newman’s

spectral algorithm (introduced above). Then, the cortical module

partition QC, composed of m modules, was taken as a reference

partition, and its match with the partition QSi of each network i of

surrogate group S, composed of n modules, was assessed by

calculating the n6m module-by-module similarity matrix XiC,

which (p,q)-th element is calculated as:

X iC p,qð Þ~
QSi pð Þ\QC qð Þ
�� ��

QSi pð Þ
QSi pð Þ\QC qð Þ
�� ��

QC pð Þ ð8Þ

where QSi(p) is the set of nodes (regions) belonging to the p-th

module in QSi and QC(q) is the set of nodes belonging to the q-th

module in QC. The resulting values range from 0 to 1, where

XiC(p,q) = 0 indicates zero overlap between the modules p and q

(i.e., they do not share any node), and 1 indicates that the two

modules are identical (i.e., they are composed of the same set of

nodes).

After calculating the matrix X for all networks in a surrogate

group, the scaled inclusivity index SI of each cortical region is

calculated as the mean of the similarity indices XiC(p,q) between

all modules QSi(p) and QC(q) that contain the region, averaged

over all surrogate networks i. Thus, scaled inclusivity measures

how consistently a region is classified in each surrogate group,

based on how well its cortical modules match with its surrogate

modules, on average. We stress that SI is intended as a generically

applicable metric to measure the degree of similarity between the module

classification of network nodes, and it does not aim to accurately
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measure the actual magnitude of ‘overlap’ between the partitions

(see [42] and Eq. 8 above).

K-core/s-core detection
The ‘core’ of a network is usually determined by an iterative

peeling algorithm. These algorithms, at each step, remove (‘peel

off’) a set of ‘shell’ or ‘crust’ nodes, in order to progressively focus

on the more ‘centralised’ nodes. Centralisation in these procedures

is assessed by a specific ‘coreness condition’, as described below.

To find the core structures of binary and weighted networks, we

used the k-core and s-core decomposition methods, respectively.

The k-core of the network [46], for a given degree k, is the maximal

set of nodes that are connected to at least k other nodes in the core.

The k-coreness index of a node is then the highest degree k for

which the node is still a member of the k-core. Similarly, the

weighted variant of the k-core, the s-core of the network [12] is the

group of nodes in which each node has a summed connection

strength of at least s towards the rest of the s-core (i.e., the sum of

the weights of its intra-core connections is not less than s). For

increasing s (k), the s-core (k-core) shrinks progressively and the

tightest or innermost s-core (k-core) of the network [simply s-core

(k-core) from here on] is the set of remaining nodes in the last non-

empty s-core (k-core).

Rich-clubness assessment
The so-called rich-club phenomenon is the tendency of high

degree nodes to be preferentially connected to each other [47,48].

The degree of ‘rich-clubness’ is usually measured by the k-density

function Q(k) of the network, which is the internal connection

density among all nodes with degree larger than k. There is a basic

difference between k-core/s-core and rich-club properties: while k-

core and s-core nodes are selected by their connections within the

subnetwork formed by the core, rich-club nodes are chosen simply

and solely on the basis of their global degree in the entire network.

(Of course the ‘rich-clubness’ of this subnetwork does then depend

on its internal connectivity.)

A possible weighted variant of the rich-club measure, as

introduced in [49], evaluates the tendency of the highest

connection weights to be distributed among high degree (‘rich’)

nodes. However, this variant, due to normalisation by the number

of edges, is a connection density-independent index of weight

centralisation and thus loses the ability of the unweighted rich-club

index to measure edge centralisation among high degree nodes.

Here we propose a novel weighted version of rich-clubness, which

is sensitive to both properties, connection density and weight

centralisation, and may hence be a more appropriate generalisa-

tion of the unweighted rich-club index to weighted networks.

We define weighted rich-clubness as the internal weighted

connection density Qw(k) of the set of nodes with degrees larger

than k, N.k, which is the ratio between the sum of connection

weights W.k among the nodes in N.k and the maximum of their

possible weight sum, Wmax
.k:

Qw kð Þ~ Wwk

W max
wk

~
Wwk

PEmax
wk

l~1

wranked
l

ð9Þ

where E
max

wk ~
Nwkj j (Nwk{1)j j

2
is the maximum possible number

of edges among the nodes in N.k, and wranked
l is the weight of the

lth strongest (highest weight) edges in the network.

Qw(k) defines a normalised measure of coreness, which takes a

value in [0,1] for each degree k. Qw(k) is 1 only in the extreme case

where N.k is fully connected by exactly the strongest connections

of the network. In general, Qw(k) measures the fraction of total

interconnection strength within N.k relative to this theoretical

maximum (as defined by the connection weights present in the

network).

Note that in Eq. 9 the denominator is not calculable if Emax
.k is

greater than the number of edges, E, in the network. This

condition renders the interpretation domain of Qw dependent on

the connection density of the investigated network, implying that

Qw is meaningful for weighted rich-clubness measurements only

for that fraction of the highest degree nodes N.kmin. Specifically,

for undirected graphs, the number of these nodes |N.kmin|

cannot be larger than the real solution of the quadratic equation

E~
x x{1ð Þ

2
? x2{x{2E~0 ð10Þ

Eq. 10 specifies the largest number of nodes x that can still be fully

interconnected by the existing number of edges E in the network.

The cortical network under study has E = 17865 connections,

hence we obtain |N.kmin| = 188 nodes as the largest weighted

rich-club size that can be assessed by our measure. This

corresponds to 18.8% of the nodes of the entire network, and

gives Qw (k) the domain of kM[kmin, kmax], where kmax = 97 is the

largest node degree in the network, and kmin = 49 is the degree of

the 188th node in the degree rank ordered node list. We note that,

apart from of this interpretation limit of the measure, when

applied to unweighted (binary) networks Qw gives the same result

as the traditional rich-club metric, underlining that Qw can be

interpreted as a generalisation of this traditional measure for

weighted networks.

Degree assortativity
Degree assortativity is a global measure of the tendency of nodes

to be preferentially connected to other nodes with similar degree

[50]. Degree assortativity is thus closely related to the phenom-

enon of rich-club formation, although while the latter only

accounts for high degree nodes, the former measures preferential

connectedness across nodes of all degrees. The assortativity

coefficient r of a network is formally defined as:

r~
M{1

P
jiki{ M{1

P
1
2

jizkið Þ
� �2

M{1
P

1
2

j2
i zk2

i

� �
{ M{1

P
1
2

jizkið Þ
� �2 ð11Þ

where ji, ki are the degrees of the nod es at the ends of edge i, and

M is the number of edges [50]. Degree assortativity is a normalised

measure (21#r#1), so that a network has positive r assortativity

values if its edges tend to connect nodes of similar degree, while

negative assortativity values indicate the tendency for nodes with

different degrees to be linked. A network with r<0 expresses

neither of these trends, and is non-assortative.

Results

In the analyses presented below we used the structural con-

nectivity network of the human cortex obtained by Hagmann et al.

[12] comprising 998 regions of interest and 17,865 undirected and

weighted connections (Figure 2), see Methods. Unlike many previ-

ous studies [e.g., 26,27,28], we performed analysis on both the full

maximal resolution and on a low-resolution sub-sampling of the

data set and surrogate networks of the same size, and on both

weighted and unweighted (binary) versions of these networks.

Additionally, we repeated the analysis on a single cortical hemisphere
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of the high-resolution network, in order to test for any artefacts

arising from the features of inter-hemispheric connections (see Single

hemisphere analysis). In the following, we present the results with a

focus on the high-resolution weighted connectivity type (as it

contains the most information), and discuss the findings on the

other network types at the end of the section (Results on low-resolution

and binary connectivity types). In the following we first describe

validation of the three surrogate sets. We then compare standard

topological integration and segregation properties of cortical and

surrogate networks, and finally report analysis of more complex

network properties such as small-worldness, hierarchy, modularity

and core formation.

Validation of surrogate networks: Topological similarity
The high-resolution weighted cortical connectivity matrix and

averaged connectivity matrices of the three surrogate sets are

illustrated in Figure 3A–D. To allow meaningful comparisons, sur-

rogate networks need to be sufficiently randomised. The rewiring

algorithms, as outlined in Methods, are constrained by several

factors during the randomisation of cortical connectivity. In order

to assess that sufficient randomisation has been achieved in spite of

these constraints, we quantified the degree of similarity between

each ensemble of surrogate networks and the cortical network, and

we also examined the similarity within each surrogate ensemble.

To examine topological similarity, we calculated the mean

binary and weighted similarity quotients, QSb and QSw (Eqs. 1

and 2) of the networks in the three surrogate sets to the cortical

network. For random surrogates, QSb(C, Srnd) = 0.05460.002 and

QSw(C, Srnd) = 0.04760.002, indicating that their connections are

almost entirely different from those of the cortical network. For

spatial surrogates, we obtained intermediate similarity quotient

values QSb(C, SS) = 0.49460.002 and QSw(C, SS) = 0.48360.002,

and for reduced surrogates higher similarity quotients QSb(C,

SR) = 0.67060.001 and QSw(C, SR) = 0.70060.001. These results

confirm that, as expected, conserving and, even more significantly,

further decreasing the already short connection lengths of the

cortical connectivity network limits the achievable topological

randomisation of the spatial and reduced surrogate networks.

The similarity quotient values described above exhibit only very

small deviations around their respective means. This could reflect

the combined consequence of a sufficiently extended connection

shuffling process together with the relatively large size of the

networks, following the law of large numbers. But it could also

indicate an undesirably low diversity in the generated surrogate

sets, i.e., each set might be composed of highly similar networks.

To test for this possibility we calculated the similarity quotient

between every pair of surrogate networks in each of the surrogate

sets. The resulting mean intra-group values and their standard

deviations are QSb(Srnd, Srnd) = 0.05360.001 and QSw(Srnd, Srnd)

= 0.04560.001 for random surrogates; QSb(SS, SS) = 0.4746

0.003 and QSw(SS, SS) = 0.48360.002 for spatial surrogates, and

QSb(SR, SR) = 0.87360.002 and QSw(SR, SR) = 0.86160.002 for

reduced surrogates. Together, these results indicate that topological

differences among surrogate ensembles, although decreasing with

stricter spatial constraints, are nevertheless significantly nonzero.

Interestingly, the low intra-group variance of the similarity

values within every surrogate set suggests that in each such set S

there is a ‘characteristic similarity’, QS(S,S), between any two

members of that set. In addition, the similarity of the cortical

network to its surrogate networks is comparable to these char-

acteristic intra-group similarities in the case of random and spatial

surrogates (QS(C, SS)<QS(SS, SS) and QS(C, Srnd)<QS(Srnd,

Srnd)). This suggests that the cortical network is a generic member

of the random and spatial surrogate sets in terms of its basic

region-to-region connectivity, as measured by QS. This further

supports the use of random and spatial surrogates as suitable null-

hypothesis networks with respect to the preserved basic properties

of the cortical connectivity defined by each surrogate type.

By contrast, reduced surrogates appear to form a separate class

of networks that are more similar to each other than to the cortical

network (QS(C, SR)%QS(SR, SR)). This is expected given the

restrictive form of spatial constraint applied during their gener-

ation (strictly decreasing total connection length in every rewiring

step), which is likely to make them collectively drift away from

their cortical origin, converging towards the (hypothetical) single,

minimal connection length surrogate network.

The QS values illustrate well the highly optimised wiring of the

cortical network in terms of connection length. While random

surrogate networks share only 5.4% of their connections with

other random surrogates and with the cortical network, this ratio

increases to 49.4% for spatial surrogates, and each reduced

surrogate is only able to substitute about one third of the long-

range cortical connections with shorter ones. Furthermore, as

shown in Figure 3A–C, these pair-wise overlaps translate into a

‘core’ set of connections collectively shared between the cortical

network and its spatial and reduced surrogates. This ‘skeleton

connectivity’ is primarily located along the main diagonal of the

connectivity matrices, where most of the potential short-distance

connections can be placed (due to the spatial ordering of the brain

regions in the connectivity matrices, explained in detail in the

caption of Figure 3).

We note, however, that Figure 3B–D show the averages of the

connectivity matrices of the surrogate network groups and

therefore exaggerate the pair-wise overlap of the networks in each

group. This is a consequence of the relatively small set of potential

short-range connections in cortical space (compared to the

number of all possible connections), a number of which are

inevitably shared by many reduced and spatial surrogates. For

example, to examine the most extreme case of shared connectivity,

we can determine the connections that are present in all network

instances of each surrogate group. As expected, there are no such

collectively shared connections among random surrogates. On the

other hand, the highly optimised, and hence self-similar, reduced

surrogates collectively share as many as 65.0% of their connec-

tions, while the ‘intermediately’ constrained spatial surrogates

have only 7.6% of their connections shared among all of them,

rendering the latter surrogate group relatively diverse. Further-

more, all shared connections of reduced and spatial surrogates are

also present in the cortical network. These findings, in accordance

with the ones on QS above, indicate that the cortical network is

indeed a generic member of its spatial (and random) surrogates in

terms of the basic properties of its connectivity, adding some

topological credibility to our surrogate analysis.

Validation of surrogate networks: Spatial similarity
Having assessed the topological similarity of the surrogate

ensembles to the cortical network, we now investigate the other

relevant aspect of surrogate creation, namely to what degree the

spatial layout and wiring properties of the cortical network have

been changed in the surrogate ensembles. Although topological

and spatial similarity are related, they do not specify each other.

For example, low topological similarity between the cortical network

and its surrogates in itself does not exclude that connections of the

cortical network may only have been displaced by a short distance,

leaving the spatial layout of the network largely unaffected by the

randomisation procedure.

In order to assess the impact of the randomisation procedure on

the spatial layout of the cortical network, we calculated the relative
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spatial displacement D between the high-resolution cortical

network and its surrogate groups (see Assessing spatial similarity in

Methods). We obtained a D(C,Srnd) = 4.0463.43 mean displace-

ment value for random surrogates, indicating that on average a

neighbour l of each region r in the cortical network is replaced by a

new neighbour m in random surrogates, which is about four times

further away from the original cortical neighbour l than the length

of the original cortical connection (r,l). In spatial and reduced

surrogates, we measured D(C,SS) = 0.5060.62 and D(C,SR) = 0.29

60.43, respectively, indicating a necessarily lower mean spatial

displacement of the regions’ neighbourhoods in the topologically

more similar spatially constrained surrogates. However, because a

significant number of connections is shared by the cortical network

and its surrogates (see Topological similarity of surrogate networks) and

hence have zero displacement, the high standard deviation in

D(C,SS) and D(C,SR) indicates that those connections that have

actually been rewired are displaced to a location that is sub-

stantially distant from their original target region in the cortical

network. This is indeed what we see if we exclude the overlap of

the connectivities and calculate the spatial displacement Dr of the

replaced connections only: Dr(C,SS) = 0.9760.57 and Dr(C,SR) =

0.8860.30, which indicates that the average displacement of

rewired connections is almost as large as the length of the original

connection.

Connection lengths
The connection length distribution and total connection length

of each region (sum of distances to all neighbours) in the high-

resolution cortical network and its surrogates are shown on

Figure 3E and F. Consistent with the predominantly local

connectivity of the cortical network (mean connection length per

region: CLC = 27.625 mm), random rewiring of cortical connec-

tions nearly tripled the average connection length (mean 6

standard deviation of random surrogate network means:

CLrnd = 75.97160.164 mm). For this reason, that is, due to the

natural tendency of random connection swapping to increase the

length of originally short cortical connections, the simple condition

applied during spatial surrogate generation (i.e., ‘not to exceed the

original total connection length of the cortical network’) was

sufficient to actually achieve conservation of connection lengths

(CLS = 27.50760.120 mm), and resulted in a slightly narrower

connection length distribution (standard deviation of connection

lengths: cortical network: sl
C = 22.146 mmRspatial surrogates:

sl
S = 18.589 mm) originating from a somewhat shorter tail of the

distribution (see Figure 3E).

Wiring length optimisation in reduced surrogates of the high-

resolution weighted network successfully reduced the mean

cortical connection length by 29.6% (CLR = 19.43360.013),

effectively substituting long-range cortico-cortical projections with

shorter, local ones. This also led to a much narrower distribution

of connection lengths (standard deviation of connection length:

cortical network: sl
C = 22.146 mmRreduced surrogates: sl

R =

7.382 mm). As a result of the above, the total connection lengths of

individual cortical regions were preserved in spatial surrogates

(cortical network – spatial surrogates mean difference: 22.465.5%,

Wilcoxon rank-sum test for identical distribution: p = 0.898), while

reduced and random surrogates had significantly decreased (2

24.6617.0%) and increased (+227.66114.0%) regional connection

lengths, respectively (p,1024 in both cases).

Comparison with other minimally wired models
Several earlier studies investigated spatially minimally wired

surrogates of various neural and brain connectivity networks [51–

54]. In order to investigate how much excess wiring length cortical

connectivity has over its theoretical minimum, as well as to assess

how the reduced surrogates compare to ‘bottom-up’ constructed,

minimally wired models, we assembled two such models.

For the first, unconstrained minimally wired network model,

which we call absolute minimal (AM) network, we took the 998

cortical regions without their connections and simply placed links

between the 17865 spatially closest region-pairs. This created a

network with minimal total wiring length given the spatial

arrangement of the cortical regions and the total number of

connections in the cortical connectivity. The resulting AM network

is composed of a single component (no disconnected regions or

groups of regions). The sum of its connection lengths is 62.9% of

that of the cortical network, which, importantly, is only 10.660.1%

less than the total connection lengths of the reduced surrogate

networks. Importantly, the degree distribution of the original

cortical network has been completely lost in the AM network (mean

relative deviation of regional degrees between cortical network and

the AM network: 52.56130.7%). This means that the reduced

surrogates were able to achieve highly optimised wiring lengths

while fully preserving the cortical network’s degree distribution, thus

providing a powerful topological baseline to assess the significance

of the cortex’s high level network properties. Both the cortical

network and its reduced surrogates share a large number of their

connections with the AM network (binary similarity quotient:

QSb(C,AM) = 0.621, QSb(SR,AM) = 0.76060.0009), showing once

again the remarkably conservative wiring of the cortex: 62.1% of

the cortical connections are among the theoretically shortest

possible links in the cortical network.

We devised a second ‘bottom-up’ constructed minimally wired

connectivity model with the additional constraint of approximat-

ing the degree distribution of the cortical network. We construct

this network, which we call the degree preserving minimal (DPM)

network, in the following way. As with the AM model we start with

the 998 cortical regions without any connections, and, by going

Figure 3. Connectivity matrices and spatial properties of high-resolution cortical connectivity and its surrogate networks. (A)
Connectivity matrix of high-resolution cortical connectivity. (B–D) Averaged connection matrices (projection strength weighted frequencies of
connection occurrences) of the three surrogate groups (‘reduced’, ‘spatial’ and ‘random’). See colour-bar on right for scale of all four matrices (A–D).
All matrices are symmetric due to the undirected nature of the networks. Cortical regions are ordered first by hemisphere (top left sub-square is left,
bottom right is right hemisphere), then by containing anatomical structures (left and top colour stripes, for structural colour-code, see sector names
in Figure 2A), finally by spatial positions along the rostro-caudal axis. Note that within each hemisphere (top left and bottom right sub-squares)
reduced surrogates have fewer connections at areas farther away from the main diagonal than the cortical network does (see yellow arrows in B), due
to them having preferentially lost long-range connections. (E) Connection length (region-region distance) distribution of cortical network (bars) and
its surrogates (diamonds), with mean +/2 standard deviation indicated in the legend. Whiskers on diamonds denote the standard deviation between
networks within each surrogate group. Note the highly similar, but somewhat shorter tailed spatial surrogate distribution, and the significantly
narrower and shorter tailed reduced surrogate distribution, reflected in their lowered standard deviations (see figure legend) (F) Histogram of total
connection length of regions (sum of distances from all neighbours). Each row corresponds to a single region, bars represent values in the cortical
network and are coloured to indicate the corresponding anatomical structure (see Figure 2B). Diamonds denote mean of total connection lengths of
region within each surrogate groups (see legend). Note that total connection lengths of regions is preserved in spatial surrogates, while they have
been decreased in reduced surrogates and increased in random surrogates.
doi:10.1371/journal.pcbi.1003557.g003
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through the list of potential connections (region-pairs) ordered

from shortest to longest, we add each connection to the DPM

network only if the current degrees of both corresponding regions

in the DPM network are less than their original degrees in the

cortical network. By this simple strategy we are able to create a

network with 17799 connections (66 connections [0.4%] less than

the cortical network) that closely approximates the degree

distribution of the cortical connectivity (mean percentage devia-

tion in regional degrees between cortical network and the DPM

network: 0.261.8%). Due to the similarity in degrees, the DPM

network shares an even larger number of connections with both

the cortical network and the reduced surrogates than the AM

network (binary similarity quotient: QSb(C,DPM) = 0.653,

QSb(SR,DPM) = 0.85560.002). The sum of connection lengths

in the DPM network is 72.1% of that of the cortical network,

which is on average 2.460.1% more than those of the reduced

surrogates, despite the fact that the DPM network has slightly less

connections than the reduced surrogates. This demonstrates that

simple ‘bottom-up’ algorithms are not guaranteed to be more

successful in constructing minimally wired (surrogate) networks

than the rewiring methods used in the current study.

We conclude that the spatial surrogates effectively preserved the

wiring length properties of the cortex, both globally and at the

level of individual regions, and that the reduced surrogates

significantly decreased wiring length by substituting long-range

connections with shorter ones. These properties render spatial and

reduced surrogates suitable for representing a wiring-length-

matching and wiring-length-optimised null-hypothesis network

set of the cortical connectivity, respectively. The results so far

demonstrate that, as opposed to the highly unrestricted nature of

random surrogates, the presence of strict wiring constraints

necessarily limits the form of potential connectivities of the cortex

at the basic level of region-region connections, as shown by

elevated similarity between cortical network and its spatial and

reduced surrogates as compared to random surrogates.

In the remainder of the paper, we go beyond these basic

properties, to examine which other, network-level properties of the

cortical connectivity these wiring constraints preserve. We

measure the degree of expression of these properties by a series

of complex network metrics, in each case applying the interpre-

tations detailed in the Introduction (see also Table 1).

Integration, segregation and small-worldness
The need for the simultaneous presence of functional integra-

tion and segregation imposes conflicting constraints on network

architecture [55], reflected in properties collectively known as

‘small-world’ characteristics. Small-world properties have been

found in many real-world complex networks [23], including

various brain networks [10,56–58].

We measured the global integration and segregation potential of

the cortical network compared to its surrogates using the quantities

efficiency E and clustering coefficient C (see Methods). As shown in

Figure 4A, the cortical network is more similar to its reduced

surrogates than to its other two surrogate sets (high-resolution

weighted cortical network: EC = 0.174, CC = 0.271, reduced:

ER = 0.16260.001, CR = 0.28960.002, spatial: ES = 0.21460.001,

CS = 0.16960.002, random: Ernd = 0.26060.001, Crnd = 0.0246

0.001). Considering that the total connection length of each region in

Figure 4. Integration, segregation, small-worldness and hierarchical organisation. (A) Relation between clustering coefficient (C), global
efficiency (E) and small-world (SW) index in high-resolution cortical connectivity and its surrogate networks. Each coloured sphere represents a single
network (the cortical or a surrogate network), with dashed lines guiding the eye to their projections on side panes. Random surrogates lay on the E–C
pane with small-world index SWrnd = 1 by definition. Note the remarkably similar values of the individual surrogate networks within each surrogate
group for all three measures, indicated by the closeness of their corresponding spheres. Also note the strong negative correlation between clustering
coefficient and global efficiency across all investigated networks (blue line). r: Pearson correlation coefficient. (B) Relation of nodal degree and
clustering coefficient. Regions are binned by degree (x axis), and plotted against the average clustering coefficient of the bin normalised by the global
average clustering coefficient of the network (to bring all networks to the same scale). Bars correspond to cortical results and are colour-coded to the
mean of the colours of the regions they contain (see sector names in Figure 2A). Diamonds and whiskers represent surrogate mean values and
standard deviations (see legend). Bar colours indicate the abundance of temporal regions at low degrees, frontal regions at medium degrees, and
parietal, limbic and occipital regions at high degrees. This structural differentiation across degree range holds for all the surrogate networks due to
the identical degrees of their regions. Note the negative correlation between clustering and degree in the cortical network and the reduced and
spatial surrogates, suggesting their hierarchical organisation, as opposed to the positive correlation in random surrogates.
doi:10.1371/journal.pcbi.1003557.g004
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the cortical network is the same as in its spatial surrogates, and that

long-range connections are largely absent in reduced surrogates, the

efficiency results indicate that the long-range cortico-cortical

connections are distributed in a topologically sub-optimal way for

enhancing tight functional integration (efficiency) in the cortical

network. Furthermore, the clustering coefficient indices demonstrate

a prevalence of topologically segregated neighbourhoods of groups of

regions, beyond what would be expected from the wiring constraints

of its individual regions (CC is significantly larger than CS and much

closer to CR than to CS). Therefore, not only when comparing

against the necessarily more highly integrated and less segregated

random surrogates, but also when taking into account the total

length of the connections of each cortical region in the spatial

surrogates, the cortical network appears to strongly favour topolog-

ical segregation over integration (efficiency).

In order to assess the effect of wiring constraints on its small-

world attributes, we calculated the small-world index SW of the

cortical network and its spatial and reduced surrogates (see

Methods), using random surrogates as reference networks (random

surrogates hence have SWrnd = 1 by definition). First we note that

all three investigated network types (cortical network, spatial and

reduced surrogates) satisfy the basic small-worldness condition

[37], that is, their clustering coefficient is larger than those of its

random surrogates (C&Crnd) while their efficiencies (average

shortest path lengths), while being lower (higher), are still

comparable to those of their random surrogates (E<Ernd). In case

of the cortical network, this results in the relatively high small-

world index SWC = 7.478 (see Figure 4A), indicating a well-

expressed small-world organisation of the cortex. In comparison,

we obtain on average SWS = 5.74660.031 for spatial surrogates,

and SWR = 7.41960.031 for reduced surrogates, both much closer

to SWC than the random surrogates (recall SWrnd = 1), indicating

that the small-world architecture of the cortex can be attributed to

a great extent to its wiring constraints. However, considering that

SWC is significantly higher than SWS, the cortical network appears

to exhibit the small-world property beyond what would be implied

by its local connectivity alone. Furthermore, this excess level of

cortical small-world organisation does not necessitate any partic-

ular arrangement, or even the presence, of the long-range cortical

connections, as indicated by SWR not being significantly different

from SWC. Therefore, the highly segregated connectivity of the

cortical network, also found in reduced surrogates, but not in

spatial surrogates (see above), appear to contribute more to the

small-world organisation of the cortex than the mere existence or

particular arrangement of cortical long-range connections.

Hierarchy
In their seminal work, Ravasz and Barabási [38] detected well-

expressed hierarchical structure in all investigated non-spatial

(non-geographical), real-world networks, but not in spatial

examples (e.g. the power grid network and the Internet). They

reasoned that the high cost of establishing physically long

connections substantially limits the type of topology spatial

networks can exhibit, potentially excluding strongly hierarchical

forms. However, in a study of a 104-region structural network of

the human cortex Bassett et al. [10] did find hierarchical

properties in the brain among multimodal cortical regions, but

not within unimodal and transmodal regions.

Following Ravasz and Barabási [38] (see Methods), we calculated

the average clustering coefficients of groups of cortical regions with

similar degrees, relative to the global clustering coefficient of the

cortical network (see Figure 4B). We observe that the cortical

network exhibits a steep decline in its mean clustering – degree

relation, indicating that the cortex exhibits the type of hierarchical

organisation illustrated in Figure 1B. This finding supports the

general notion of a hierarchically organised brain [59], which is

quite remarkable given the tendency of spatially embedded,

physical networks not to develop hierarchical features due to the

basic spatial (geographical) constraints acting on them [38].

Furthermore, there are highly similar tendencies for spatial and

reduced surrogates, but not for random surrogates, in which

clustering actually increases with region degree. The remarkably

high consistency of the clustering – degree relationship across the

cortical network and its spatial and reduced (but not random)

surrogates indicates that the individual wiring lengths and

positioning of high degree regions in the cortex by itself entails a

global hierarchical organisation.

Modularity
Many real world networks have a characteristic topology that

allows them to be separated into relatively densely intra-connected

and weakly inter-connected subgroups [16,60]. These subgroups

are usually referred to as the modules (or clusters, communities) of

the network. One possible functional advantage of modularity is

reduced systemic risk during development and evolution [61,62].

Another is that modular architectures are related to potentially

useful dynamical properties such as high dynamical complexity

[21] and metastability [63], as well as limited sustained network

activity [64].

Recent studies have reported a highly modular architecture of

the human brain in its structural [12,13,65] as well as in its resting

state functional connectivity (rsFC) [66–68]. Furthermore, study-

ing the effect of ageing on the brain’s modular structure, Meunier

et al. [69] found marked differences in the composition and

putative topological roles between the modules in the rsFC of

younger and older human subjects. These results suggest that

modular ‘decomposability’ is a prominent feature of the brain,

which is continuously shaped during its development, maturing

and ageing. In line with these results, recent theories regard the

brain’s modular structure as the main facilitator of regional

specialisation and segregated functional processing [18].

We investigated the modular structure of the cortical network

and its surrogates by utilising Newman’s module detection

algorithm [41] (see Methods). In order to assess the strength of

modular organization, that is, the magnitude of the Q modularity

index, we use the modularity of the random surrogates as a

baseline value (representing the modularity index of a non-

modular network with size and connection density matching that

of the cortical network). These random surrogates, as expected due

to their quasi-zero segregation, express almost no modularity

(mean modularity index: Qrnd = 0.08760.003, number of mod-

ules: Nrnd = 23.2561.95). In contrast, the cortical network has a

strongly modular architecture (QC = 0.558) composed of NC = 13,

spatially compact and hemispherically symmetric modules

(Figure 5A). Interestingly, reduced surrogates, in spite of their

lack in long-range (thus mostly inter-module) connections, do not

exhibit a significantly higher modularity index (QR = 0.5676

0.015, NR = 15.5560.87, one-tail t-test assuming normal distribu-

tion: p = 0.274), but spatial surrogates do possess a significantly

lowered level of modularity (QS = 0.47760.020, NS = 11.5560.87,

p,1024) than the cortical network. These results show that while

the physically constrained length of cortico-cortical white-matter

connections are a fundamental factor in shaping the high strength

(QC) and granularity (NC) of the global modular architecture of the

cortex, the cortical network nevertheless has a stronger modular

organisation than these wiring constraints by themselves would

suggest, indicating the functional relevance of the cortex’s modular

structure.
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Figure 5. Module organisation. (A) Illustration of the identified cortical modules on a horizontal projection. Modules, represented by large circles,
are drawn at the mean position of the regions they contain, with a radius proportional to their size (number of their regions), and are coloured by the
average ‘anatomical structure colour’ (see section labels in Figure 2A) of their regions. Regions (smallest circles) are connected to their modules, and
drawn with the colour of their modules. The widths of the inter-module connections (white lines) are proportional to the sum of connection
strengths between regions in each of the two modules to regions in the other. (B) high-resolution cortical connectivity matrix ordered according to
recovered modules (blue sub-squares along main diagonal, from M1 to M13 from top left to bottom right). Left and top colour stripes show colour-code
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The strength of the modular organisation of the cortical network

can be illustrated by its inter- versus intra-modular connection

distributions (Figure 5B). The NC = 13 identified modules contain

63.2% (n = 11294) of the total number of projections internally,

meaning that only 36.8% (n = 6571) of the connections cross

module boundaries. This results in an average 25.6% intra-module

and 1.4% inter-module connection density, indicating that while

more than every fourth intra-module region-pair is linked, this ratio

falls to 1:70 for region-pairs from different modules. For compar-

ison, the global average connection density of the entire network is

3.6%.

The cortical connectivity matrix ordered by the recovered

module partitioning is shown in Figure 5B. To compare this

partitioning with an ‘average’ partitioning for each surrogate group,

we calculated the frequency with which every region-pair (ni, nj) can

be classified into a single module (m(ni) = m(nj)) in each of the three

surrogate network groups. The resulting matrices are shown in

Figure 5C–E. The high concentration of frequent co-partitioning of

region groups along the main diagonal of the matrices is apparent in

the case of reduced and spatial surrogates, indicating that the

corresponding cortical modules are reasonably preserved across

these surrogate networks. Furthermore, there is also a tendency for

the formation of off-diagonal blocks in Figure 5C and 5D which

suggests that parts of some of the cortical modules are frequently

merged into single surrogate modules, and therefore they are at least

partially preserved in reduced and spatial surrogates.

Motivated by these findings, we quantitatively tested the

robustness of the modular partitioning of the cortical network

against the rewiring applied to its surrogate groups by assessing the

consistency of the cortical partition in the surrogate groups. To do

this, we used the obtained cortical modules as a reference partition

and measured the scaled inclusivity index SI of each cortical

region in the surrogate groups (see Methods). Among the three

surrogate sets, reduced surrogates exhibited the highest mean SI

index, indicating the highest overall conservation of cortical

modules in reduced networks, although with high variations across

the individual cortical regions (mean 6 std: reduced surrogates:

SIR
C = 0.23560.182, spatial: SIS

C = 0.20260.145, random:

SIrnd
C = 0.00760.002).

The SI values for the individual cortical regions, and for each

surrogate group, are illustrated in Figure 5F–H. We found elevated

robustness of the cortical modules in both reduced and spatial

surrogates at specific cortical sites, including the entire pre-central

and post-central cortices (composing cortical modules M2 and M6

on Figure 5A), large areas of the temporal lobe (M3 and M5) and

some frontal (M4 and M9), and superio-parietal and limbic areas

(M10). The high SI of these specific areas indicates that their modular

structure exhibits greater robustness against spatially constrained

rewiring, as opposed to the low SI of, and thus higher variance in,

the module formations in other parts of the cortical network.

Core formation
The results so far, regarding the small-world, hierarchical and

modular architecture of the cortex, suggest the existence of specific

cortical areas that are topologically centrally positioned in the

modular structure of the cortical network. This ‘core formation

hypothesis’ has been the topic of several studies recently (see below),

and we next test its significance against the wiring constraints of the

cortex by again analysing the surrogate ensembles.

Intuitively, the core of a network, illustrated in Figure 1C, is a

set of ‘elite’ nodes that are topologically centrally positioned,

forming a highly intra- and inter-connected global centre [28].

The existence of a single, but strong core formation in the topology

of a network typically suggests that the network exhibits a pro-

nounced global core-periphery structure [70–72] and indicates the

presence of centralisation in the network’s dynamics and func-

tional operation, which is fundamentally different from that of a

homogeneous network architecture composed of distributed,

identically segregated units (e.g., Figure 1A).

Prior studies have identified and investigated a core structure in

various brain networks, including the rich-club structure of the cat

thalamo-cortical complex [17,73,74], the k-core of the macaque

brain [75], the s-core of the human cortex [12], and the rich-club

of the entire human brain [13,25]. We here compare s-core and

rich-club properties of the cortical network and also assess the

extent of their dependence on, and emergence given, different

wiring constraints using the three surrogate types.

S-core significance
S-core analysis assesses the extent to which a network exhibits a

densely intra-connected inner core, by measuring the size of, and

overall connection strength within, the most strongly intra-

connected group of nodes. We identify the s-core of the cortical

network through a ‘peeling’ procedure that iteratively removes less

connected regions from a candidate s-core (see Methods). Examining

the evolution of the s-core decomposition of the high-resolution

cortical network and those of its surrogates (Figure 6A) during the

peeling procedure, we can identify two characteristic phases. A

longer, rather stable early phase of ‘crust peeling’ transitions into an

unstable phase for s.11, in which the s-cores of both random and

spatial surrogates diminish rapidly and then abruptly vanish. The

cortical network, on the other hand, closely follows the trend of its

reduced surrogates and continues to sustain a substantial s-core of

n = 100 regions (10.0%) for much longer. This s-core eventually

collapses at a significantly higher strength threshold (sC = 13.095)

than its counterparts in the random (srnd = 12.05560.078) or spatial

surrogates (sS = 11.43360.124), within the range of the s-cores of

reduced surrogates (sR = 13.02760.143), but with a somewhat

larger size (s-core size of cortical network SC = 100, reduced

surrogates: SR = 74.500617.119, see Figure 6A inset). Considering

that the connectivity of reduced surrogates is spatially more

concentrated than that of the cortex, which is a property that

favours the formation of a strong s-core, the above finding suggests

that cortical connectivity may be optimised towards the formation

of a global s-core, which is much stronger and larger than its

connection length constraints alone would suggest.

Rich-club significance
An alternative measure of core formation in a network is the

assessment of its rich-club index [47,48]. The weighted variant of a

of the corresponding cortical region’s greater anatomical structure (see section labels in Figure 2A). For colour-code of matrix elements see colour-bar in
Figure 3. (C–E) Module correspondence matrices of the three surrogate groups. Each element of the matrices denotes the normalized frequency (from
black through red to white, see colour-bar on right side) of the two regions to be placed into the same module in the module partitions found in the
corresponding surrogate network group. (F–H) Consistency of cortical module partition in surrogate groups. Consistency of module classification of
each region is measured by its mean scaled inclusivity in each surrogate group using the obtained cortical modules as reference partition (see Methods).
Colour-coded scaled inclusivity values of regions are shown on coronal (top) and horizontal (bottom) projections (see colour-bar on right side).
doi:10.1371/journal.pcbi.1003557.g005
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rich-club index, Qw(k), measures the tendency of high degree nodes

to be both densely and strongly inter-connected (see Methods).

Examining the evolution of Qw(k) with increasing k in the cortical

network and in its surrogates (Figure 6B), the cortical network

demonstrates a rich-club of significant strength (weighted k-density

at n = 100 regions: Qw
C(100) = 0.164) compared to its random

surrogates (Qw
rnd(100) = 0.10660.002). However, the cortical net-

work does not possess a significantly stronger rich-club structure

than its reduced surrogates (Qw
R(100) = 0.16460.001, one-sample

t-test: p = 0.23) or its spatial surrogates (Qw
S(100) = 0.16360.003,

one-sample t-test: p = 0.34).

Previous studies [13,17,25] used only random surrogates as null-

hypothesis baselines for assessing the rich-club property of brain

networks, a comparison in which the cortical networks we study

here also express a highly developed rich-club (Figure 6B, compare

blue and magenta lines). However, we show here that this property

is equally, or even more, expressed in spatial and reduced

surrogates. Closer inspection reveals that the relatively low

variance in the spatial locations of highly connected regions

(Figure 6D and F), in combination with the highly clustered, local

connectivity of the cortex, naturally results in a tendency for strong

rich-club formation.

The wiring-constraint-dependent rich-club formation tendency

of the cortex is further supported by the assortativity coefficients r

of the network and its surrogates (see Methods). We found

significantly positive assortativity coefficients for the high-resolu-

tion cortical network (rC = 0.288) and its spatial (rS = 0.28360.004)

and reduced surrogates (rR = 0.32660.002), indicating their

tendency to connect nodes of similar degree, whereas almost no

degree assortativity is found in random surrogates (rrnd = 0.051

60.006). This preferentially mutual connectedness of high degree

regions suggests that the rich-club patterning of the cortical

network naturally arises from the physical location of cortical hubs

and the cortical wiring constraints.

The s-core and rich-club regions selected by the two methods

(Figure 6C–F), are largely consistent with earlier findings [12,13].

Furthermore, the s-core (n = 100 regions in final, non-empty core)

and rich-club regions (n = 100 highest degree regions) exhibit a

considerable, exactly 50% (n = 50 regions) overlap in the cortical

network. There are, however, marked differences in the anatom-

ical composition and spatial dispersion of the two structures. The

s-core of the cortical network encapsulates the caudal part of the

cortical midline, formed by the precuneus, the cingulate cortex

and the superior part of the occipital lobe (cuneus, lingual gyrus

and pericalcarine cortex). This centralisation is also present,

though much less pronounced, in the cortical network rich-club,

since about one third of it extends to the lateral and frontal parts of

the cortex. The spread of arborisation of the two cores also

exhibits this difference (see Figure 6C–F): while the more

numerous (n = 5662 [31.7%] connections) and rather externally

projected connections (20.6% internal connection density) of the

rich-club establish direct connectivity with almost the whole

remainder of the cortex (n = 795 [88.5%] regions), the s-core

possesses a smaller (n = 3921 [21.9%] connections), as well as more

internally projected connection set (37.7% internal connection

density), which connects it directly with only one third (n = 294

[32.7%] regions) of the rest of the network. These differences,

originating from the definitions of the s-core and rich-club

structures, demonstrate the more distributed nature of the cortex’s

rich-club, as opposed to the rather encapsulated, but spatially and

topologically central position of the s-core.

Results on low-resolution and binary connectivity types
Along with the analysis on the high-resolution weighted version

of the cortical connectivity dataset presented above, we also

performed our surrogate analysis on four ‘subsets’ of the full

dataset, namely: on the binarized (unweighted) version of the high-

resolution cortical network, on the weighted and the binarized

versions of a lower resolution (down-sampled) cortical network (see

Methods), and on a single hemisphere extracted from the high-

resolution weighted cortical network (discussed in detail in the

following section).

Similarly to the analysis of the high-resolution weighted cortical

network, we first tested the surrogates of the three cortical

networks considered here with the topological similarity measure

QS and the measure of mean connection lengths per region, CL.

Our surrogate test results on the three cortical networks showed

the same pattern that we described for the weighted high-

resolution cortical network (see Figure 7), albeit with an overall

lower level of randomisation (higher topological similarity) for the

low-resolution networks, due to the higher connection density of

these networks (high-resolution: 3.6% connection density, low-

resolution: 26.8%), as well as a slightly (but significantly) reduced

connection length in low-resolution spatial surrogate networks, likely

due to the limitations of re-wiring algorithms on smaller networks.

Next we assessed the global integration and segregation

potential of these cortical networks by calculating their clustering

coefficient C and efficiency E, respectively. In accordance with the

high-resolution weighted results, we found the same pattern of

higher similarity of each cortical network to its reduced than to its

spatial surrogates consistently across all analysed cortical networks,

to the extent that for low-resolution networks there is no significant

difference between them (see Figure 7). Therefore, as with the

high-resolution weighted cortical network, these networks also

demonstrate a small-world index more similar to their reduced

than spatial surrogates (see Figure 7). Surrogate analysis of the

modularity strength Q of these cortical networks also yield highly

consistent results with those of the high-resolution weighted

cortical network (see Figure 7). Taken together, these findings

are consistent with our results on the high-resolution weighted

cortical network; they indicate that the functional segregation

potential and the small-world and modular organisation of the

connectome, even when observed on lower resolutions, are signi-

ficantly stronger than its wiring constraints alone can account for.

We next evaluated the core formation tendencies of the three

cortical networks. Results on the k-core (unweighted s-core) of the

high-resolution binary connectivity are in agreement with the high-

resolution weighted network results discussed above. On low

network resolution, however, we observe different characteristics

(see Figure 7). Specifically, the significantly strong k-core and s-

core structures of the binary and weighted high-resolution cortical

networks seem to weaken to a weighted low-resolution cortical

Figure 6. S-core and rich-club analysis. (A) S-core size as the function of core strength threshold s in the cortical network and its surrogates. (B)
Weighted k-density Qw(k) (dashed lines) and rich-club size (solid line) as the function of degree threshold k in the cortical network and its surrogates.
The rich-club size (green) is the same for all networks due to their identical degree distribution. Colour-filled intervals indicate the full range of values
observed in surrogates. (C–F): cortical regions of the final s-core (n = 100 regions at s = 13.095) and the equivalent size rich-club (n = 100 regions at
k = 57) and their connections are visualized on coronal (top of C and D) and horizontal (bottom of C and D) projections, and on an abstract
hierarchical radial layout (E and F).
doi:10.1371/journal.pcbi.1003557.g006

Influence of Wiring Cost on Cortical Connectivity

PLOS Computational Biology | www.ploscompbiol.org 17 April 2014 | Volume 10 | Issue 4 | e1003557



s-core of comparable strength to its wiring-constrained surrogate

ensembles, and further diminish to a binary low-resolution k-core

with a strength significantly weaker than any of the surrogates.

When investigating the binary low-resolution cortical k-core more

closely, we discovered that it contains as much as 80.3% (53

regions) of the entire network, and any subsequent peeling step (see

Methods) destroys the whole structure. This is in stark contrast to

the k-core of the low-resolution spatial surrogates, which are on

average composed of only 52.3% of the network, or with the k-

core (s-core) of the binary (weighted) high-resolution cortical

network, which contains only 11.2% (10.0%) of the 998 regions.

The difference between network resolutions may largely be

attributable to the high degree of spatial concentration of the

high-resolution s-core (and k-core) regions (Figure 6C and E). This

concentration results in the collapse of large parts of the high-

resolution core structure into single low-resolution regions of the

cortex (specifically into the precuneus, the cingulate cortex and

superior areas of the occipital lobe), the extremely dense internal

connectivity of which is not accounted for during low-resolution

analysis. Consequently, even the weighted, but especially the

binary, cortical network, as observed on lower resolution, appear

to exhibit a more distributed, homogeneous connectivity, with

highly inhomogeneous intra-region connection densities, that are

only accounted for at the higher resolution analysis. More

generally, these findings underline the importance of multi-

resolution analysis in cortical connectivity research in order to

obtain a more complete and accurate picture on the inherently

multi-level organisation of the connectome.

In conclusion, our surrogate analysis results extend those of

Hagmann et al [12] by showing that the core structure of the high-

resolution cortical network is both topologically and spatially

significant, as measured by both k-core and s-core analysis.

Furthermore, our findings on the low-resolution connectivity also

indicate that this result depends on high-resolution analysis

because the cortical connectivity becomes increasingly sparse

and centralised at higher resolutions.

We next evaluated the tendency of the three additional

cortical networks for the formation of the other putative ‘core’

structure, the rich-club. In line with the results on the weighted

high-resolution connectivity, we obtained cortical network rich-

clubs in the low- and high-resolution binary connectivities with

strengths comparable to those of their spatial surrogates, and

even somewhat weaker than those of their reduced surrogates,

assessed by the traditional (unweighted) rich-club measure (see

Figure 7).

In contrast to these results, we found a rich-club in the weighted

low-resolution cortical connectivity that is statistically stronger

than those of its spatial surrogates (one-sample t-test: p = 0.02, see

Figure 7). Originating from its agglomerative construction from

the high-resolution cortical network (see Methods), this finding may

reflect the highly non-uniform (exponential-like) connection weight

distribution of the weighted low-resolution cortical network. In

essence, the surrogate rewiring process in the random and spatial

surrogates of this cortical network, but not in its reduced

surrogates, was effective in relocating the few very short-range,

but extremely strong cortical connections to random positions in

Figure 7. Summary of analysis. Results are given for all weighted and binary (unweighted) analyses performed on both high- and low- resolution
cortical connectivity, as well as on a single high-resolution hemisphere. In main text we focus primarily on the weighted analysis of high-resolution
network (bottom gray section). Bar heights indicate cortical values and surrogate group means, whiskers show standard deviations across surrogate
networks of the same type (negligible for most measures). Number after each bar shows corresponding mean value up to the first digit with non-zero
standard deviation value, which is given in following parentheses. QS: Sørensen similarity quotient, C: clustering coefficient, CL: average connection
length (Euclidean distance between connected region-pairs in mm), E: global efficiency, SW: small-world index, Q: modularity index, KC/SC: final
strength of k-core (binary analysis) and s-core (weighted analysis), RC: rich-club strength (binary or weighted k-density) of 100 (high-resolution) and
10 (low-resolution) highest degree regions (hubs). Stars denote that the cortical network is statistically significantly different from its surrogate
ensemble (one sample t-tests): *: p,0.05, **: p,0.01, ***: p,0.001, ****: p,0.0001.
doi:10.1371/journal.pcbi.1003557.g007
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the network, resulting in a highly variable, but on average lowered

weighted rich-club strength in these random and spatial surrogates

(Figure 7, second row). (We note that by the nature of their

definition, the rest of the weighted metrics investigated in this

study, including the s-core structure, are largely immune to this

kind of variation in the specific location of these few, extreme

strength connections in the low-resolution weighted cortical

network.) Nevertheless, the results indicate that the low-resolution

weighted cortical network, in agreement with the other three

connectivity types, demonstrates a significantly strong rich-club

structure, by comparison with traditional random surrogates (one-

sample t-test, p,1024). Contrary to the other three connectivity

types, however, the strength of the rich-club in the low-resolution

weighted connectivity does not seem to be fully attributable to the

spatial constraints of the cortex, as indicated by spatial surrogate

comparison.

Single hemisphere analysis
An analysis approximating fibre length by the Euclidean

distance of the connected regions (see Methods) may dispropor-

tionately underestimate the length of the longer curved inter-

hemispheric fibres, particularly those connecting homotopic

regions around the cortical midline [8]. This, in turn, may result

in an increase in the number of inter-hemispheric connections

with underestimated lengths in the wiring constrained surrogate

networks. Indeed, evaluating the proportion of intra- and inter-

hemispheric connections in the cortical network and in the

surrogate networks shows that while only 11.5% of the high-

resolution cortical connections run between the hemispheres, this

ratio increases to 13.2% for reduced, 18.1% for spatial and 50.2%

for random surrogates. Some, although certainly not all, of these

(surrogate) inter-hemispheric connections are likely to cause a

corresponding underestimation in the connection length of

reduced and spatial surrogates compared to that of the cortical

network. This concern, however, is greatly eased by noting that

the regions of the cortex along its midline are already highly intra-

connected (see Figure 6), leaving only few potential places where

such new connections can be formed. Indeed, calculating the

mean (Euclidean) distance between inter-hemispherically connect-

ed region pairs DIH on high network resolution, we found an

increase, rather than a decrease, in the DIH of spatial surrogates

compared to that of the cortical network (DIH
ctx = 26.2 mm,

DIH
S = 38.8 mm). In comparison, we found, as expected, that the

mean distance between the inter-hemispherically connected region

pairs is somewhat lowered in reduced surrogates (DIH
R = 22.2 mm)

and greatly increased in random surrogates (DIH
rnd = 86.2 mm).

These results indicate that the newly created inter-hemispheric

connections in spatial surrogates are predominantly between

relatively distant regions, therefore suffer less from the dispropor-

tionate underestimation of connection length, as approximated by

Euclidean distance, between homotopic regions along the cortical

midline.

Nevertheless, in order to test our results against potential

artefacts originating from the different degree of inter-hemispheric

connectedness in the cortex and its surrogates, we repeated the

analyses using a single cortical hemisphere. Specifically, we

extracted the right hemisphere of the weighted high-resolution

dataset, generated n = 20 surrogate networks for each of the three

surrogate network types using the same method as before, and

measured the complex network metrics assessed in the paper.

The results of single hemispheric analysis (Figure 7, third row)

are largely in agreement with the previous bi-hemispheric analysis.

The main differences are that the (hemi)-cortical network has an

increased small-world index compared to reduced surrogates, and

its rich-club is slightly but not significantly weaker than those of

spatial surrogates (one-sample t-test: p = 0.1), and stronger than

those of reduced surrogates. We note that if there was a significant

bias in the full cortex surrogate networks to form an excess number

of inter-hemispheric connections between homotopic midline

regions, we would expect single hemisphere surrogate analysis to

detect a consistent increase, rather than decrease, in the strength of s-

core and rich-club structures, given the highly central positioning

of these structures along the cortical midline in the full cortical

network (see Figure 6). Due the fact that we observe such an

increase in only one out of the four possible cases (the rich-club of

reduced surrogates), we conclude that the single-hemisphere

analysis validates the Euclidean approximation on fibre lengths

for our surrogate analysis, and our main conclusions on the bi-

hemispheric cortical network appear to largely apply to the uni-

hemispheric cortical connectivity as well.

Discussion

Standard models of complex network science in conjunction

with the fundamentals of neuroscience shape the techniques we

use for the analysis of brain networks. For example, the abstract

concept of small-worldness has traditionally been defined in

relation to random and lattice networks [23]. Thus, the diffuse

nervous systems of coelenterates (such as Cnidaria) have long been

recognised to exhibit a characteristically regular, lattice-like

pattern [76]. These and other findings have contributed to the

wide application of random and lattice surrogate techniques in

brain network analysis. In this paper we have investigated how the

use of more constrained null-hypothesis models, incorporating not

only basic topological but also spatial properties of the human

connectome, will help us better understand the structural

organisation and functional operation of the inherently spatially

and economically constrained brain.

We analysed a dataset representing the large-scale anatomical

connectivity of the human cortex in order to confirm previously

reported topological organisation patterns (network properties),

such as small-worldness, modularity, hierarchy and core formation

(see Figure 1), at both high- and low-resolution representations of

cortical connectivity, and to then analyse the relationship of these

patterns to the wiring constraints of the brain. To do so we devised

two novel surrogate types, ‘spatial’ and ‘reduced’ surrogates that

conserve the total length of connections from each region (spatial)

or decrease it (reduced). For each network property, our analysis

adopted the reasoning detailed in the Introduction (see also Table 1).

First, by comparing the cortical network and the spatially

constrained surrogates to random surrogates, we found that

cortical wiring constraints seem to contribute strongly to its

relatively low potential for functional integration (as measured by

global efficiency) and very high potential for functional segregation

(as measured by clustering coefficient), and thus highly, although

not fully (see below), account for the known small-world cortical

organisation [57,58]. In addition, comparison of the cortical

connectivity network to the new surrogates also showed a relatively

low level of global efficiency in the cortical network, closer to its

reduced than to its spatial surrogates. Efficiency is a measure of

functional integration potential in the network [15] and is

generally most effectively increased by adding sparse long-range

connections [18]. Because reduced surrogates to a great extent

lack these long-range connections, our findings suggest that long-

range cortico-cortical connections are in fact sub-optimally placed

for maximising efficiency, and therefore, to the extent that brain

structure determines function, they may not contribute to tight

functional integration in the cortex as much as they could. In line
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with this, the cortical network was also found to be more similar to

its reduced than to its spatial surrogates in its very high clustering

coefficient. Functional segregation, facilitated by high structural

clustering coefficient [15], is widely acknowledged to be a fun-

damental characteristic of the cortex [77]. Taken together, our

findings indicate that the cortical network may possess an excess

level of segregation and a relatively reduced level of functional

integration potential over the extent that its wiring constraints

alone can account for. Furthermore, spatial surrogates exhibited

significantly weaker small-worldness compared to the cortical

network, while reduced surrogates exhibited comparably high

small-worldness to the cortical nework. These findings suggest that

high cortical segregation combined with the concentrated spatial

distribution of high degree regions (see Figure 6D) may suffice to

ensure the strong small-world organisation of the cortical

connectivity, even in the absence of long-range cortical connections.

Hierarchical organisation is believed to be a central architec-

tural feature of various complex social networks and the World

Wide Web [38] (Figure 1B). Hierarchical aspects of network

architectures can fundamentally affect their evolution, develop-

ment, adaptability and efficiency on multiple scales [61,62]. The

structural connectivity of the cortex is generally regarded to have a

hierarchical organisation [59]. However, neither the degree and

extent of hierarchical organisation, nor the constraints governing

its expression, have yet been analysed in large-scale whole-brain

networks as comprehensively as for instance the concepts of

modularity or regional centrality [59]. This may be due to a lack of

a consensus on the formal definition and assessment of this rather

informal notion, in combination with currently available data

being insufficiently detailed to evaluate and characterise the exact

nature of this organisation pattern on a global scale [1,78]. Here,

we utilised the mean clustering coefficient as a function of degree,

as a simple model for detecting hierarchical features in complex

networks. The results indicated the presence of hierarchical orga-

nisation in the cortical network and in both spatially constrained

surrogates, but not in random surrogates. One interpretation of

this finding is that the predominantly local connectivity of the

cortex and the central positioning of high degree regions give rise

to the observed hierarchical structure. However, we cannot

exclude an alternative explanation, namely that it is in fact the

strong evolutionary pressure favouring the presumably function-

ally beneficial hierarchical organization, that led to the observed

spatial embedding of cortical network nodes. Nevertheless, as both

pressures, economical to conserve wiring cost and adaptive to

achieve brain function, appear to benefit from a hierarchical

organisation [18,59], it seems most likely that their joint, mutual

presence resulted in the observed hierarchical pattern in the

structural connectivity of the cortex.

The brain’s modular architecture is organised around spatially

compact modules and their predominantly short, intra-module

connections [77]. This feature of cortical connectivity is believed

not only to keep global wiring costs low (economic pressure), but

also to improve local communication efficiency within its

structurally segregated and functionally specialised modular units

(functional pressure) [18]. Our modularity analysis revealed that

all spatially constrained networks indeed exhibit a strong and

spatially compact modular architecture compared to random sur-

rogates, indicating that basic wiring constraints of cortical regions

naturally result in a tendency for cortical module formation. On

the other hand, the high strength and granularity of the modular

organisation of the cortex is more akin to its reduced surrogates,

than to its relatively less modular spatial surrogates. This suggests

that the long-range cortico-cortical projections may be more

optimally placed towards a highly modular cortical architecture,

than wiring constraints alone would suggest, supporting the widely

acknowledged notion of high functional importance of cortical

modules [21,63,64].

Furthermore, while the module partitions of the cortical network

and its surrogates exhibit considerable differences, we found a set of

cortical areas with modules that are highly preserved both in

reduced and spatial surrogates. According to our analysis, the highly

robust topological encapsulation of these predominantly lateral

modules against the applied spatially constrained rewiring indicates

that their existence can largely be explained by cortical wiring

constraints. Additionally, however, the natural emergence of these

module formations may enable them to provide a consistent base or

‘backbone’ to the cortex’s modular structure both across individual

variation and through development and ageing processes [24]. Such

a modular ‘backbone’ structure could provide the structural basis

for some relatively invariant, recurring components of the con-

tinuously reconfiguring functional networks of the brain [77].

While the exponential degree distribution [12] and hierarchical

organisation already suggested a centralised organisation of cor-

tical topology, we explicitly examined which, if any, parts of the

cortex are located in its topological centre. Surrogate comparison

revealed that the s-core of the high-resolution cortical network is

stronger and larger than those of its spatial surrogates, and similar

to those of its reduced surrogates. Furthermore, confirming pre-

vious results [12], the s-core of the cortical network was found to

be spatially encapsulated at a medial-caudal location, composed

by the precuneus, the cingulate cortex and the superior part of the

occipital lobe. The cortical network, when observed on high-

resolution (but not on low-resolution, see below), therefore appears

to have a spatially compact, central s-core, the strength of which is

significantly higher than its wiring constraints alone would suggest.

One could interpret these findings to suggest that the cortical

network s-core is not a by-product of wiring constraints but may

instead be relevant for the brain’s function; it might even serve the

purpose of a putative central, global integrator substructure among

the otherwise separate, functionally more specialised areas of the

brain [79].

The other candidate central structure, the rich-club of the

cortical network, also exhibits a significantly denser than random

intra-connectedness, which is in agreement with previous studies

detecting a well-expressed cortical rich-club structure [13,17,25].

However, in contrast to our results on the cortical s-core, we found

rich-club structures of similar strength in the reduced and spatial

surrogates. Thus, the rich-club formation of the cortical network

appears to strongly correlate with its wiring constraints and the

spatial distribution of the cortical hub regions (one of the ‘basic’

network property preserved in all surrogate ensembles). These

findings extend earlier studies consistently discovering the brain’s

strong rich-club structure [13,17,25] by pointing to a plausible

relationship between the remarkably dense inter-connectedness of

high degree cortical regions and cortical wiring constraints. It is

important to note, however, that similarly to the case of the

hierarchy analysis, our method does not provide information with

respect to the direction of causation between these network

properties. Thus, it remains to be seen whether the economical

pressure to conserve connection length is in fact the primary

driving factor in the spatial arrangement of hub nodes, or the

functional pressure for rich-club formation necessitates the specific

spatial distribution of hub nodes in the cortex in the first place, and

thus ultimately the formation of the cortical rich-club patterning.

Furthermore, compared to the s-core, the rich-club of the high-

resolution cortical network was found to be internally relatively

loosely coupled and formed by a spatially and topologically rather

dispersed set of regions. These findings render the even spatially
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highly significant, well-confined and more tightly intra-connected

cortical s-core a more appropriate candidate for a putative central

cortical core [12], while the rich-club seems to be more suited for

fulfilling the role of a ‘dynamic router’ [25], a set of distributed

cortical hub regions predominantly connecting their local

neighbourhoods with distant parts and the s-core of the cortex.

Nevertheless, the large (50%) overlap between the s-core and rich-

club regions suggests a great extent of functional cooperation

between these highly intertwined, both topologically and spatially

central cortical structures.

In line with these results, areas in the overlap between the s-core

and rich-club structures of the cortex, the precuneus, the cingulate

cortex and parts of the primary visual cortex (BA 17, 18), have also

been repeatedly identified as global functional hubs of the human

brain [80,81], and found to functionally mediate between cortical

areas that are structurally not directly connected [82]. Furthermore,

some of the regions that belong to both the s-core and rich-club

structures, most notably the precuneus, have also been highlighted

as prominent areas of the default mode network of the brain

[12,83]. These findings suggest that the regions shared between the

cortical network’s s-core and rich-club, are not only topologically

central, but also play a functionally pivotal role in coordinating,

integrating or routing the activity of distant cortical regions in both

resting and task-evoked states of the brain [25,79,83].

Figure 7 summarises the results on the investigated properties

of the cortical network with respect to the three surrogate

groups, at both network resolutions (998 regions at high-

resolution and 66 regions at lower resolution), both for binary

and weighted networks on each resolutions, as well as for the

high-resolution weighted single hemisphere analysis (500

regions). First, comparing the metric values of the cortical

network with those of its surrogates, we note that the cortical

network tends to exhibit more similar values to its reduced than

to its spatial surrogates for several network measures. One could

argue that this may simply originate from the fact that the

spatial surrogates are in general more randomised, and hence

less similar to the cortical network, than reduced surrogates (see

QS in Figure 7). However, while similarities in the expression of

higher level network properties are certainly expected to be

related to the extent of similarity on the lowest level of single

connections, considering solely the overlap in the connection

sets does not satisfactorily explain all observed tendencies.

Indeed, as we showed in Results/Topological similarity, spatial

surrogates are equally different from each other in their

connection sets than from the cortical network, and yet their

network properties are highly similar, but significantly different

from that of the cortex. The overlap QS between connection

sets alone is therefore not a good predictor of the obtained

results, supporting our reasoning about the observed differences

being attributable to the particular connectivity of the cortex –

to its predominantly local connectivity and the specific arrange-

ment of its long-range connections (see Table 1).

Secondly, Figure 7 assesses the consistency of our analyses

across all investigated cortical network types (the five main rows of

Figure 7). We start by noting that the results for several measures,

most notably clustering coefficient, efficiency, small-worldness and

modularity, are highly consistent across all investigated cortical

network types. There is, however, some disagreement in the results

of other complex network measures, specifically the k-core/s-core

and rich-club metrics, across the various cortical networks. Gen-

erally, these disagreements indicate that the significance of the

corresponding network properties (in terms of their relationship to

the corresponding surrogate ensembles) may depend on the reso-

lution the cortical network is observed at, or on the inclusion/exclusion

of connection strengths (estimated number of fibres constituting the

fibre bundles linking the regions), see detailed discussion in Results.

Most notably, at the s-core/k-core metric, the strength of the

cortical core only becomes visible in the high-resolution network,

indicating a change in the organisation of the cortical connectivity

at the different observable network resolutions and underlining the

importance of multi-resolution approaches in connectome re-

search. Specifically, on low resolution we found that the relatively

weak cortical k-core is composed of 80% of the entire cortex,

suggesting a more ‘homogeneous’ (non-centralised) connectivity

between larger cortical regions on low network resolution. In

contrast, on high-resolution the cortical network demonstrates a

relatively small (10%), highly localised and significantly strong core

structure, indicating a rather centralised organisation at the finer

connectivity of the cortex. These findings are largely consistent with

previous results on the s-core of the low-resolution [13] and high-

resolution [12] cortical connectivity, and support the notion that, as

we map the brain’s network on increasingly higher resolutions,

observed connectivity necessarily becomes sparser, leading in turn

to the observation of fundamentally different organisation features

at the various resolutions [78].

In this study, we focused on two distinguishable, supposedly

competing factors that shape brain structure: economic pressure

and functional pressure [18]. We note, however, that there are

other important factors, such as evolutionary or developmental

processes, that are likely to impose certain basic constraints on

brain architecture [18]. Future extensions of this study may need

to incorporate certain aspects of these further constraints, for

example by generating surrogate networks via some neurobiolog-

ically informed developmental model [84]. It is also important to

consider the accuracy of the cortical connectivity dataset used

here. It is well known (and indeed increasingly articulated) that

diffusion magnetic resonance imaging (dMRI) based tractography

techniques suffer from certain biases and constraints, such as

limitations in the ability to track fibre crossings and wide angular

changes along the trajectory of the fibre tract [85,86]. Therefore,

in the current absence of comprehensive tract-tracing data in the

human brain, it will be important that the hypotheses and com-

putational findings of our study are tested against the increasingly

complete and accurate maps dMRI techniques will be delivering

in the future. Relatedly, it is likely that the spatially constrained

surrogate analysis introduced in this study may give insights into

the relative significance and potential origin of certain properties

of the brain networks of other species, such as the cat [17] or the

macaque [75], for which tract-tracing data is available.

Being a real complex network with a diverse and extraordinarily

complex set of functions to carry out, it is not surprising that the

cortex adopts and takes advantage of several functionally bene-

ficial organisation patterns, even given the additional constraints

imposed by wiring constraints [18]. Small-world architecture has been

shown to naturally foster high dynamical complexity [9,87], which

is one of the hallmarks of brain activity [88] and has been

associated with conscious states involving the efficient coordination

of multiple sensorimotor modalities in generating flexible behav-

iour [89]. Modularity is widely acknowledged to promote network

robustness and evolvability by minimising dependencies and

isolating the effect of local mutations and disturbances [2]. It also

has been shown to increase dynamical metastability [63] thus

hindering the pathological cases of prolonged synchronisation and

seizures [90] and again supporting functional flexibility [91].

Hierarchically modular organisation has been found to facilitate limited

sustained network activity [92], it hence may serve a crucial role in

maintaining the critical functional range in which the human

brain operates [93]. Furthermore, the strong central core as well as
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the distributed and yet densely inter- and intra-connected rich-club

structure may play a central role in facilitating efficient global

functional integration and information flow in the cortex [13,25,74]

hence providing the structural basis of various cognitive integration

processes, from sensorimotor integration through attention to

higher cognition and consciousness [77,94]. Combining all these

findings into a single description of the structural connectivity of the

human cortex, our results outline a hybrid, reasonably centralised

and hierarchical, but nevertheless strongly modular anatomical

architecture, with a remarkably strong central network core.

Consistent discovery of characteristic network properties of the

human connectome in this and previous studies emphasises a

fundamental question: What factors contribute to the small-world,

modular, hierarchical and centralised features of the cortical

connectivity? Our results, extending those of earlier studies

[51,95,96], support the notion that the emergence of these network

properties is shaped by a complex interaction involving economic

pressures (towards minimising wiring and running cost of the brain)

and functional pressures (towards stable, reliable and adaptive

operation of the brain) [18]. In this study we characterised how

much each specific network property depended on the first of these

factors, economic pressures, and we found that the level of

dependency differed for different properties. Our results suggest

that the more independent properties, such as the small-world,

modular and core structure of the cortex, may be more related to

the function of the brain than the more dependent ones, such as

hierarchical organisation and rich-club patterning, which may be

primarily driven by economic pressures. These results motivate

further computational and experimental research to uncover the

specific ways in which economic and functional pressures comple-

ment, reinforce or counteract each other in shaping the large-scale

architecture of the human brain.
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17. Zamora-López G, Zhou C, and Kurths J (2010) Cortical hubs form a module for

multisensory integration on top of the hierarchy of cortical networks. Front
Neuroinformatics 4:1.

18. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat
Rev Neurosci 13(5): 336–49.

19. Braitenberg V and Schuz A (1998) Cortex: Statistics and Geometry of Neuronal
Connectivity. Springer-Verlag 2nd edition. 249p.

20. Sporns O and Kötter R (2004) Motifs in Brain Networks. PLoS Biol 2(11), doi:

10.1371/journal.pbio.0020369.

21. Sporns O (2006) Small-world connectivity, motif composition, and complexity of

fractal neuronal connections. Biosystems 85(1):55–64.

22. Sporns O, Honey CJ, and Kötter R (2007) Identification and classification of

hubs in brain networks. PLoS One 2(10), doi: 10.1371/journal.pone.0001049.

23. Watts DJ and Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.
Nature 393(6684):440–442.

24. Echtermeyer C, Han CE, Rotarska-Jagiela A, Mohr H, Uhlhaas PJ, Kaiser M
(2011) Integrating temporal and spatial scales: human structural network motifs

across age and region of interest size. Front Neuroinform 5: 10, doi: 10.3389/

fninf.2011.00010.
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