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Abstract: SBS-modified bitumen (SMB) is susceptible to aging, which seriously influences its service
performance and life. In order to strengthen the anti-aging ability of SMB, triethoxyvinylsilane
was designed to organically modify layered double hydroxides (LDHs) and was applied to modify
SMB. The dispersibility and storage stability of LDHs in SMB were markedly enhanced after tri-
ethoxyvinylsilane organic modification, and the compatibility and storage stability of SBS in bitumen
were simultaneously enhanced. Compared with SMB, the introduction of LDHs and organic LDHs
(OLDHs) could ameliorate the high-temperature properties of SMB, and the thermostability of SBS in
bitumen at a high temperature was also distinctly improved, especially OLDHs. After aging, due to
the oxidation of molecular bitumen and the degradation of molecular SBS, SMB became hardened
and brittle, and the rheological properties were significantly deteriorated, which had serious impacts
on the performance of SMB. LDHs can mitigate the detriment of aging to bitumen and SBS, and the
deterioration of the rheological properties of SMB is obviously alleviated. As a result of the better
dispersibility and storage stability, OLDHs exerted superior reinforcement of the anti-aging ability
of SMB.

Keywords: SBS modified bitumen; layered double hydroxides; organic modification; rheological
properties; aging resistance

1. Introduction

The unsatisfactory high-temperature and low-temperature performance of base bi-
tumen have promoted the extensive application of styrene-butadiene-styrene (SBS) as a
bitumen modifier in highway pavement [1–3]. However, due to the exposure to heat, oxy-
gen and ultraviolet (UV) light throughout its service life, SBS-modified bitumen (SMB) will
suffer thermal-oxygen aging and UV aging, which causes damage to bitumen’s properties,
such as cracking and stripping, thereby degrading the service performance and life of
bituminous pavement [4–10]. Hence, it is of considerable necessity to acquire SMB with
outstanding aging resistance.

Some studies have engaged in alleviating the aging of SMB, and the most widespread
method is using additives [11,12]. Zhang et al. [13] found that a large dosage of sodium-
montmorillonite (MMT) can enhance the aging resistance of SMB. However, the low-
temperature performance of SMB was decreased after adding a large amount of MMT.
Feng et al. [14] discovered that UV absorbers can reduce the UV aging of SMB, but the
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effect of UV absorbers was not universal, which only worked for specific types of SMB.
In addition, some inorganic nanomaterials were reported to improve the aging resistance
of SMB in some research, such as nano-SiO2, nano-ZnO, nano-TiO2 and so on [15,16].
However, the dispersity of inorganic nanomaterials in SMB was poor, which limited their
application in SMB.

Layered double hydroxides (LDHs) are a kind of supramolecular structural mate-
rial. Compared with other modifying agents, LDHs can not only physically shield and
chemically absorb UV light, but also can impede the penetration of heat and oxygen into
bitumen, because of its unique structure [17–19]; this mechanism is shown in Figure 1.
Hence, in recent years, LDHs have been used as an anti-aging modifier and applied in
bitumen modification. Wu et al. [20] proved that LDHs can alleviate the damaging effects
of UV light on the rheological properties, and strengthen the anti-UV aging properties
of bitumen. Xu et al. [21] found that LDHs can reduce bitumen aging and reduce SBS
degradation. However, as an inorganic material, the strong hydrophilicity of LDHs can
result in poor storage stability in bitumen [22]. Additionally, large amounts of superficial
hydroxyl groups in LDHs would promote the agglomeration among LDHs and the sep-
aration between LDHs and bitumen [23]. These limitations can remarkably restrict the
popularization of LDHs in resisting aging of bitumen. Silane coupling agent applied to
surface-modified LDHs, using a surface organification method, was found to change the
surface of LDHs from hydrophilic to hydrophobic, providing LDHs with better storage
stability in fresh bitumen [24,25]. Therefore, the surface organic modified method might
enhance the storage stability of LDHs and improve the anti-aging performance in SMB.
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Figure 1. The mechanism of LDHs in improving the UV aging resistance and thermo-oxidative
aging resistance.

In this paper, silane coupling agent was utilized to organically modify to surface
of LDHs, and was applied in SMB modification. The compatibility and storage stability
of organic LDHs in SMB were evaluated, and the effect of LDHs and OLDHs on the
rheological properties of SMB before and after aging were thoroughly investigated.
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2. Materials and Methodologies
2.1. Materials

Virgin bitumen (AH 70) was acquired from Fuzhou Development Zone Lugang
Asphalt Company Limited (Fuzhou, China), SBS was captured from the Baling branch
of Sinopec Company Limited (Yueyang, China), and their basic properties are listed in
Table 1. LDHs were purchased from Ruifa Chemical Company Limited (Jiangyin, China).
Triethoxyvinylsilane was produced by Shandong Huanzheng Chemical Company Limited
(Jinan, China).

Table 1. The basic properties of virgin bitumen and SBS.

Materials Items Properties

Bitumen

Penetration (25 ◦C, 0.1 mm) 73.0
Ductility (10 ◦C, cm) 16.5
Softening point (◦C) 48.8

Viscosity (135 ◦C, Pa·s) 0.49

SBS
Structure Linear, 1301

Block ratio (B/S) 70/30
The average molecular weight (g/mol) 120,000

2.2. Sample Preparation

The LDHs and triethoxyvinylsilane were dispersed in alcoholic aqueous solution
separately. Then, these two solutions were mixed successively at 50 ◦C for 3 h and 70 ◦C
for 0.5 h. Afterwards, the white LDH slurry was repeatedly washed by vacuum filtration,
and then the filter residue was dried at 80 ◦C for 12 h. Ultimately, the dried product was
crushed and ground into powdered materials at a sieve size of 200 mesh.

The modified bitumen samples were prepared using the melt blending method. Firstly,
virgin bitumen was heated to fluid at 180 ◦C. Then, 1–5% (weight of bitumen)LDHs
powders and 4% (weight of bitumen) SBS were dumped into bitumen samples, respectively,
and the mixtures were subsequently sheared at the shearing speed of 4000 rpm and 180 ◦C
for 60 min (CY-028, Chengyi-Machinery Co., Wenzhou, China). Finally, the mixtures were
transferred to the low-speed mechanical agitation for 90 min.

2.3. Aging Procedures

The aging of all binder samples was simulated by a thin film oven test (TFOT) and UV
irradiation, successively. TFOT was implemented according to ASTM D 1754. The remnant
samples from TFOT continued to be radiated by UV lights at the intensity of 2500 µW/cm2

at 60 ◦C for 7 days in an UV lamp oven.

2.4. Storage Stability Test

The storage stability of LDHs and SBS in bitumen is critical for the properties of SMB.
The storage stability test was conducted following ASTM D 5976. Noteworthily, SBS will
swell and float in bitumen, which results in the softening point of the top section increasing
in the storage stability test. On the contrary, LDHs will aggregate and sedimentate in
bitumen, which causes the softening point increase of the bottom section. The traditional
evaluation criterion is the softening point difference value of the top and bottom sections
(∆S) in the storage stability test; the smaller the ∆S, the better the storage stability. Due to
the opposite dissociation of LDHs and SBS in bitumen, the traditional evaluation criterion is
not appropriate for the SMB containing LDHs (LSMB) and OLDHs (OLSMB)—the smaller
∆S did not mean that LSMB or OLSMB possessed better storage stability. Hence, the
evaluation criterion was amended in this paper; the softening points of all three sections
were tested (Stop, Smiddle, Sbottom), and the computing method of ∆S of SMB, LSMB and
OLSMB in this paper was as follows:

∆S = |Stop − Smiddle| + |Sbottom − Smiddle| (1)
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2.5. Fluorescence Microscope Test

The fluorescence microscope (BXF-150, Bingyu Co., Shanghai, China) was used to
observe the morphology of SMB, LSMB, and OLSMB. Firstly, a drop of fluid bitumen
sample was placed on the glass slide, and then a cover glass was superposed upon it,
forming a homogeneous bitumen film. Finally, the polymer (i.e., SBS) dispersion state in
the bitumen film was observed by the fluorescence microscope. Generally, yellow-green
fluorescence represents the SBS phase and black represents the other phases (e.g., bitumen
and non-polymers) [26,27].

2.6. Rheological Properties Test

The rheological properties (storage modulus, loss modulus, phase angle, fatigue factor)
of SMB, LSMB, and OLSMB samples at different temperature ranges and frequencies were
measured by DSR (Dynamic Shear Rheometer, MCR101, Anton Paar Co., Graz, Austria).
The temperature sweep and shear creep modes were utilized, and the main parameters are
shown in Table 2.

Table 2. Main parameters of DSR test.

Test Program Test Temperature
(◦C)

D a

(mm)
H b

(mm)
Fre. c

(rad/s)
Rat. d

(◦C/min)

Temperature sweep −10–30 8 2 10 2
30–80 25 1 10 2

Frequency sweep −10, 0, 10, 20 8 2 0.01–400 -
a Diameter of the plate, b gap between the plates, c frequency of sweep, d heating rate.

The creep stiffness (S) and creep rate (m-value) of bitumen samples were evaluated by
the BBR test (Bending Beam Rheometer, Canton, TE-BBR, PA, USA). The binder beam was
placed on two holders with three-point bending, and the test was conducted at different
temperatures (−12, −18, and −24 ◦C) with a loading time of 60 s.

3. Results and Discussion
3.1. Compatibility and Storage Stability

The storage stability of LDHs in SBS-modified bitumen plays a key role in the rheologi-
cal and anti-aging properties of modified bitumen. Hence, LSMB or OLSMB should possess
better storage stability. The storage stability of SMB, LSMB, and OLSMB is illustrated in
Figure 2. In comparison with SMB, it can be observed that the ∆S of LSMB or OLSMB
increased, and the tendency became more noticeable with the increasing dosage of LDHs
or OLDHs, which was due to the sinking of LDHs in bitumen during storage, resulting
in the softening point increase of the bottom. Furthermore, compared with LSMB, the ∆S
of OLSMB was much smaller, and it exhibited a more remarkable value at a large dosage
of LDHs, which indicated that OLSMB had better storage stability than LSMB. In our
previous research, it was found that organic modification with silane coupling agent has
two benefits for LDHs. On the one hand, the surface hydrophilic groups (hydroxide radical)
of LDHs were reduced after silane coupling agent organic modification, which can inhibit
the aggregation between LDH particles and improve the dispersiveness in SMB. On the
other hand, some organic groups in silane coupling agent have been introduced into LDHs,
which can increase the lipophilicity of LDHs and enhance the storage stability of LDHs in
SMB [24,25,28]. Because of these two aspects, the dispersity and storage stability of LDHs
in SMB have been significantly enhanced after triethoxyvinylsilane organic modification.
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Figure 2. The storage stability of SMB, LSMB and OLSMB.

The fluorescence microscope photographs of SMB, LSMB, and OLSMB samples after
the storage stability test are shown in Figure 3. It is widely accepted that the fluorescence
of SMB is due to the SBS, and the more intense the fluorescence, the higher the content of
SBS in bitumen. The fluorescence photographs of SMB (the top section (Figure 3a) and the
bottom section (Figure 3d) are significantly different—the fluorescence of the top section
(Figure 3a) was more intense than that of the bottom section (Figure 3d), which was due
to the swelling and floating of SBS in bitumen. Compared with SMB, the fluorescence
difference of LSMB and OLSMB (Figure 3b,e for LSMB, Figure 3c,f for OLSMB) was
distinctly weakened, especially OLSMB. As an inorganic material dispersing in SMB, LDHs
will impede the movement of SBS in bitumen to a certain extent, which is beneficial to
restrain the floating of SBS in bitumen, and improve the storage stability of SBS in bitumen.
As a result of the better dispersity and storage stability of OLDHs in SMB, the interaction
between LDHs and SBS was strengthened, and hence, the distribution of SBS in OLSMB
became more uniform and stable.
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3.2. Rheological Properties
3.2.1. Low-Temperature Sweep

The curves of storage modulus (G′) and loss modulus (G′′) from −10 to 30 ◦C of all
binder samples before aging are displayed in Figure 4. In Figure 4a, it can be observed
that both the G′ and G′′ decreased incrementally with the increase in temperature. For all
binder samples, the G′ was obviously larger than the G′′ in the beginning; however, due to
the larger decreasing trend of G′ than that of G′′ with the increase in temperature, the size
order of G′ and G′′ changed in the end; there was a cross point between G′ and G′′, and the
temperature corresponding to the cross point was the turning point of bitumen from more
elastic behavior to more viscous behavior. Namely, bitumen samples exhibited more elastic
behavior before the cross point; after that, more viscosity was shown. The temperatures
corresponding to the cross points of all binder samples are depicted in Figure 4b; compared
with SMB, the temperature of LSMB and OLSMB increased by varying degrees, which was
due to the incorporation of LDHs or OLDHs, increasing the elastic behavior of bitumen.
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After aging, the curves of G′ and G′′ for all binder specimens are presented in Figure 5.
The G′ of all specimens increased by varying degrees, and the G′′ correspondingly de-
creased. That is, the elastic behavior of bitumen samples notably increased after aging, and
the viscous behavior decreased [29]. In contrast with the G′ and G′′ before and after aging,
it can be found that the variation of SMB was the most significant, followed by LSMB,
and OLSMB had the lowest variation. Furthermore, the G′ and G′′ variation before and
after aging resulted in the temperature corresponding to the cross point, demonstrating a
different change (as shown in Table 3); when the temperature of SMB increased from 15.8
to 27.4 ◦C (the temperature increment of 11.6 ◦C), it remarkably delayed the conversion
of SMB from more elastic behavior to more viscous behavior, which was unfavorable
for the low-temperature performance of bitumen. Compared with SMB, the temperature
increments of LSMB and OLSMB obviously decreased—those of the LSMB to 5.0 ◦C, and
those of the OLSMB to 0.7 ◦C. The result indicate that LDHs and OLDHs can reduce the
aging impact on the bituminous viscoelasticity at a low temperature, especially OLDHs.
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Table 3. The temperature of intersection points of all SMB samples.

Samples
The Temperature of Intersection Point (◦C)

∆T (◦C)
Before Aging After Aging

SMB 15.8 27.4 11.6
LSMB 16.8 21.8 5.0

OLSMB 17.5 18.2 0.7
∆T = the temperature after aging−the temperature before aging.

3.2.2. High-Temperature Sweep

The phase angles (δ) of all bitumen samples at a medium and high temperature (from
30 to 80 ◦C) are displayed in Figure 6. With the increase in temperature, the δ of all samples
increased. It is noteworthy that an δ plateau can be observed in SMB; that is, δ of SMB
was almost unchanged and even decreased at the temperature ranging from 40 to 50 ◦C.
The reason for this phenomenon is the network structure formation of SBS, resulting in
the elastic behavior of SMB increasing. Compared with SMB, a similar δ plateau can be
found in LSMB and OLSMB. The difference was that the δ change of LSMB became smooth
in this area; moreover, the δ was higher than that of SMB, and this might be because the
dispersion of LDHs in bitumen hindered the movement of SBS molecular, which caused
the network structure formation temperature of SBS moving to a higher temperature. This
change in OLSMB was more obvious than that in LSMB, which is due to the better storage
stability of OLDHs in SMB. In addition, this area of OLSMB moved to the high-temperature
area, which was conducive to strengthening the high temperature stability of SBS in SMB.

After aging, SMB hardened, and the δ of all bitumen samples decreased. The δ of SMB
was the lowest after aging, LSMB was next, and that of OLSMB was the highest, which
is contrary to that before aging. Furthermore, in the SMB and LSMB, the δ plateau before
aging vanished after aging, because of the molecule degradation of SBS in the aging process.
Noteworthily, the δ plateau can be found in the OLSMB after aging. This result indicates
that OLDHs showed excellent improvement in the aging resistance of SMB, and they can
concurrently alleviate the damage caused by aging in bitumen and the degradation caused
by aging of SBS.
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3.2.3. Frequency Sweep Test

The fatigue factor (G*·sin δ) is used to evaluate the fatigue resistance of SMB. The
higher the G*·sin δ, the lower the fatigue resistance [30,31]. The frequency correlations of
G*·sin δ at different temperatures (−10, 0, 10, and 20 ◦C) are demonstrated in Figure 7. It can
be found that the G*·sin δ values of all modified binder samples increased with the decrease
in temperature and the increase in frequency, which indicated that the modified binder
tended to demonstrate fatigue cracking at a low-temperature and high loading frequency.
In contrast with SMB, the G*·sin δ values of LSMB and OLSMB slightly increased. This
indicates that LDHs were not conducive to the fatigue cracking of SMB, which was due to
the increase in the elastic properties of the binder after the affiliation of LDHs. Fortunately,
the effect was slight due to the small dosage.
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After aging, the G*·sin δ of the three binders increased at different levels—that of
SMB was the highest, and that of OLSMB was the lowest. The G*·sin δ ranked in the
order of SMB > LSMB > OLSMB, and the lower the temperature and frequency, the more
remarkable the discrepancy of the three binders. It was noteworthy that G*·sin δ of OLSMB
shifted from the highest before aging to the lowest after aging, while the G*·sin δ of SMB
demonstrated the opposite shift. These results imply that the aging resulted in the fatigue
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resistance deterioration of SMB, and the addition of OLDHs and LDHs can improve the
fatigue resistance ability of SMB; moreover, OLDHs exhibited a more prominent effect than
that of LDHs.

3.2.4. Bending Beam Rheometer (BBR) Test

As previously analyzed, the aging will result in the hardening and brittleness of
SMB. This phenomenon is detrimental for the low-temperature cracking of SMB, which
causes the premature failure of SMB at low temperatures. To assess the low-temperature
anti-cracking effects of all binders before and after aging, the creep stiffness (S) and creep
rate (m-value) were utilized in this paper. S reflects the anti-low temperature deformation
ability of binders, m-value represents the stress relaxation property of binder samples
at low temperature. Generally, the higher the S and the smaller the m-value, the worse
the anti-cracking of SMB at low temperatures [32,33]. The S and m-value of all binders
before and after aging are illustrated in Figure 8. It can be found that as the S of all binders
increased, the m-value correspondingly reduced with the decreasing temperature, which
resulted in a relatively elevated risk of cracking at a comparatively low temperature. In
comparison with SMB, the S of LSMB and OLSMB increased slightly; meanwhile, the
m-value reduced marginally, because of LDHs and OLDHs serving as elastic constituents
in SMB. The change in the S and m-value for LSMB and OLSMB was prejudicial to the
low-temperature cracking; noteworthily, the influence was very limited.
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After aging, the S of all binder samples increased visibly, and the m-value reduced
simultaneously, and the lower the temperature, the more significant this was. This indicates
that the risk of cracking for binders markedly increased, especially at lower temperatures.
In addition, it can be clearly observed that the S and m-value of the three binders presented
a diverse variation trend. SMB was the most obvious; the S moved from the lowest of the
three before aging to the highest after aging, and the m-value moved from the highest
before aging to the lowest after aging. This value was followed by that of LSMB. OLSMB
was the lowest, and the S and m-value of OLSMB before and after aging showed the
opposite variation with that of SMB. The results show that the incorporation of LDHs
can prevent aging’s impact on the low-temperature cracking of SMB, and heighten the
anti-aging capacity of SMB; the effectiveness of LDHs has been further promoted after
triethoxyvinylsilane organic modification.

The service temperature limit of bitumen depends on the minimum temperature that
bitumen satisfies the demand of m ≥ 0.3 and S ≤ 300 MPa [34,35]. As seen in Figure 8, all
binders complied with a −18 ◦C limited temperature, but did not conform to a −24 ◦C
limited temperature. This indicates that the service temperature limit of all three modified
bitumens was not reduced, although OLSMB behaved with favorable low-temperature
cracking resistance. To sum up, both LDHs and OLDHs can strengthen the anti-aging
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ability of SMB, particularly OLDHs, but neither LDHs nor OLDHs can lower the service
temperature limit of SMB.

4. Conclusions

LDHs organically modified by triethoxyvinylsilane were prepared and utilized to
intensify their storage stability, dispersion, and anti-aging performance in SMB. Based on
the experimental results, the major findings are as follows:

The storage stability of SMB and LSMB was poor, which was due to the floating
upward of SBS and the segregation sinking of LDHs in bitumen. Compared with SMB and
LSMB, OLSMB exhibited better storage stability. Triethoxyvinylsilane organic modification
improved the dispersibility of LDHs in bitumen; in turn, the better dispersibility of OLDHs
obstructed the movement of SBS in bitumen and enhanced the storage stability of SBS
in bitumen.

The introduction of LDHs and OLDHs ameliorated the high-temperature behavior
of SMB, and increased the decomposition temperature of the SBS network structure in
bitumen, which could improve the thermostability of SBS in bitumen at a high temperature.

After aging, because of the aging of bitumen and the degradation of SBS, the rheologi-
cal properties of SMB gravely deteriorated. The incorporation of LDHs and OLDHs can
mitigate the aging damage on bitumen and SBS, reduce the deterioration of the rheological
properties of SMB, and heighten the anti-aging ability of SMB. The effect of LDHs was
ulteriorly strengthened after triethoxyvinylsilane organic modification.

SMB containing OLDHs exhibited excellent aging resistance, due to the better storage
stability of OLDHs and SBS in bitumen, which indicated that the excellent storage stability
is particularly important for SMB. Based on the result of this paper, it can be found that
reducing the density difference between the modifier and SMB or inhibiting the movement
of modifier in SMB can improve the storage stability of modifier in SMB. Hence, the follow-
up research in these two aspects can be carried out to further improve the storage stability
of SMB.
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