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Abstract. Current research supports the strong potential of structural MRI profiles, even within cross-sectional designs, as a
promising method for the discrimination of Alzheimer’s Disease (AD) from normal controls and for the prediction of Mild
Cognitive Impairment (MCI) progression and conversion to AD. Findings suggest that measures of structural change in mesial
and lateral temporal, cingulate, parietal and midfrontal areas may facilitate the assessment of a treatment’s ability to halt the
progressive structural loss that accompanies clinical decline in MCI. The performance of prediction is likely to continue to improve
with the incorporation of measures from other neuroimaging modalities, clinical assessments, and neuromedical biomarkers, as
the regional profile of individuals at risk for progression is refined.
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1. Introduction

As one of the most serious health issues facing the
U.S. today, AD may afflict an estimated 13.2 million
people in 2050, with current cost of caring for indi-
viduals with AD estimated at $148 billion per year in
the US [1,12]. Millions more individuals are suffering
prodromal cognitive impairment that may be related to
AD [40]. To facilitate the development of therapies
aimed at preventing or delaying the progression of AD,
research has focused on the search for sensitive, non-
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invasive, in vivo biomarkers that would enable earlier,
more accurate clinical diagnosis and aid in monitor-
ing disease progression and the effectiveness of thera-
peutic intervention [26,35,36,82]. Neuroimaging mea-
sures, which are sensitive to AD-related neurodegen-
eration early in the disease, hold significant promise
as direct measures of disease-modifying treatment ef-
fects [66,73,82]. Numerous neuroimaging approach-
es provide insight into the neuronal and synaptic loss
of AD, including structural MRI, positron emission to-
mography (PET), and functional MRI. Such measures
may improve the sensitivity and specificity of detecting
AD at early stages and assist in identifying individuals
at risk for developing AD. Early identification would
allow treatment to begin before significant functional
impairment or extensive irreversible neuronal damage
occurs and may permit shorter treatment trials by fo-
cusing on patients with high likelihood of imminent
conversion. Structural MRI measures in particular are
non-invasive and relatively free from confounding be-
havioral factors, and, as a result, these measures may
be less variable in assessing treatment effects relative
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to performance on commonly used cognitive tests [46,
48]. This decrease in variability may result in greater
statistical power in clinical trials, enabling the use of
smaller sample sizes. Cross-sectional, structural MRI
research has provided insight into the neuroanatomical
profiles of pre-clinical and early AD and has demon-
strated significant value in the prediction of conversion
and disease progression.

2. Neuropathology of Alzheimer’s disease

Neuropathological studies have defined the basic
neurodegenerative profile of AD through the distribu-
tion of hallmark features, amyloid plaques and neu-
rofibrillary tangles. While amyloid deposits in the cere-
bral cortex show considerable inter-individual variation
in density and distribution in the early stages of AD,
the characteristic distribution of neurofibrillary pathol-
ogy allows post-mortem differentiation of progressive
stages of AD [9,10]. Neurofibrillary changes first ap-
pear in the transentorhinal area, then migrate into lim-
bic areas before spreading into neocortical association
areas [9,10,66]. Clinical diagnosis of AD typically ac-
companies the third stage, when modest neuropathol-
ogy is observed in hippocampal structures and severe
neuropathology is observed in the transentorhinal and
entorhinal areas, affecting many of the projection neu-
rons within these areas [9,10]. Structural MRI has pro-
vided insight into identifying the profile of early stage
pathogenesis in vivo.

3. Mild cognitive impairment

The study of individuals with Mild Cognitive Im-
pairment (MCI), which has been recognized as a po-
tential prodromal stage of AD, may increase our ability
to detect early changes. MCI refers to a syndrome of
impairment on one or more standardized tests of cog-
nitive function of insufficient severity to cause func-
tional impairment [64,66,68,69]. When memory is one
of the cognitive domains involved, often referred to
as “amnestic MCI,” individuals are at increased risk
of converting to AD, estimated at 10–15% per year
compared with 1–2% per year for cognitively intact
elderly [68]. In addition, at autopsy the majority of
amnestic MCI individuals show pathological features
of AD, supporting amnestic MCI as a transitional state
between healthy aging and AD [60,64,70]. MCI is a
heterogeneous disorder, however, as some individuals

do not progress, others convert to non-AD dementia,
and a few revert to normal cognitive status [8]. Autop-
sy studies of amnestic MCI cases have confirmed this
heterogeneity with individual cases demonstrating non-
AD pathology, such as hippocampal sclerosis or sub-
cortical ischemic vascular disease, despite similar cog-
nitive characterization [49,70]. There is significant po-
tential for neuroimaging to provide a more comprehen-
sive characterization of AD-related structural changes
in MCI individuals that may further define the prodro-
mal stages of AD.

4. Cross-sectional structural MRI in AD and MCI

As expected from the neuropathological and clinical
profiles of AD, structural MRI has supported significant
atrophy in mesial temporal structures affected early in
the neurodegenerative process as well as in temporo-
parietal association areas [3,9,10,71,77,83,84]. These
studies in AD individuals have also shown that early
atrophy in these regions is followed by more extensive
involvement of frontal and parietal regions, leaving pri-
mary and secondary sensory areas relatively spared un-
til late in the disease [3,9,10,77,83,84]. Consequently,
studies in early AD and in those at risk for AD, such as
individuals with MCI, have focused primarily on mesial
temporal regions, demonstrating that hippocampal and
entorhinal cortex typically are smaller than those mea-
sured in controls [3,5,7,14,24,45,52,53,58,76,88], pre-
dictive of future conversion to AD [18,19,21,44,47,58,
59,79], and correlated with memory impairment [25,
37]. The definitive classification and specificity of
these changes to AD, particularly for the hippocampus,
remain a challenge [85], and ongoing work continues
to examine additional regions and patterns of regional
changes [42,54,56,75,76,84,87]. The cingulate cortex,
for example, has been shown to exhibit changes in at-
risk individuals [41,50] and in those known to even-
tually convert to AD [57], and recent work suggests
that MCI individuals with impairment in other cogni-
tive domains in addition to memory (multiple-domain
MCI, or MMCI) may evidence thinner precuneus cor-
tices relative to individuals with impairments restricted
to the memory domain (single domain MCI, or SM-
CI) [75]. An accurate depiction of the earliest patterns
of degenerative changes will require extensive studies
of individuals in both preclinical and prodromal stages
of AD.
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Fig. 1. Group differences in average thickness (mm) for left hemisphere. Top row: SMCI vs. NC; Bottom row: MMCI vs. NC. LEFT mesial
views, RIGHT lateral views. The scale ranges from <–0.3 (yellow) to > + 0.3 (cyan) mm thickness. Areas on the red-yellow spectrum indicate
regions of thinning with disease: approximate color scale in mm is −0.05 to −0.15 dark red, −0.20 bright red, −0.25 orange, and < −0.30
yellow. Any differences smaller than +/− 0.05 mm are gray.

5. Neuroanatomical profiles

In this context, our recent work has emphasized
the role of cross-sectional, structural MRI in provid-
ing neuroanatomical profiles of pre-clinical and early
AD and in the prediction of disease progression [29,
61]. Our studies are based on data publicly available
from the multi-site Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), an important effort designed to
facilitate the scientific evaluation of neuroimaging and
other biomarkers in the onset and progression of MCI
and AD [43,65,66]. Using methods developed within
the NIH/NCRR sponsored Morphometry Biomedical
Informatics Research Network (mBIRN) and the AD-
NI [30,31,33,39,43,51], we studied normal elderly par-
ticipants and individuals with MCI and AD. The MCI
participants were impaired on one or more standardized
tests of cognitive function, with memory as one of the
impaired domains (i.e., amnestic MCI); demonstrated
no associated functional impairment; and did not meet
criteria for clinical diagnosis of dementia at the time
of these baseline scans [68]. In addition, during our
morphometric characterization, we defined neuropsy-
chological subgroups of the MCI cohort, dividing the
group into those with SMCI, which may reflect the ear-
liest stage of prodromal AD, and those with MMCI,
which may represent a later disease state.

6. Characterization of single-domain, amnestic
MCI

We characterized the MCI (n = 175) and AD (n =
84) cohorts relative to the normal controls (n = 139)
using methods based on volumetric segmentation [30,
31] and cortical surface reconstruction and parcella-
tion [15,16,20,32,33] techniques for each individual’s
brain, combining region of interest (ROI) and cortical
surface vertex-wide approaches that allow greater ex-
ploitation of information obtained from all brain ar-
eas [29]. The results demonstrated robust performance
of the methods and evidenced measurements sufficient-
ly sensitive to reveal the subtle morphometric charac-
terization of SMCI and MMCI in this cross-sectional
sample of individuals who may be in a prodromal AD
state (Fig. 1). While significant mesial temporal at-
rophy characterized all groups, including SMCI, MM-
CI, and AD, smaller volumes and thinner cortex were
widespread and evident across the cortex even within
the SMCI group.

The regions that were most sensitive to early changes
were within temporal, rostral posterior cingulate, infe-
rior parietal, precuneus, and caudal midfrontal cortices
(Fig. 1). Areas critical for distinguishing SMCI from
NC were in the mesial temporal regions as expected, in-
cluding bilateral hippocampus, bilateral entorhinal cor-
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Fig. 2. Estimated marginal mean volume (mm3) for Hippocampus and Entorhinal Cortex thickness (mm) by group accounting for sex and age
effects. Error bars = std error of the mean. Solid bar = Left Hemisphere; outlined open bar = Right Hemisphere.

tex, and left amygdala, similar to recent findings [42,
75,76,87], supporting these regions as the most sen-
sitive to early AD-related changes. Given previous
work suggesting that mesial temporal asymmetries also
may be modified by disease state, we also examined
left/right asymmetries as potential measures indicative
of risk or disease progression. Building on findings in
AD (e.g. [4,55,83]), several investigators [75,78] have
suggested that left hemisphere regions may be more
affected than the right, changing the natural asymme-
tries, in individuals at increased risk for AD, although
reports are conflicting [56]. Our findings supported
natural right dominant asymmetries in the hippocam-
pus and entorhinal cortex of normal controls, as sug-
gested in some previous work (e.g. [28,67]), howev-
er, these asymmetries did not interact with diagnostic
group providing no support for structural asymmetries
as an indication of disease state (Fig. 2).

Importantly, in the SMCI cohort, characterized with
impairment in the memory domain only, significant at-
rophy extended beyond the mesial temporal regions in-
to posterior cingulate, parietal, and frontal regions in-
dicating that widespread damage occurs before stan-
dard clinical measures can detect AD. The pattern of
thinning in SMCI overlapped to some extent with re-
cent findings by Seo and colleagues [75], although our
larger sample demonstrated greater thinning in medial
parietal, lateral middle temporal, and anterior cingulate
regions and powered significant differences from NC
in numerous ROIs. These broad changes even within
individuals impaired only in the memory domain sug-
gest that standard neuropsychological measures may
not be sufficiently sensitive, although novel approach-
es may be more informative (see Jacobson et al., this
issue). The pattern of results also broadly supported
the view that MMCI may be a later stage of prodro-
mal AD than SMCI, although some of the structural
changes observed confirmed the potential heterogene-

ity of the sample. Relative to SMCI, the presumably
later stage of MMCI showed greater atrophy in the in-
ferior and lateral temporal lobe, and significantly thin-
ner temporo-parietal association cortices, retrosplenial,
anterior cingulate, and other frontal regions; these sig-
nificant findings were more widespread relative to pre-
vious work [75], perhaps due to a larger MMCI sam-
ple. The AD and MMCI groups were relatively similar,
with greater differences in some parietal, retrosplenial
and frontal regions. These profiles may prove useful
in defining a pattern of degeneration that will enable
discrimination of early stage AD from other disorders
that also impact mesial temporal regions.

7. Proposed trajectory based on cross-sectional
data

In this cross-sectional sample, we further explored
the potential “progression” from NC to AD employing
regression models assessing the linear and quadratic
effects. As expected, the earliest and most dramatic
effects across groups were evident within the entorhi-
nal cortex. Rostral posterior cingulate was reduced,
similarly across groups, followed by additional tempo-
ral, parietal, and frontal regions. Of the later changing
regions, the lateral middle temporal gyrus may change
most rapidly, followed by the posterior cingulate and
inferior parietal cortices, and then the rostral middle
frontal region. The proposed sequence of change sup-
ports neuropathological findings as degeneration be-
gins in the mesial temporal area, moves through rostral
posterior cingulate and medial orbitofrontal cortices,
followed by lateral temporal, retrosplenial and inferior
parietal regions, and, subsequently, mid frontal cortex.
The growing body of evidence thus suggests that there
is significant, widespread cortical atrophy in preclin-
ical stages of AD, including areas outside the mesial
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temporal lobe. These cross-sectional findings then lead
to the question of whether changes in these regions are
predictive of conversion to AD.

8. Discrimination, classification, and prediction

Methods to facilitate the prediction of which MCI
individuals are likely to convert to AD could increase
efficiency of clinical treatment trials by allowing them
to focus on individuals with high likelihood of immi-
nent conversion, permitting shorter follow-up periods
to demonstrate efficacy, alongside a potential utility
for individual clinical prognosis. While previous work
has supported the predictive power of mesial tempo-
ral regions for future conversion to AD [2,18,19,21,
23,44,47,58,59,79], these more extensive morphome-
tric findings in MCI may increase the power to pre-
dict conversion to AD. Cross-sectional differences in
hippocampal and entorhinal volumes have been found
to discriminate between MCI patients who convert to
AD and those who remain stable [21,47,58,79]. Cross-
sectional differences in other brain areas, such as the
amygdala [19] or the volume of the temporal horn of
the lateral ventricle [59], have also been shown to pre-
dict conversion to AD. However, these classifiers may
have limited specificity to AD [47].

In this light, combinations of regional structural mea-
sures may increase accuracy in predicting imminent
risk of conversion to AD. Our recent work [61] em-
ployed multivariate procedures to capitalize on this
morphometric signature associated with early AD in
the prediction of disease progression in MCI, potential-
ly increasing both specificity and sensitivity in detect-
ing AD at early stages. Several studies have shown im-
provement in classification accuracy when more than
one measure is used, often combining hippocampus and
an additional measure such as the amygdala or posteri-
or cingulate volumes [11,38,47,80]. Additional small
studies have approached the search for a predictive
structural profile through voxel-based techniques, such
as density maps and voxel based morphometry [17,
81]. In a study of MCI and control individuals, a high-
dimensional pattern classification technique resulted in
a cross-validated accuracy of 90% for discriminating
15 MCI from 15 matched controls [17]. The resulting
classification algorithm included areas within the later-
al and inferior regions of the hippocampus, and regions
in bilateral superior, middle, and inferior temporal gyri,
bilateral orbitofrontal, left fusiform and posterior cin-
gulate. Another study found that although the voxel-

based approach resulted in superior classification rel-
ative to hippocampal volume alone, the combination
of the two provided the best classification [81]. These
studies demonstrate the promise of employing patterns
of structural information in classification, although the
reliability of these approaches in larger samples with
individuals further from conversion to AD should be
examined. The potential for neuroimaging biomarkers
to be predictive of conversion risk based on a baseline
assessment for individuals with MCI may prove to be
more advantageous.

This issue is presently under investigation by sev-
eral groups using baseline data from the ADNI. Fan
and colleagues [27] analyzed baseline MRI data from
66 controls, 88 individuals with MCI, and 56 individ-
uals with AD from the ADNI. High dimensional pat-
tern classification methods were applied to voxel based
morphometric measures from the healthy controls and
AD subjects to identify a pattern of atrophy character-
istic of AD. The resulting pattern was spatially com-
plex, involving widespread brain regions. Important-
ly, individuals with MCI who displayed this pattern
showed greater 1-year clinical decline than those who
did not [27].

9. Discrimination of controls and AD

We have recently extended these findings by apply-
ing multivariate procedures to a larger subset of the
ADNI cohort (the ADNI sample characterized earli-
er [29], which included 139 controls, 175 individuals
with MCI, and 84 with AD) [61]. We were able to
identify a pattern of regional atrophy characteristic of
AD and to demonstrate that the presence of this pat-
tern in individuals with MCI was predictive of 1-year
clinical decline and structural volume loss [61]. With
stepwise linear discriminant analysis (LDA) using can-
didate input morphometric variables from 58 ROIs, in-
cluding lateral ventricles, mesial temporal structures,
and cortical association areas, we identified a pattern
of regional atrophy that best discriminated AD from
NC. The regional pattern that best discriminated NC
from AD subjects involved eight measures, including
left hippocampal volume and cortical thickness of right
entorhinal, right middle temporal, left bank of the supe-
rior temporal sulcus, right retrosplenial, right superior
temporal, left medial orbital frontal, and right lateral
orbital frontal regions.
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Fig. 3. Group differences in average thickness (mm) for left hemisphere. All comparisons are relative to NC cohort. Top row: AD vs. NC;
Middle: MCI subjects showing AD atrophy pattern vs. NC; Bottom: MCI subjects without AD atrophy pattern vs. NC. LEFT mesial views,
RIGHT lateral views. The scale ranges from <–0.3 (yellow) to > + 0.3 (cyan) mm thickness. Areas on the red-yellow spectrum indicate regions
of thinning with disease.

10. Classification of MCI subgroups

This discriminant model was then applied to MCI
data, producing an “atrophy score” for each MCI in-
dividual reflecting the degree to which the individu-
al’s MRI reflected the presence of characteristic AD
atrophy. On the basis of this score, each MCI partic-
ipant was classified as showing either the NC or AD
“imaging phenotype” (Fig. 3). MCI participants with
AD atrophy showed an imaging pattern nearly identi-
cal to that of the AD group, with structural thinning
evident even in regions not contributing to the atrophy
score. MCI subjects without the AD atrophy pattern
displayed less widespread atrophy, with a reduced lev-
el of atrophy in hippocampal and middle temporal re-
gions. MCI individuals with AD atrophy had higher
baseline CDR sum of boxes and lower verbal memory
scores but equivalent MMSE scores at baseline.

In essence, the pattern that best discriminated NC
from AD, and that was predictive of decline in MCI, in-

volved the mesial temporal, lateral temporal, retrosple-
nial and orbitofrontal regions. Mesial temporal struc-
tures have long been implicated early in AD, and at-
rophy in these structures has been found to be predic-
tive of disease progression [21,22,44,58,79]. Lateral
temporal areas, including inferior, middle, and superi-
or temporal gyri, have been implicated in the progres-
sion of AD [13,72,86,87], and we demonstrated in our
morphometric study that there is also evidence of such
changes in SMCI [29]. These findings support a pattern
of preclinical cortical atrophy that may be predictive of
a more rapid course of disease progression.

11. Prediction of clinical decline

Of significant interest, follow-up data were available
for 160 of these MCI cases for a year from baseline
evaluation. Those expressing the baseline AD phe-
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notype showed a significant decline in MMSE score
over one year, whereas those with the NC phenotype
remained stable. The atrophy score was the primary
predictor for this decline, although additional power in
prediction came from Apolipoprotein E (APOE) ε4 al-
lele status (a genetic risk factor for late-onset AD [6])
and Logical Memory Delayed Recall scores. Interest-
ingly, four MCI individuals reverted to normal cogni-
tive status (three showed the NC imaging phenotype)
and 33 converted to a diagnosis of AD (23 showed the
AD phenotype). Those who declined in MMSE score
over one year were significantly more likely to show the
AD phenotype, the conversion rate among MCI sub-
jects with the AD phenotype was 32% relative to only
11% for those with the NC phenotype. This contrasts
with a recent report that indicated that whole brain,
ventricular, entorhinal and hippocampal volumes did
not provide additional predictive information of clin-
ical decline beyond that attainable with clinical mea-
sures [34], and shows the value of examining individu-
ally specific brain regions beyond the mesial temporal
lobe.

12. Summary

In summary, the literature supports the strong po-
tential of structural MRI profiles, even within cross-
sectional designs, as a promising method for the dis-
crimination of AD from normal controls and in the
prediction of MCI progression and conversion to AD.
Findings suggest that measures of structural change in
mesial and lateral temporal, cingulate, parietal and mid-
frontal areas may facilitate the assessment of a treat-
ment’s ability to halt the progressive structural loss
that accompanies clinical decline in MCI. Of course,
there remains significant potential to improve the per-
formance of prediction. For example, using follow-up
data from ADNI’s large MCI cohort to identify struc-
tural patterns associated with MCI individuals who con-
vert to AD relative to those who do not [62] may bet-
ter identify the structural changes that are predictive of
disease progression. In addition, the incorporation of
measures from other neuroimaging modalities, clinical
assessments, and neuromedical biomarkers, as being
assessed in current work (e.g. [63,74]), may also help
to refine the regional profile of individuals at risk for
progression.
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