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Abstract: Kinesin-12 family members are characterized by an N-terminal motor domain and the
extensive presence of coiled-coil domains. Animal orthologs display microtubule plus-end directed
motility, bundling of parallel and antiparallel microtubules, plus-end stabilization, and they play a
crucial role in spindle assembly. In plants, kinesin-12 members mediate a number of developmental
processes including male gametophyte, embryo, seedling, and seed development. At the cellular
level, they participate in critical events during cell division. Several kinesin-12 members localize
to the phragmoplast midzone, interact with isoforms of the conserved microtubule cross-linker
MICROTUBULE-ASSOCIATED PROTEIN 65 (MAP65) family, and are required for phragmoplast
stability and expansion, as well as for proper cell plate development. Throughout cell division,
a subset of kinesin-12 reside, in addition or exclusively, at the cortical division zone and mediate the
accurate guidance of the phragmoplast. This review aims to summarize the current knowledge on
kinesin-12 in plants and shed some light onto the heterogeneous localization and domain architecture,
which potentially conceals functional diversification.

Keywords: cytokinesis; division plane determination; microtubules; gametogenesis; phragmoplast
midzone

1. Introduction

The kinesin superfamily consists of heterogeneous microtubule-dependent motors that exist in all
eukaryotes [1]. Kinesins have been significantly expanded in higher plants. For instance, in Arabidopsis
61 members have been found. The large number of kinesins implies that they participate in a variety
of processes including plant specific ones [2,3]. Kinesins are divided into 14 families; however, there
are some “orphans” that are not classified in any of these [3,4]. The phylogeny of kinesins is mostly
based on their motor domain sequence which may be located at the amino (N)-terminus, the central
region of the molecule, or at the carboxy (C)-terminus [1,3]. The typical architecture of kinesins also
includes the neck, the stalk, which is a region responsible for dimerization and interactions containing
coiled-coil domains, and the tail, which binds to specific cargo [3,5]. The directionality of kinesins along
microtubules differs between families and is usually related to the position of the motor domain [3].

Kinesins that belong to family 12 share some common features with the animal kinesin family
member 12 (Kif12) which was the founding member [5]. In general, kinesin-12 members are characterized
by the presence of an N-terminal motor domain, a neck β-sheet, and by the homology of the amino
acid sequence in their C-terminal, which is abundant in coiled-coil domains (Figure 1) [5]. Plant
kinesin-12 PHRAGMOPLAST ORIENTING KINESINS (POKs) are among the largest kinesins that
have been reported so far [6–8]. Unlike their animal orthologs, upstream of the motor domain, plant
kinesin-12 members possess an extraordinarily long N-terminal disordered region (Figure 1), which
facilitates binding to various partners with high specificity [9]. Kinesins of this family have in common
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a microtubule plus end-directed motility [5,8,10–12]. In animals, the kinesin-12 members, such as Kif15
and Kif12, are associated with mitosis, mediating and/or promoting the assembly of the bipolar spindle,
and chromosome movement, and they have been also implicated in cytokinesis [13–15]. In addition to
the critical role in cell proliferation, animal kinesin-12 members are expressed in post-mitotic neurons
mediating axon growth and neuronal migration [16,17].
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kinesin-12 (Kin12A–F) are categorized in two classes: Class I includes the large PHRAGMOPLAST
ORIENTING KINESINS 1 (POK1)/Kin12C and POK2/Kin12D as well as the yet uncharacterized Kin12E;
class II consists of PAKRP1/Kin12A, PAKRP1L/Kin12B, and Kin12F. Kinesin-12 members have an
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N-terminal motor domain indicative of microtubule plus-end directed motility. Unlike the human
kinesin-12 HsKif15 and kinesin12F, all other plant kinesin-12 members possess a proline-tyrosine (PY)
motif (asterisk), potentially involved in the regulation of motor activity and protein stability. Regions
that appear to be important for targeting or interaction with other proteins are depicted above (grey
trapezoid). Note the difference in size between the N-terminal region upstream of the motor domain in
the plant orthologs and HsKif15. This disordered region is thought to facilitate interactions with other
proteins. In the case of POK2/Kin12D, it has been shown that this region (orange bar) serves as a specific
binding site to MICROTUBULE-ASSOCIATED PROTEIN 65-3 (MAP65-3) which mediates POK2
recruitment to microtubules. (B) Phylogenetic tree of the Arabidopsis Kinesin-12 family. Kinesin-4/FRA1
was used as an outgroup. Amino acid sequences of full-length proteins were aligned using the multiple
sequence alignment program MAFFT and the tree was constructed using the neighbor-joining method
and a 1000 bootstrap resampling value, and visualized using Archeopteryx [18,19]. Bootstrap values
and branch lengths are displayed.

In plants, the kinesin-12 members that have been characterized so far are implicated mainly in cell
division. Contrary to the majority of their family animal orthologs, a number of plant kinesins decorate
the midzone of the cytokinetic apparatus and/or the cortical division zone, defining the future division
plane (Figure 2). Over the years, experiments have provided evidence showing that these kinesin-12
members interact with a variety of microtubule-associated proteins as well as with others that interfere
with their spatiotemporal pattern and function [20,21]. Although our understanding is mostly based
on data derived from higher plants, recent studies dealing with the characterization of members of
the kinesin superfamily in other species point towards similar, but not identical cell division-related
functions to their higher plant orthologs [3]. This emerging diversification, combined with recent data
reporting novel functions of kinesin-12 orthologs, supports the view that this understudied family is
much more heterogeneous than initially thought. In the present review, we summarize previous and
current findings concerning kinesin-12 and highlight their significance for growth and development
in plants.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 12 

 

human kinesin-12 HsKif15 and kinesin12F, all other plant kinesin-12 members possess a proline-
tyrosine (PY) motif (asterisk), potentially involved in the regulation of motor activity and protein 
stability. Regions that appear to be important for targeting or interaction with other proteins are 
depicted above (grey trapezoid). Note the difference in size between the N-terminal region upstream 
of the motor domain in the plant orthologs and HsKif15. This disordered region is thought to facilitate 
interactions with other proteins. In the case of POK2/Kin12D, it has been shown that this region 
(orange bar) serves as a specific binding site to MICROTUBULE-ASSOCIATED PROTEIN 65-3 
(MAP65-3) which mediates POK2 recruitment to microtubules. (B) Phylogenetic tree of the Arabidopsis 
Kinesin-12 family. Kinesin-4/FRA1 was used as an outgroup. Amino acid sequences of full-length 
proteins were aligned using the multiple sequence alignment program MAFFT and the tree was 
constructed using the neighbor-joining method and a 1000 bootstrap resampling value, and 
visualized using Archeopteryx [18,19]. Bootstrap values and branch lengths are displayed. 

In plants, the kinesin-12 members that have been characterized so far are implicated mainly in 
cell division. Contrary to the majority of their family animal orthologs, a number of plant kinesins 
decorate the midzone of the cytokinetic apparatus and/or the cortical division zone, defining the 
future division plane (Figure 2). Over the years, experiments have provided evidence showing that 
these kinesin-12 members interact with a variety of microtubule-associated proteins as well as with 
others that interfere with their spatiotemporal pattern and function [20,21]. Although our 
understanding is mostly based on data derived from higher plants, recent studies dealing with the 
characterization of members of the kinesin superfamily in other species point towards similar, but 
not identical cell division-related functions to their higher plant orthologs [3]. This emerging 
diversification, combined with recent data reporting novel functions of kinesin-12 orthologs, 
supports the view that this understudied family is much more heterogeneous than initially thought. 
In the present review, we summarize previous and current findings concerning kinesin-12 and 
highlight their significance for growth and development in plants.  

 
Figure 2. Depiction of localization patterns of characterized Arabidopsis kinesin-12 throughout mitosis 
and cytokinesis. (A) POK1/Kin12C and POK2/Kin12D (orange) colocalize with microtubules (grey) of 
the preprophase band (PPB) in prophase. (B,C) Following PPB disassembly at the end of prophase, 
POKs are tethered to the plasma membrane occupying a region at the cell cortex that delineates the 
future division plane (cortical division zone, CDZ; orange) throughout the metaphase and anaphase. 
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Figure 2. Depiction of localization patterns of characterized Arabidopsis kinesin-12 throughout mitosis
and cytokinesis. (A) POK1/Kin12C and POK2/Kin12D (orange) colocalize with microtubules (grey) of
the preprophase band (PPB) in prophase. (B,C) Following PPB disassembly at the end of prophase,
POKs are tethered to the plasma membrane occupying a region at the cell cortex that delineates
the future division plane (cortical division zone, CDZ; orange) throughout the metaphase and
anaphase. (D) During cytokinesis, PAKRP1/Kin12A, PAKRP1L/Kin12B, and POK2/Kin12D decorate the
phragmoplast midzone (blue), contributing to the stabilizing of the interdigitated microtubules there.
At the end of cytokinesis, phragmoplast peripheral microtubule plus-ends extend towards the lateral
walls. POK1/Kin12C and POK2/Kin12D residing there mediate the guidance of the phragmoplast and
the accurate cell plate (brown) navigation to the preselected cell plate fusion site (CPFS, orange). Image
(A) shows a 3D-representation of the cell, while (B–D) depict median cell planes.
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2. Plant Kinesin-12: An Overview

2.1. Redundancy, Conserved and Novel Functions

In Arabidopsis, there are six members of kinesin-12, in rice seven have been identified, and in Populus
five [22,23]. In addition, the fern Marsilea possesses six predicted kinesin-12 members [24], but the
family is greatly amplified in Physcomitrella which contains 20 genes encoding for kinesin-12, indicating
extensive redundancies of these motor proteins in Physcomitrella [3,25]. Phylogenetic analysis shows that
in Arabidopsis and Physcomitrella, the kinesin-12 family is comprised of two classes (I and II), as in both
species kinesin-12 fall into two distinct clusters (Figure 1B) [3,8,12]. Nevertheless, most of our knowledge
concerning kinesin-12 originates from studying Arabidopsis. PHRAGMOPLAST-ASSOCIATED
KINESIN-RELATED PROTEIN 1 (PAKRP1/Kin12A) and PAKRP1-LIKE PROTEIN (PAKRP1L/Kin12B)
were the first characterized plant kinesin-12 members, and therefore, they were named Kinesin
12A and Kinesin 12B, respectively, according to the kinesin nomenclature [4]. PAKRP1/Kin12A and
PAKRP1L/Kin12B belong to class II and regulate the organization of the phragmoplast during male
sporogenesis [26–28]. The class I proteins POK1/Kin12C and POK2/Kin12D mediate accurate cell plate
positioning (Figure 1) [6–8,12]. Although Kin12E (encoded by At3g44050, class I, Figure 1) and Kin12F
(encoded by At3g20150, class II, Figure 1) have not yet been characterized, transcript profiling revealed
that both are upregulated during mitosis, suggesting a cell division-related role [29]. More recently,
kinesin-12, Nicotiana tabacum KINESIN RELATED PROTEIN (NtKRP) that belongs to the subclade
of Arabidopsis PAKRP1/Kin12A and PAKRP1L/Kin12B, was identified. This kinesin has microtubule
binding ability, but also binds CYCLIN DEPENDENT KINASE A and seems to be necessary for G2/M
progression [30]. It acts towards seed and embryo size regulation, as knocking down of NtKRP results
in smaller embryos and seeds due to fewer cells [30]. Furthermore, it functions in concert with NtRLP17
(Nicotiana tabacum RIBOSOMAL-LIKE PROTEIN 17), revealing a previously unknown link between
kinesins and ribosomal proteins [31]. Therefore, kinesin-12 family members are apparently closely
associated with cell division. Indeed, most family representatives in higher plants are present in
meristems. For instance, POK1/Kin12C and POK2/Kin12D display similar distribution patterns and are
expressed in root meristems, leaf primordial, and young leaves, among other tissues. Since defects in
cell divisions directly affect cell morphology and plant growth, the abolishment of kinesin-12 functions
do introduce severe defects. In pok1pok2 double mutants, impairment of proper cell wall positioning is
detected early in embryogenesis leading to misshapen embryos, and adult plants display irregular
cell shapes, are dwarfed, and although still fertile, produce a vastly reduced number of seeds [8].
Double mutants devoid of PAKRP1/Kin12A and PAKRP1L/Kin12B produce very few seeds due to
male gametophytic defects, whereas no detectable aberrations are present in developing embryos and
plants at the vegetative stage [28].

2.2. Kinesin-12 and Cytokinesis

Unlike functions of their animal orthologs, to date, kinesin-12 functions at the spindle of higher
plants are not documented, although the presence of several Physcomitrella kinesins-12 members at
the metaphase spindle has been reported [3]. However, the spatiotemporal patterns of some higher
plant representatives show a strong association of kinesin-12 orthologs with the cytokinetic apparatus
i.e., the phragmoplast (Figures 2 and 3). The bipolar phragmoplast consists of microtubules and actin
filaments. The main function of the phragmoplast is to guide fusion-competent cytokinetic vesicles
towards its midzone in which the plus ends of a fraction of antiparallel microtubules overlap (Figures 2
and 3). During phragmoplast expansion towards the cell cortex, microtubules polymerize at its leading
edge and depolymerize from the central lagging zone upon vesicle fusion and cell plate biosynthesis
(Figure 3) [32]. Arabidopsis PAKRP1/Kin12A and PAKRP1L/Kin12B as well as POK2/Kin12D emerge
during late anaphase and label the midzone of the phragmoplast until its disassembly at the end of
cytokinesis (Figures 2 and 3) [7,27]. Immunolocalization experiments also show OsKINESIN12A at the
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phragmoplast midzone in rice [22], supporting the notion that the association with the midzone might
be a common feature of kinesin-12; although this requires further investigation.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 12 
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Figure 3. Arabidopsis kinesin-12 members mediate phragmoplast stability, expansion, and its accurate
guidance towards the preselected cell plate fusion site during cytokinesis. (A) The double-sided arrow
shows the direction of the phragmoplast expansion. The expansion of the phragmoplast is critical
for the guidance of cytokinetic vesicles to fuse within the division plane leading to the formation
of the cell plate. (A) The phragmoplast consists of two antiparallel subsystems of microtubules
with some plus ends (+) overlapping at the midzone. The phragmoplast expands toward the
cell cortex with continuous polymerization of microtubules at the leading zone and simultaneous
depolymerization of microtubules at the lagging zone. Interactions of microtubule plus-end directed
PAKRP1/Kin12A, PAKRP1L/Kin12B, and POK2/Kin12D with MAP65-3 or other MAP65 isoforms
mediate their recruitment to the phragmoplast midzone, which in turn aids in phragmoplast stability
and balanced expansion. Phosphorylation triggers detachment of MAP65 isoforms from microtubules
regulating their turnover. The exact mode of kinesin-12 activity/regulation at the midzone is currently
unknown during phragmoplast microtubule organization; however, midzone kinesin-12 homologs,
assumed to be no longer associated with MAP65 isoforms (“inactive kinesin-12”), are depicted in
a different color. (B) At later stages of cytokinesis, peripheral microtubules extent towards the cell
cortex. POK1/Kin12C and POK2/Kin12D residing at the cortical division zone (CDZ) likely interact
with these microtubules and walk towards their plus ends (blue arrow). This leads to the guidance of
the phragmoplast and the anchoring of the cell plate to a median region of the cortical division zone,
the cell plate fusion site (CPFS).

Interestingly, those Arabidopsis kinesin-12 members that localize to the midzone of the
phragmoplast also share the microtubule cross-linker MICROTUBULE-ASSOCIATED PROTEIN 65-3
(MAP65-3)/PLEIADE (PLE) as an interaction partner, aiding the maintenance of the bipolar phragmoplast.
MAP65 family members play a role in microtubule stabilization (Figure 3) [33,34]. In particular,
MAP65-3 forms cross-bridges between the interdigitating microtubules of the phragmoplast and this
cross-linking function is essential for phragmoplast integrity and for cytokinesis [34,35]. In ple-2
mutants, phragmoplasts display considerably wider midzones, subsequently leading to cytokinesis
failure and the formation of incomplete cell walls or stubs and multinucleated cells [35]. Notably,
MAP65-3/PLE emerges at the overlap of the antiparallel microtubules in the anaphase spindle before
PAKRP1/Kin12A and PAKRP1L/Kin12B arrive at the phragmoplast midzone [36]. MAP65-3 seems
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to be essential for midzone retention of PAKRPs as midzone association of PAKRP1/Kin12A was
abolished in dyc283 MAP65-3 mutants [36]. PAKRP1/Kin12A and PAKRP1L/Kin12B are decorating the
interdigitating plus ends of phragmoplast microtubules within the division plane (Figure 3) [27,28].
The kin12akin12b double mutants fail to organize a functional phragmoplast, as the microtubules
between the daughter nuclei do not acquire a bipolar arrangement [28]. However, this is only observed
in dividing microspores whereas somatic cells undergo unperturbed cytokinesis, suggesting functional
redundancy in these cells. A recently characterized candidate that might counterbalance the loss of
PAKRP1/Kin12A and PAKRP1L/Kin12B function in somatic cells of the respective double mutants is
kinesin POK2/Kin12D. It begins to accumulate at the phragmoplast midzone during the transition to
cytokinesis and continuously localizes there until the disappearance of the phragmoplast (Figure 2) [7].
In a motility depended manner, POK2/Kin12D reaches the midzone where it interacts with MAP65-3
and likely some of its isoforms (Figure 3) [7]. The interaction with MAP65-3 is probably confining
POK2/Kin12D at the midzone as it is diminished in ple-2 mutants [7]. MAP65-3 seems to have a specific
affinity for the intrinsically disordered N-terminal region of POK2/Kin12D that directly precedes
the motor domain (Figure 1). Moreover, POK2/Kin12D binds to various MAP65 family members
including MAP65-3 via its C-terminal domain (Figure 1), which fine-tunes the midzone localization of
POK2/Kin12D (Figure 3) [7]. Most likely, it is this capacity of the POK2/Kin12D C-terminal domain
to bind various MAP65 isoforms that retains it at the midzone, even in the absence of MAP65-3/PLE.
These various MAP65 isoforms exhibit distinct localization patterns during cytokinesis, decorating the
entire phragmoplast or only regions of it. To date experiments investigating the genetic interactions
of kinesin-12 with MAP65 members other than MAP65-3 are still needed to untangle functional
redundancies. Thus, the topological redundancy of several kinesin-12 members at the midzone might
essentially provide functional phragmoplast organization and expansion. Along these lines, it would
be interesting to examine whether similar interaction modules exist between kinesin-12 and MAP65 in
basal land plants. The kinesin-12 family in Physcomitrella is remarkably expanded, containing sixteen
members that belong to class I (related to POKs) and four to class II (related to PAKRP1/Kin12A
and PAKRP1L/Kin12B), whereas at least three out of the five PpMAP65 members produce severe
phenotypes upon simultaneous depletion (Figure 1) [3,12,37].

Lessons from animal kinesin-12 orthologs evidenced their microtubule bundling and sliding
activity [10,13,14,38]. Although mutations of either single PAKRP1/kinesin12A or PAKRP1L/kinesin12B
do not obviously interfere with the organization of the phragmoplast [28], the phragmoplast phenotype
of kin12akin12b double mutants in microspores clearly demonstrate a role for the encoded proteins
in stabilizing interdigitating microtubules within the phragmoplast midzone, whereas a potential
role of POK2/Kin12D in the organization of the phragmoplast is currently masked by unresolved
redundancies as pok2 single mutants also exhibit wild-type looking phragmoplast arrays [7]. Although
phragmoplast organization is intact in cytokinetic root cells of pok2 single and pok1pok2 double mutants,
kymograph analysis revealed a significantly reduced expansion rate by the lack of POK2/Kin12D
function, supporting a role of POK2/Kin12D in the timely phragmoplast expansion [7].

Remarkably, the slowdown of the phragmoplast expansion rate during cytokinesis does not
result in detectable defects in cell plate formation ([6]; Stierhof and Müller, unpublished data).
In contrast, it was shown, using the well-known cell-plate associated syntaxin/Qa-SNARE KNOLLE
and callose staining that, in the absence of PAKRP1/Kin12A and PAKRP1L/Kin12B, disorganization of
phragmoplasts affect the delivery of cytokinetic vesicles ultimately leading to the failure of cytokinesis
in microspores [28]. However, regardless of the reported presence of specific cargo-associated tail
domains in plant (e.g., kinesin-12 NtKRP) or in animal orthologs, there are no data supporting a
direct role of PAKRP1/Kin12A and PAKRP1L/Kin12B or other plant kinesin-12 members in vesicle
trafficking [15,30].

Without a doubt, intact phragmoplast organization is necessary for proper cell plate
development [39,40]. The reorganization of phragmoplast microtubules is greatly controlled by the
phosphorylation of MAP65 isoforms resulting in their inactivation and detachment from microtubules
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that subsequently depolymerize [41]. The phosphorylation is mediated by a well-characterized
mitogen activated protein kinase (MAPK) signaling pathway. The recruitment and activation of the
respective MAPK cascade requires tissue-specific isoforms of the kinesin-7 family HINKEL/NUCLEUS
AND PHRAGMOPLAST LOCALIZED PROTEIN KINASE ACTIVATING KINESIN LIKE PROTEIN
(NACK)/TETRASPORE [21]. Interestingly, the IMPORTIN-β IMB4 regulates the activity and stability
of the kinesin-4 FRAGILE FIBER (FRA) 1 during development through interaction with a specific PY
motif in its motor domain [42]. Among the kinesins tested in this study, the kinesin-7 NACK1 and the
kinesin POK1/Kin12C contain the PY motif and their motors bind IMPORTIN-β, suggesting this might
be a broad regulatory mechanism [42]. Yet, an effect on the activity or stability of POK1/Kin12C or
NACK1 was not examined. Interestingly, the Arabidopsis kinesin-12 members, except Kin12F, contain
the PY motif in their motor domains, although localization patterns are quite diverse (Figure 1).
Notably, the POK1/Kin12C is not present at the phragmoplast midzone during cytokinesis, while
POK2/Kin12D, PAKRP1/Kin12A and PAKRP1L/Kin12B are recruited there (Figures 2 and 3). Therefore,
whether IMPORTIN-β interferes with the activity and spatiotemporal patterns of kinesin-12 needs
further investigation.

One possible explanation regarding the regulation of kinesin-12 activity might be that the
association with the phragmoplast midzone solely relies on MAP65 activity/inactivity cycles. Alternatively,
kinesin-12 themselves might be direct substrates of the NACK-PQR MAPK signaling components. It is
worthwhile mentioning that recently POK2/Kin12D was predicted as a putative target of AURORA
kinase [43]. AURORAs are localizing to the phragmoplast [44,45] although the prediction was related
to the cortical division zone targeting (see below) of POK2/Kin12D.

Interestingly, another signaling module involving PAKRP1/Kin12A, PAKRP1L/Kin12B, and
TWO IN ONE (TIO) kinase is acting probably redundantly with the NACK-PQR pathway in male
meiocytes [46]. TIO kinase and its interactors are thought to regulate the reorganization of phragmoplast
microtubules [46]. Although these seem to be separate signaling pathways, they might converge
on shared signaling components. TIO is functioning in sporophytic and gametophytic cell types
and probably also has an essential role in somatic cytokinesis, since TIO RNAi seedlings exhibit
multinucleated cells with incomplete cell walls [47,48].

2.3. Kinesin-12 POKs Are Core Components of the Cortical Division Zone

POK2/Kin12D not only supports the expansion of the phragmoplast midzone but also performs
additional critical functions together with POK1/Kin12C (Figures 2 and 3). Throughout cell division,
both localize specifically at the cortical division zone. They arrive at the preprophase band in a
microtubule dependent manner [6,7]. Following the disassembly of the microtubule preprophase band
in late prophase, they remain tethered to the plasma membrane region that delineates the future division
plane throughout mitosis and cytokinesis (Figure 2). There they act as scaffolds retaining other proteins
residing at the cortical division zone [6,7,21]. POKs emerge at the preprophase band independently
of TANGLED (TAN) and Ran GTPase-activating protein 1 (RanGAP1); however, the localization of
the latter two at the cortical division zone is abolished in dividing cells of pok1pok2 double mutants
after preprophase band disassembly [20]. Interaction of POK1/Kin12C with TAN and RanGap1 is
mediated by the C-terminal domain of POK1/Kin12C (Figure 1) [49–51]. Similarly to the POK1/Kin12C
C-terminus, the POK2/Kin12D C-terminal domain is sufficient to identify the division site, indicating
the existence of critical motifs that mediate targeting to this specific site of the cell cortex (Figure 1) [7].
It is likely that phosphoregulation might mediate anchoring of POK1/Kin12C and POK2/Kin12D
at the plasma membrane, as well as the binding of TAN and RanGap1 to POK1C [6]. Regarding
the mode of this regulation, only hypotheses can be made. TON2/FASS Protein Phosphatase 2A
complex, which drives the assembly of the preprophase band, might be an obvious upstream regulatory
candidate as it is present at the cortical division zone from preprophase until metaphase. Moreover,
phosphatase inhibitors or genetic interference with TON2 function prevent cortical recruitment of
TAN and RanGap1 entirely [49–51]. Interestingly, POK1/Kin12C still emerges, although delayed, and
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decorates the cortical division zone in the dividing cells of the preprophase band-less triple mutants
trm678, further underpinning its role as a core component of the division plane, the setup of which is
accelerated by the preprophase band [52].

Two more POK1/Kin12C interactors are the Rho GTPase of plants (ROP) GAPs PHGAP1 and
PHGAP2 containing a pleckstrin-homology (PH) domain at their N-terminus [53]. In meristematic
tissues, they exhibit preferential enrichment at the cortical division zone upon metaphase until the end
of cytokinesis. The latter is abolished when POKs are missing but the interplay of PHGAPs with these
kinesins probably involves feedback loops as YFP-POK1 cortical rings are frequently mislocalized in
phgap1phgap2 mutants, which also display moderate cell-wall mispositioning defects. Not surprisingly,
this conspicuous accumulation of PHGAPs points to their interference with ROP activities, which
are known to regulate the organization of the cytoskeleton and vesicle trafficking, and to PHGAPs
plausible implication in the assembly or the maintenance of the actin depleted zone [20,53]. Notably,
constructs driving the expression of POK1/Kin12C and POK2/Kin12D alone can rescue the double
mutant phenotype, demonstrating that POK1/Kin12C and POK2/Kin12D have redundant functions at
the cortical division zone, i.e., a scaffolding function and guidance of the phragmoplast [6,7].

2.4. An Update on Phragmoplast Guidance: The Primary Role of POKs

In dividing cells of pok1pok2 double mutants, the assembly of the preprophase band takes place
on time and the initiation of the phragmoplasts occurs between the daughter nuclei as expected.
However, soon after, the phragmoplast deviates from the anticipated path as provided by the positional
information of the preprophase band [6]. Consequently, the cell plate inserts at the parental cell wall in
a random position, showing that the simultaneous lack of both POK1/Kin12C and POK2/Kin12D causes
the failure in phragmoplast/cell plate guidance to the cortical division zone [6,8]. During cytokinesis,
the phragmoplast microtubules polymerize at the margins of the phragmoplast with their plus ends
extending towards the cortical division zone (Figure 3). POK1/Kin12C and POK2/Kin12D at the cortical
division zone might bind to these peripheral microtubules to navigate the expanding phragmoplast at
least in late cytokinesis (Figure 3). On the basis of their sequence, both are predicted to be plus-end
directed, and that was recently confirmed for POK2/Kin12D motor [11,20]. Evidence favoring the
above hypothesis of interaction between POKs and peripheral microtubules is that the C-terminal
regions of both POK1/Kin12C and POK2/Kin12D mediate their attachment to the cortical division
zone. However, expression of only the C-terminal fragments of POK1/Kin12C or POK2/Kin12D
failed to complement the double mutant phenotype [6,7,21]. This speaks for a critical contribution of
POK2/Kin12D and possibly the POK1/Kin12C functional motor domain at the cortical division zone [7].
In a recently proposed model, POKs’ binding to peripheral microtubules and moving towards their
plus ends pushes against the expanding phragmoplast (Figure 3) [11,20]. The forces generated might
be counterbalanced by minus-end directed kinesins [20,54]. Such a tug-of-war mode of phragmoplast
guidance might fine-tune the approach of the phragmoplast and facilitate smooth anchoring of the cell
plate within the preselected cell plate fusion site [11,20].

Notably, actomyosin is also widely implicated in the alignment of the cell plate to the preselected
position. This has been shown in phrarmacological studies as well as in mutants devoid of MYOSIN
XI in Arabidopsis [55–58]. Interestingly, animal kinesin-12 members interact with myosin isoforms [59].
For instance, Dictyostelium Kif12 is known to mediate translocation of MYOSIN II to the cortex of the
dividing cells during metaphase [15]. However, to date, there is no clear evidence showing that POKs
at the cortical division zone perform scaffolding or guidance-related functions via an interaction with
the actomyosin cytoskeleton. In Physcomitrella, loss of MYOSIN VIII, which associates with microtubule
plus ends and displays a localization pattern reminiscent of Arabidopsis POK2/Kin12D, leads to cell
plate guidance defects [60]. On the basis of our current knowledge, a POK-related function has not
been attributed to any of the 20 Physcomitrella kinesin-12 orthologs [3,24], but given that the great
majority of them belong to the POK-related class I, this possibility must not be excluded [3,12].
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3. Conclusions

The data reported so far point towards the important roles of class I kinesin-12 POKs in the
timely establishment of the cortical division zone and the guidance of the phragmoplast to the cell
plate fusion site in cytokinesis. Members of both POK-related class I and PAKRP-related class II
regulate phragmoplast organization and/or tune phragmoplast stability. Accumulated evidence shows
a variety of interactors but still our knowledge regarding the mode of kinesin-12 regulation and the
existence of potential redundancies is limited. Further work is required to solve the redundancies of
the Arabidopsis homologs as well as of the basal plant protein orthologs. This knowledge will improve
our understanding on kinesin-12 spatiotemporal patterns, the diversification of their functions, and
the extent of conserved interactions that kinesin-12 entertain, especially in light of the phylogenetic
relationships between family members among and within species.
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