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Abstract

Pleiotropyhasbeenclaimedtoconstraingeneevolutionbutspecificmechanismsandextentof theseconstraintshavebeendifficult to

demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have

been characterized as intensely as human transcription factors (TFs). We therefore analyzed the evolutionary rates of full TF proteins,

alongwith theirDNAbindingdomainsandprotein-protein interacting domains (PID) in lightof thedegreeofpleiotropy,measured by

the number of TF–TF interactions, or the number of DNA-binding targets. Data were extracted from the ENCODE Chip-Seq dataset,

the String v 9.2 database, and the NHGRI GWAS catalog. Evolutionary rates ofproteins and domains were calculated using the PAML

CodeML package. Our analysis shows that the numbers of TF-TF interactions and DNA binding targets associated with constrained

gene evolution; however, the constraint caused by the number of DNA binding targets was restricted to the DNA binding domains,

whereas the number of TF-TF interactions constrained the full protein and did so more strongly. Additionally, we found a positive

correlation between the number of protein–PIDs and the evolutionary rates of the protein–PIDs. These findings show that not only

does pleiotropy associate with constrained protein evolution but the constraint differs by domain function. Finally, we show that

GWASassociatedTFgenes aremore highlypleiotropic.TheGWASdata illustrates thatmutations inhighlypleiotropicgenesaremore

likely to be associated with disease phenotypes.
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Introduction

Pleiotropy, a term first coined in 1910, describes the phenom-

enon where a single gene has multiple biological functions

(Plate 1910; Stearns 2010) . Initially, pleiotropy was considered

to be rare, as it was thought that most genes only possessed a

single function (Plate 1910), and this idea of a single gene,

single function remained throughout most of the 20th century

(Stearns 2010). However, as our understanding of molecular

biology has improved, it is becoming evident that pleiotropy is

nearly ubiquitous (Stearns 2010), and examples were found in

diverse fields of biology, ranging from normal development

and aging to complex diseases (Sivakumaran et al. 2011;

Wagner and Zhang 2011). Pleiotropy has been previously clas-

sified into seven types (Hodgkin 1998): 1) Artefactual—muta-

tions affect multiple independent genes, 2) Secondary—

proteins affect one biochemical process which results in a

complex set of phenotypes, 3) Adoptive—proteins having

different tissue specific functions, 4) Parsimonious—proteins

preforming the same function in multiple pathways, 5)

Opportunistic—proteins having one primary function and ad-

ditional secondary roles, 6) Combinatorial—proteins having

different functions depending on which proteins it is interact-

ing with, and 7) Unifying - proteins fulfill multiple roles within

a single biological pathway. A well-documented example of

pleiotropy (adoptive) has been shown for ��-crystallin that

contributes to both cataracts and diffuse cardiomyopathy

(Inagaki et al. 2006; Liu et al. 2006; Tyler et al. 2009).

Another example (parsimonious) is the CFTR gene which re-

sults in a range of phenotypes from pancreatic insufficiency

and infertility to lung infections (Vankeerberghen et al. 2002).

It was hypothesized that genes affecting multiple traits

would likely experience stronger purifying selection, thus re-

stricting the rate at which they evolve (Caspari 1952).

Additionally, it was recognized that if multiple phenotypes
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were affected by a single mutation, not all phenotypic effects

would be uniformly beneficial nor uniformly detrimental

(Williams 1957). Such possibly antagonistic effects may

inform our understanding of the maintenance of disease caus-

ing alleles in populations. Many studies have provided evi-

dence for the ability of pleiotropy to constrain gene

evolution, using protein–protein interaction (PPI) networks,

Gene Ontology terms, and phenotypes of gene knockouts

as measurements of pleiotropy (Fraser et al. 2002, 2003;

Jordan et al. 2003; Fraser and Hirsh 2004; Fraser 2005; He

and Zhang 2006; Kim et al. 2006; Salathe et al. 2006; Artieri

et al. 2009; Chang et al. 2013). Despite the support for the

existence of pleiotropic constraints, prior studies could not, for

the most part, explicitly describe the underlying molecular pro-

cesses that impact the rate of gene evolution and whether

domain function directly affected the degree of constraint.

Additional models of evolutionary constraints have also been

proposed that act independently of pleiotropy (Zhang and

Yang 2015), such as developmental stage (Piasecka et al.

2013), gene methylation status (Chuang and Chiang 2014),

protein synthesis (Yang et al. 2010, 2014), protein folding

(Drummond and Wilke 2008; Yang et al. 2010), contact den-

sity (Zhou et al. 2008), codon bias (Akashi 1994; Ran et al.

2014), and gene expression (Drummond et al. 2005; Pal et al.

2006; Gout et al. 2010; Yang et al. 2012) (currently consid-

ered the major driver of evolutionary constraint), although

these have not been extensively examined in conjunction

with possible pleiotropic constraints in multicellular organisms.

In recent years, the generation of high quality, large-scale,

and less biased datasets, documenting gene and protein func-

tions, have provided powerful resources to study the molecu-

lar mechanisms underlying pleiotropic constraint (Tang et al.

2014). Projects such as ENCODE (Gerstein et al. 2012; Al-

Maawali et al. 2015), provide an unparalleled set of functional

information on proteins within the human transcription factor

(TF) network, including the number of interacting partners

that serve as a measurement of pleiotropy. The breadth and

quality of these and related data allow us to assess fundamen-

tal questions regarding the role of domain function in con-

straining gene evolution.

In this study, we looked at the number of TF–TF interac-

tions, and the number of DNA binding targets as measures of

pleiotropy. Based on the seven types of pleiotropy, these mea-

surements of pleiotropy would primarily qualify as opportunis-

tic, although these data likely include instances of adoptive,

combinatorial and unifying pleiotropy. We explored how

these two measurements of pleiotropy correlated to the evo-

lutionary rates of the full proteins as well as each class of

functional domain separately. More specifically we investi-

gated whether the constraint caused by the two molecular

functions differed with respect to how they constrained the

protein’s and/or domain’s evolutionary rates (fig. 1A).

Additionally, we were interested in how the number of TF-

TF interactions and the number of DNA binding targets

correlated with the number of protein interacting domains

(PIDs) and DNA Binding domains (fig. 1B). We also assessed

whether TFs identified in GWAS are more pleiotropic and

more constrained than non-associated TFs.

Methods

Human TF Identification and Sequence Retrieval

TFs were identified as previously described (Ravasi et al. 2010);

briefly, any gene that is annotated as a “TF” by the Gene

Ontology database or Roach et al. (2007), as well as all

genes whose Entrez description field contains the word “tran-

scription” was considered a TF. After annotating using these

automated processes, the gene list was manually curated to

remove any genes that did not belong on a list of TFs, resulting

in a final list of 1988 TFs in the human genome (Ravasi et al.

2010).

In order to calculate the evolutionary rates of the TF pro-

teins and functional domains, we first collected orthologs of

each of the 1988 TF genes from NCBI for the following 12

species: Homo sapiens, Pan paniscus, Macaca mulatta, Pan

troglodytes, Nomascus leucogenys, Chlorocebus sabaeus,

Tarsius syrichta, Papio anubis, Callithrix jacchus, Otolemur gar-

nettii, Saimiri boliviensis, and Gorilla gorilla. On average we

were able to identify orthologues in 9.3 species per human

TF; the average of fewer than 12 orthologous sequences per

TF was due to incomplete annotation and sequencing of non-

human species. Each coding sequence (CDS) was identified

based on the corresponding Genbank file for each gene and

was later used for all evolutionary rate calculations for the full

proteins as well as their functional domains.

Functional Domain Identification

To calculate the evolutionary rates of the functional domains,

each human TF CDS was translated into its amino acid se-

quence using the translate function in Biopython package

Bio.Seq (Cock et al. 2009). These protein sequences were

then run through the NCBI Batch Web CD-Search Tool against

the Conserved Domain Database (Marchler-Bauer et al. 2011)

to identify all annotated domains in each protein. Based on

the domain descriptions from the NCBI CD database, we iden-

tified all domains related to either PPIs or DNA binding. These

domain sequences were then aligned to the orthlogous pro-

tein sequences for all available non-human species, using

ClustalOmegaCommandline in the Biopython package

(Cock et al. 2009) . This selection process allowed us to accu-

rately define functional domains for species whose genomes

are poorly annotated. All PPI domains within a single protein

were concatenated to form a single sequence. Similarly, all

DNA binding domains (DBD) within a single gene were con-

catenated. Additionally, we also counted the total number of

PPI domains and DNA binding domains found in each gene.
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Evolutionary Rate Calculation

Each set of full length CDS and all sets of orthologous

domains were aligned codon by codon using the

ClutsalOmegacommandLine (Cock et al. 2009). This align-

ment was used to create a Maximum Likelihood tree using

the RaxML commandline package in Biopython (Stamatakis

2006; Talevich et al. 2012). The sequence alignments and

phylogenetic trees were then used to calculate the evolution-

ary rate (dN/dS) using PAML codeml program (seqtype = 1,

NSsites = [0], CodonFreq = 2, fix_alpha = 1, kappa = 4.54006,

model = 0, RateAncestor = 0), which were generated under a

neutral evolution model (Nei and Gojobori 1986; Yang 2007;

FIG. 1.—Models of constraint. (A) A hypothetical protein containing two domains of different molecular functions (Red or Blue). Brackets illustrate which

regions of the protein are constrained, and arrows show the direction of the constraint. Top) the molecular function in question exhibits no constraint on the

evolutionary rates of either functional domain class. Bottom) The molecular function in question can exhibit either a constraint on the evolutionary rate of a

single class of domains (Restricted Constraint), or constrain both/all classes of domains (Global Constraint). In the case of a global constraint, arrows indicate

the direction that the constraint is acting (i.e., the function of the Red domain directly constrains the Red domain and indirectly the Blue domain [Red

! Blue]). (B) Each red circles indicate a protein domain in a single class of functions, the number of lines indicate the number of interactions in which each

domain is involved. Each column models what would happen to the number of interactions as the number of domains increases from one to three

under three different hypotheses. Left Column) No correlation—the total number of interactions that a protein is involved in does not change as the number

of domains increases from one to three, Middle column) Direct correlation—the total number of interactions increases linearly as the number of do-

mains increases from one to three, Right Column) Inverse correlation—the number of interactions decreases as the number of domains increase

(increased specificity).
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Talevich et al. 2012). When either the dN = 0 or the dS = 0 a

value of 0.0001 was automatically assigned by the software;

these cases were removed from our analyses, as the assigned

value does not accurately reflect the evolutionary rate of the

protein. The resulting dN/dS scores were used as the evolu-

tionary rate for all analyses in this study.

Number of TF–TF Interactions

To determine the number of PPIs between 2 TFs (TF–TF inter-

actions) for each TF in our dataset we mined the STRING v9.1

protein interaction database (Franceschini et al. 2013). Our

search was restricted to TF-TF interactions with High-through-

put experimental evidence, thereby reducing the bias that

might be created for well-studied genes. In total we were

able to find 80,155 TF–TF interactions for 1,661 TFs (mean

= 70.2 interactions per TF), accounting for 2% of the total

interactions in the entire STRING v9.1 database. This yielded

the number of TF–TF interactions for each of the 1,661 genes

for which the data was available.

Number of DNA-Binding Targets

The number of DNA-binding targets for each TF was calcu-

lated from wgEncodeRegTfbsClusteredV3 database, found at

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgE

ncodeRegTfbsClusteredV3. The ENCODE TfbsV3 data set con-

sists of 690 Chip-Seq experiments, encompassing 161 TF and

91 different cell lines, with all TFs having at least 2 replicates.

The data collection for all experiments followed the ENCODE

Guidelines for Experiments for ChIP-seq experiments

(Consortium 2004; Gerstein et al. 2012; Wang et al. 2013).

As part of the Standard Protocol for Encode ChIP-seq ex-

periments, every experiment was subject to two peak calling

procedures (Consortium 2004), SPP (which determines peaks

based on by the Signal Score ([ChIP signal enrichment]/[input

DNA signal])) (Kharchenko et al. 2008), and PeakSeq (which

determines peaks based on the expected false discovery rate)

(Rozowsky et al. 2009). Data shown is from the SPP peak calls,

which were shown to be consistent for peak calling (Zhang

et al. 2009). This yielded the number of DNA binding tar-

gets for each of the 161 genes for which the data were

available.

GWAS Association

In order to determine which genes were associated with dis-

ease phenotypes, we mined the NHGRI GWAS catalog NHGRI

GWAS catalog (Welter et al. 2014). All TF genes associated

with SNPs that reached genome wide significance (P-value <

10�8) in at least 1 GWAS were recorded as being a GWAS

associated TF, all other TF genes were recorded as not being

GWAS associated.

Statistics

In total, we calculated eight variables for each of the 1,988 TF

encoding gene (no. of TF–TF interactions, no. of DNA binding

targets, dN/dS of full TF, dN/dS of PPI domains, dN/dS of DNA

binding domains, no. of PPI domains, no. of DNA binding

domains, and GWAS association). We tested for correlation

among the variables as shown in supplemental table S1,

Supplementary Material online. The dN/dS measurements,

no. of TF–TF interactions and no. of DNA-binding targets

were natural log transformed in all analyses in this study.

Correlation and significance (P-value) between all sets of con-

tinuous data were performed using the linear model package

in R. Correlations including either the no. of PID or no. of DBD

were calculated using Spearman Rank Correlation, all other

correlations were calculated using Pearson correlation.

Students t-test was used to test differences between GWAS

and non-GWAS groups of TFs in regard to the no. of TF–TF

interactions, DNA-binding targets, or dN/dS values.

Heterogeneity among correlations was calculated based on

a one-tailed Fisher r-to-z transformation to assess the signifi-

cance of the differences between two correlations.

Results

Evolutionary Rates of Complete TF Coding Regions

In general, we found that increasing pleiotropy in TFs did con-

strain gene evolution as TFs with more interactions had a

lower evolutionary rates regardless of the molecular function.

The evolutionary rates of the TFs (as assessed by dN/dS) were

negatively correlated with both the number of TF–TF interac-

tions (Pearson r =�0.310, P-value = 5e-36; fig. 2A) and the

number of DNA-binding targets (Pearson r =�0.199, P-value

= 0.014; fig. 2B). However, the correlation of dN/dS with TF-

TF interactions were not significantly stronger than the corre-

lation with the DNA binding targets (P-value = 0.0823).

Additionally, we saw a significant positive correlation between

the numbers of TF–TF interactions and the DNA binding tar-

gets (Pearson r = 0.337, P-value = 2e-05; fig. 2C). Therefore, it

is clear that having more TF–TF interactions and DNA binding

targets is associated with slower gene evolution, but the effect

size varies with domain function.

Evolutionary Rates of TF Protein Domains

The number of TF–TF interactions affected the evolution of

both PPI and DNA binding domains. In contrast, the number

of DNA-binding targets per TF only affected the evolution of

the DNA binding domains (fig. 2). The evolutionary rates of

both the PPI and DNA-binding domains were negatively cor-

related with the number of TF–TF interactions (Pearson

r =�0.191, P-value = 9e-7; fig. 3A, and P-value = 6e-06;

fig. 3B, respectively). The number of DNA-binding targets,

however, only constrained the evolution of the DNA-binding

domains (Pearson r =�0.271, P-value = 0.045; fig. 3D), as no
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significant correlation was seen with the evolutionary rates of

domains involved in PPI (Pearson r = 0.081, P-value = 0.607;

fig. 3C). These findings demonstrate that the specific pattern

of constraint differs by domain function(s).

Number of Functional Domains Affects Gene Evolution

In addition to the number of binding partners (either PPI or

protein-DNA) affecting gene evolution, the number of do-

mains per TF positively correlated with the evolutionary

rates of the TFs. We investigated how the number of PPI

domains correlated to the evolutionary rates of these do-

mains, as well as, to the number of TF–TF interactions. We

found that as the number of PPI domains increased the

evolutionary rates of the PPI domains also increased

(Spearman r = 0.167, P-value = 1e-08; fig. 4A; table 1).

This is consistent with a reduced constraint on domain

evolution, as increasing numbers of PPI domains in a

gene results in faster evolutionary rates.

Increasing numbers of PPI domains correlated with both

fewer TF–TF interactions overall and per domain. The correla-

tion between the number of PPI domains and the number of

TF–TF interactions was highly significant and negative

(Spearman r =�0.455, P-value = 1e-51; fig. 1B; table 1).

Additionally, the number of PPI domains negatively correlated

with the number of TF–TF interactions per PPI domain

(Pearson r =�0.779, P-value = 2e-157; table 1; supplemen-

tary fig. S1a, Supplementary Material online). Therefore, over-

all more PPI domains correlated with fewer interactions per

protein.

As the number of PIDs increased, the variance in the evo-

lutionary rates of the PIDs decreased (Pearson r =�0.777,

P-value = 0.0002; table 1; supplementary fig. S1b,

Supplementary Material online). Additionally, as the number

of PPI domains increased, the variance in the number of the

TF–TF interactions also decreased (Pearson r =�0.592, P-value

= 0.016; table 1; supplementary fig. S1c, Supplementary

Material online). This relationship between the number of do-

mains and both the domain evolutionary rates and number of

TF–TF interactions was only observed for the PPI domains, as

no significant correlations were found between the number of

DNA binding domains and evolutionary rates of these do-

mains nor with the number of DNA binding targets (table 1;

supplemantary fig. S2, Supplementary Material online).

Pleiotropic Constraint in Disease Associating TFs

Finally, we tested whether mutations that predispose individ-

uals to disease are more pleiotropic than those that do not, as

such highly pleiotropic genes are more likely to have under-

gone selection. Such selection should constrain the evolution-

ary rates of more pleiotropic genes (Blekhman et al. 2008; Cai

et al. 2009). We then compared the levels of pleiotropy be-

tween GWAS associated and non-GWAS associated TFs. TFs

associated with human disease in a GWAS had significantly

higher ln(no. of TF-TF interactions) than those not found in the

GWAS catalog (GWAS associated genes (mean = 4.1), non-

GWAS associated genes (mean = 3.5), P-value = 9e-14;

fig. 5A). A similar trend was observed for the ln(no. of DNA

binding targets); however, this did not reach statistical signif-

icant (GWAS associated genes (mean = 10), non-GWAS as-

sociated genes (mean = 9.5), P-value = 0.078; fig. 5B). The

lack of statistical significance may be due to a greatly reduced

sample size (n = 28). Additionally, GWAS-associated TFs are

more evolutionarily constrained, as they appear to have lower

ln(dN/dS) (GWAS associated genes (mean =�2.4), non-

GWAS associated genes (mean =�2.1), P-value = 4e-6;

fig. 5C). These results indicate that highly pleiotropic genes

FIG. 2.—Pleiotropic constraints on protein evolutionary rate. X-axes represent the log transformed number of either DNA-binding targets or TF–TF

interactions sand the Y axes are the log transformed evolutionary rates as measured by dN/dS for A and B. (A) The ln(evolutionary rate of the full TF) plotted

against the ln(TF–TF interactions), n = 1,552. (B) The ln(evolutionary rate of the full TF) plotted against the ln(DNA-binding targets), n = 152. (C) The

correlation between the log transformed number of TF–TF interactions and the log transformed number of DNA-binding targets, n = 154. dN/dS =

evolutionary rate, TF–TF = no. of TF–TF interactions, DNA binding targets = no. of TF–DNA interactions.
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are more likely to be associated with a disease phenotype

when mutated, and disease associations are reflective of evo-

lutionary rates.

Discussion

Pleiotropic Constraints on Evolutionary Rates of the Entire
TF CDS

Our study provided supportive evidence that pleiotropy con-

straints the evolution of TFs, but importantly also demon-

strated that the constraints operate in a domain specific

manner. TF–TF interactions constrain the evolutionary rates

of the entire TF-CDSs. This is consistent with previous studies

of PPI networks (Fraser et al. 2002, 2003; Fraser and Hirsh

2004; Fraser 2005; He and Zhang 2006; Kim et al. 2006;

Salathe et al. 2006; Chang et al. 2013). However, unlike the

prior studies we were also able to show that TF evolution was

also constrained by the number of DNA binding targets. These

data taken as a whole indicate that pleiotropic constraint is

not limited to proteins with specific molecular functions but is

a generic property of pleiotropy.

Constraints on Domain Specific Evolutionary Rates

We were also able to assess whether and the degree to which

constraints operated within and across domains. TF–TF inter-

actions not only constrained the entire gene CDS, as noted

earlier, but the PPI domains also were significantly associated

with constraint on the DNA-binding domains. In contrast, the

constraint produced by the number of DNA-binding targets

was restricted to the DNA binding domains, possibly explain-

ing the overall weaker effect on the entire protein (fig. 6A).

This reduced correlation could also result from the fact that

many of the DNA motifs that a TF binds in vitro are not func-

tional and hence would not affect the evolutionary rate of the

protein. This is easy to argue as 60% of DNA-binding targets

were not upstream of transcription start sites and therefore

FIG. 3.—Pleiotropic constraint over functional domain evolutionary rate. X-axes represent the log transformed number of either DNA binding targets or

TF–TF interactions and the Y axes are the log transformed evolutionary rates of functional domains, either protein– PID or DNA-binding Domain (DBD) as

measured by dN/dS. (A) The ln(evolutionary rate of the PID) plotted against the ln(TF–TF interactions), n = 651. (B) The ln(evolutionary rate of the DBD) plotted

against the ln(TF–TF), n = 422. (C) The ln(evolutionary rate of the PID) plotted against the ln(DNA-binding targets), n = 44. (D) The ln(evolutionary rate of the

DBD) plotted against the ln(DNA-binding targets), n = 55. dN/dS, evolutionary rate; TF–TF, no. of TF–TF interactions; PID, protein-interacting domains; DBD,

DNA-binding domains; DNA-binding targets, no. of TF–DNA interactions.
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are less likely to constrain evolution (Gerstein et al. 2012).

Such noise in the data could lead to lower correlations be-

tween evolutionary rates and number of DNA-binding targets.

However, if our lack of knowledge hides truly functional sites

the degree of noise would be less.

Number of Domains Affect the Degree of Constraint

TFs with more PPI domains evolve at faster rates than those

with fewer PPI domains, consistent with a reduced constraint

on individual domains within each TF. This reduction in con-

straint can be explained by the finding that TFs with more PPI

domains also tend to have fewer interactions per domain and

per protein. Therefore, as each domain interacts with fewer

proteins, there would be less constraint on each domain’s

evolution. This would result in faster evolution. However,

these findings conflict with the prior literature, where it was

shown that there was no significant correlation between the

number PPI domains and average number of interactions in

the human PPI network. Instead the correlations were driven

by the proportion of each gene that encoded PPI domains (Xia

et al. 2008). Additionally, in yeast it was shown that the more

interacting surfaces that a protein has, the lower its evolution-

ary rate (Kim et al. 2006). While these studies do conflict

with our results, it is important to distinguish these studies

from our own, as they were not specifically looking at TFs.

This distinction is important because of the overabundance of

highly specific interactions and protein complexes found

in the TF network (Thorsten and Valkhard 2014). It is there-

fore important to note that these findings (regarding the

number of PPI domains) may not be reflective of other classes

of genes outside of TFs; this possibility will require further

analyses.

At first glance, the negative correlation between the

number of PPI domains and the number of TF-TF interactions

is counter-intuitive. However, this can be explained by the

hypothesis that TFs have evolved greater numbers of PPI do-

mains, to allow for higher specificity of domain interactions

(fig. 6B). Consistent with this, it has been proposed that to

increase the precision of gene regulation, protein interacting

surfaces (mainly PPI domains) need to eliminate competition

between prospective interacting partners; this can be accom-

plished by evolving domains specific to only a few interactions

(Kim et al. 2006; Keskin and Nussinov 2007; Thorsten and

Valkhard 2014). This may occur for one of several varieties

of reasons; for example, if a TF is part of a larger complex of

proteins you might expect it to possess multiple PPI domains,

with each domain being designated to a specific interaction

with another member of the complex. This would allow the

components to tightly regulate each complex’s assembly, sta-

bility, and function.

Robustness and Evolvability in TFs

Our results showed structural and functional elements of TF

that significantly associate with their evolutionary rates. Our

discussion has been largely focused on constraint, but such

patterns amy also have implications for robustness and evol-

vability of genes. In a simplified view these three terms can be

thought of as a spectrum; 1) constraint: the inability to tolerate

mutation, 2) robustness: the ability to tolerate mutation with-

out affecting function, and 3) evolvability: the ability to benefit

from mutation (Masel and Trotter 2010) (resulting in negative,

neutral, and positive selection, respectively). The largest impli-

cations derive from the correlations between the number of

TF–TF interactions, the number of PID, and evolutionary rates.

As argued earlier, TFs with many PIDs appear to have a higher

specificity of interactions. The finding that these TFs evolve at

faster rates also suggests that they are more robust, as muta-

tions are less apt to disrupt their function(s) as a TF.

Furthermore these mutations may allow the TF more likely

to evolve novel interactions.

FIG. 4.—Pleiotropic constraint over functional domain count. X-axes

for A–B show the number of PID identified within each TF. (A) The ln(evo-

lutionary rate of the PID) plotted against the number of PID, n = 789. (B)

The ln(TF–TF) plotted against the number of PID, n = 769. dN/dS, evolu-

tionary rate; TF–TF, no. of TF–TF interactions; PID, protein-interacting do-

mains; DBD, DNA-binding domains,.
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Correlation of the TF–TF and DNA-Binding Targets

We found a positive correlation between the number of TF–TF

interactions and the number of DNA binding targets. It makes

intuitive sense that these numbers are related to one another

and suggests that there may be a causal relationship between

them. This relationship could be due to either of the following

two hypotheses:

1) As a TF acquires more TF–TF interactions over the course

of evolution, these novel interactions facilitate a given TF’s

binding to more sites in the genome;

2) As a TF acquires more DNA binding targets over the

course of evolution, these novel binding sites can place the

TF in physical proximity to other TFs, facilitating more and

novel TF–TF interactions.

Although speculative, we argue that the differential con-

straint on domain evolutionary rates between the TF–TF inter-

actions and DNA-binding targets, shown in figure 3, indirectly

supports hypothesis 1. The reason for this is that if the DNA

binding targets are dependent on the TF–TF interactions, it is

likely that the evolutionary rates of the DNA-binding domains

would be correlated to the number of TF–TF interactions

(fig. 3C). However, if the alternative were true, then we

would expect to find that the number of DNA binding targets

would significantly correlate with the evolutionary rates of the

FIG. 5.—GWAS association with Pleiotropic functions. The X-axis of A–C splits the genes into two groups, genes that have been identified in at least one

GWAS study and genes that have not (NO_GWAS). (A) The Y axis represents the log transformed number of TF–TF interactions, n of GWAS = 219, no of

non-GWAS = 1,392. (B) The Y axis represents the log transformed DNA binding targets, no. of GWAS = 27, no. of non-GWAS = 134. (C) The Y axis

represents the log transformed evolutionary rate of the full TF, no of GWAS = 223, no of non-GWAS = 1,708. Notches show 95% CI.

Table 1

Summary statistics from linear models between the values described in column 1 and either the no. of PID of the no. of DBD for each protein

No. of PID No. of DBD

No. Spearman r P-value No. Spearman r P-value

ln(dN/dS of PIDs) 788 0.201 1.318E-08 220 �0.117 0.0834

Variance of ln(dN/dS of PIDs) 16 �0.777 1.07E-04 5 �0.584 0.335

ln(no. of TF–TF interactions) 768 �0.508 1.39E-51 683 �0.030 0.434

ln(no. of TF–TF interactions per PID) 768 �0.779 2.44E-157 223 �0.052 0.805

Variance of ln(no. of TF-TF interactions) 15 �0.592 0.016 6 �0.365 0.42

ln(dN/dS pf DBDs) 135 0.055 0.524 444 �0.036 0.448

Variance of ln(dN/dS of DBDs) 8 �0.144 0.734 6 �0.312 0.4959

ln(no. of DNA-binding targets) 57 �0.021 0.98 86 �0.084 0.439

ln(no. of DNA-binding targets per DBD) 33 �0.110 0.537 86 �0.234 0.029

Variance of ln(no. of DNA binding targets) 5 0.157 0.766 4 0.888 0.112

NOTE—For analyses of variance, each data point refers to the variance of either no. of TF–TF, no. of DNA-binding targets, or dN/dS for all TFs containing a specified
number of domains (i.e., the variance of no. of TF–TF interactions for all TFs with 1 PID, 2 PID, 3 PID, etc.).
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PPI domains; since this was not observed this argues against

alternative 2. It is also possible that this differential constraint

could be the result of an unknown cofounder. Additionally, a

similar model to hypothesis 1 has been put forth. In this

model, as a transcriptional regulator (bound to DNA) interacts

with new protein partners, the neighboring DNA sequences

can then undergo selection to optimize the recruitment and

affinity of the new protein interacting partner to the DNA sites

(Tuch et al. 2008). This model illustrates how the gain of novel

TF-TF interactions can facilitate new DNA binding targets

(Tuch et al. 2008). This model also provides a more parsimo-

nious means for evolving transcriptional circuitry, than hypoth-

esis 2, due to the need for compensatory evolution. In

hypothesis 1 this compensatory evolution would occur by mu-

tating the neighboring DNA sequences; however, under hy-

pothesis 2 the compensatory evolution would involve

mutating the CDS in order to optimize the new TF–TF inter-

actions. Because DNA is more robust than proteins, mutating

DNA is likely to have less detrimental effects than mutating

proteins. Furthermore, evolving new DNA binding targets

FIG. 6.—Possible molecular models of constraints. (A) Differential constrains applied to gene evolution from both the no. of TF–TF interactions and the

no. of DNA binding targets. Blue line represents a linear diagram of a hypothetical protein containing 1 protein-interacting domain (Orange) and 1 DNA-

binding domains (Red). (B) Ribbon diagram of a protein illustrating the effect of having a single protein-interacting domain (Left), versus multiple protein-

interacting domains (right). Arrow shows direction of the global constraint.
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would likely only facilitate a small number of novel TF–TF in-

teractions, whereas new TF–TF interactions could potentially

facilitate many DNA binding targets (one for each location

where the new TF interacting partner is located on the

genome).

Pleiotropy and Epistasis

The correlation between the number of TF–TF interactions and

the number of DNA binding targets also raises an interesting

question regarding the likely connection between pleiotropy

and epistasis. At the molecular level, pleiotropy is defined as

the ability a gene product to be involved in multiple molecular

functions, and epistasis can be defined as the ability of one

gene to modulate the function of another gene. Over evolu-

tionary time newly acquired molecular functions (i.e., pleiot-

ropy) are capable of altering the function of another gene (i.e.,

epistasis), the altered gene function can, in turn, facilitate the

acquisition of additional novel functions (i.e. pleiotropy).

A similar non-evolutionary argument has bene made for the

relationship of epistasis and pleiotropy (Tyler et al. 2009).

Pleiotropic Constraint on Disease Genes

We showed that highly pleiotropic genes are more likely to be

associated with a disease phenotype. This may be explained by

two ideas: 1) The more processes a gene is involved in the

more likely that gene is to be involved in an essential process,

the disruption of which would result in a disease phenotype or

2) Disease phenotypes may arise from the disruption of mul-

tiple molecular processes, such as the disruption of cell cycle

signaling pathways and apoptotic pathways in cancer progres-

sion (Vogelstein and Kinzler 2004; Gundem et al. 2015). These

alternatives are not necessarily mutually exclusive. We also

showed that disease associated genes have a high probability

of being evolutionarily constrained, as they appear to present

with significantly lower evolutionary rates than non-disease

associated genes. This indicates that disease status does

appear to reflect purifying selection, as the lower evolutionary

rate is consistent with some alleles being removed from a

population over evolutionary time (Blekhman et al. 2008;

Cai et al. 2009). When both the pleiotropic and evolutionary

data are taken together these findings show that this pleio-

tropic constraint does not only exist at the molecular level, but

is also applicable at the phenotypic level (i.e., clinical pheno-

types) (Sivakumaran et al. 2011; Wagner and Zhang 2011).

Limitations of This Study

There has been discussion as to how the bias of gene expres-

sion can influence the number of PPI that are known for a

given protein. This is primarily driven by the fact that it is easier

to identify interacting partners for highly expressed genes due

to technological limitations. Several models have been put

forth arguing that gene expression alone could affect evolu-

tionary rates, regardless of pleiotropy. And while there is

evidence to suggest that gene expression alone may constrain

gene evolution, there have still been several studies that still

show a significant (albeit weaker) correlation between the

functional importance of a gene and evolutionary rates

when controlled for gene expression (Wall et al. 2005;

Zhang and He 2005). Unfortunately, there are several prob-

lems with interpreting these results in human gene evolution

that are absent in model systems such as yeast, where much

of this work has been done. Gene expression for complex

animals are highly context dependent and the profiles will

vary based on numerous factors, including which tissue the

samples were taken from, race/ethnicity, age of the donor,

and disease that the donor suffered from (such as from tumor

cell lines). Therefore, adjustments for gene expression in

human will likely change results and interpretation with re-

spect to constraint and pleiotropy as a function of these and

other factors. Nonetheless, we would argue that given the

strength of some of the associations we detected the results

for pleiotropy are likely to remain in at least some of the cases

we observed.

Another limitation we encountered is how few TFs had

DNA binding target data available. Due to the limited

number of TFs with the available data, we found several cor-

relations that were marginally significant or only near signifi-

cant. With a small sample size it is difficult to say whether

these correlations are real or not. Additionally, although not

as big a problem, the PPI, domain descriptions and GWAS

datasets are also incomplete, as not all interactions, domains,

and disease associations are known for all TFs. With growing

databases, the ability to assess the role of pleiotropy on gene

evolution will improve and these relationships will continue to

be resolved.

Conclusion

In this study, we showed that molecular pleiotropy is not only

capable of constraining gene evolution, but that this con-

straint appears to differ by molecular function. We also

showed that the number of PPI domains appears to uniquely

constraint TFs, as the correlations we found were not ob-

served for other sets of proteins in prior studies. These findings

have implications for studies of protein and network evolu-

tion. In addition, TFs that are more pleiotropic are more likely

to be associated with human disease risk. These findings em-

phasize the importance of studying pleiotropy to better un-

derstand how patterns of genetic variation are shaped and

how pleiotropy can contribute to human diseases.

Supplementary Material

Supplementary table S1 and figures S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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