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Tertiary lymphoid structure signatures are associated with survival and 
immunotherapy response in muscle-invasive bladder cancer
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ABSTRACT
Immunotherapy that block PD-1–PD-L1 pathway can induce durable tumor control and result in the long- 
term survival of patients with advanced bladder cancers. However, these responses only occur in a subset 
of patients. We study gene expression profiles in 1763 muscle-invasive bladder cancers (MIBCs) and 11,835 
solid tumors from TCGA. We establish an immune-based classification on the basis of the composition of 
the tumor microenvironment and identify six distinct phenotypes. The class F was characterized by 
a strong tertiary lymphoid structures (TLSs) related gene expression signature. Pan-cancer gene expres-
sion analysis of tertiary lymphoid structure markers in 11,835 solid tumors from TCGA unveiled the 
heterogeneity of TLSs abundance both within and between human cancer types. The class F group 
demonstrated improved survival and a high response rate to PD1 blockade. This work confirms the 
immune subtypes in patients with MIBC, and unravels the potential of TLS signatures to guide clinical 
decision-making and treatments.
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1. Introduction

Immunotherapy that block PD-1–PD-L1 pathway can induce 
durable tumor control and result in the long-term survival of 
patients with metastatic urothelial cancer .1–4 However, these 
responses only occur in a subset of patients. Clarifying the 
determinants of response and resistance is key to improving 
survival and exploring new therapeutic target. Thorsson et al.5 

performed immunogenomics analysis on more than 10,000 
tumors, identified six immune subtypes covering multiple 
cancer types, and based on this, determined the immune 
response patterns that affected the prognosis. Recently pub-
lished works showed the potential role of B cells and tertiary 
lymphoid structures (TLSs) in the response to immunotherapy 
response in melanoma6,7 and sarcoma.8 A prior study with 
comprehensive analysis of tumor immune microenvironment 
of muscle-invasive bladder cancers (MIBCs) patients9 showed 
that high TLSs amounts were associated with an inflamed 
phenotype and improved patient survival. These important 
studies add to the immunotherapy toolbox by providing new 
methods for predicting prognosis.

Here, we developed a new classification of muscle-invasive 
bladder cancers (MIBCs), based on the composition of the 
tumor microenvironment (TME) in large cohorts of MIBC, 
using the microenvironment cell populations (MCP)-counter 
method. We found that the TLSs signature – a hallmark of an 
immune-high class we called F, correlated with an improved 
survival of patients with MIBC. Finally, we showed that class 
F exhibited the highest response rate to PD1 blockade therapy 
and improved overall survival.

2. Results

2.1. Immune classification of MIBC

The composition of the tumor microenvironment (TME) from 
14 independent discovery MIBC datasets (n = 1763, Table S1-2, 
Fig. S1) with publicly available gene expression profiles were 
analyzed by MCP-counter package .10 In order to select the 
best number of clusters, we used the ConsensusClusterPlus soft-
ware package to evaluate the stability of the cluster, which 
supported the existence of 6 robust subtypes of MIBC in a meta- 
cohort (Figure 1a–c). Through this analysis, an immune-based 
MIBC classification was established, and the tumor was classified 
into one of six MIBC immune classes (MIC), labeled A, B, C, D, 
E and F, with highly distinct profiles (Figure 1d). The TME 
composition differs significantly between MICs (Figure 1d, Fig. 
S2). MIC F, exhibited a strong TLS related gene expression 
signature with an inflamed phenotype, was characterized by 
the highest expression of genes specific to immune populations 
such as B lineage (Figure S2A), CD8 + T cells (Figure S2B), 
cytotoxic lymphocytes (Figure S2C), myeloid dendritic cells 
(Figure S2F), natural killer cells (Figure S2I), and T cells 
(Figure S2J). MIC E, moderate immune and TLS related gene 
expression signature, was characterized by the moderate expres-
sion of genes specific to immune populations such as B lineage 
and myeloid dendritic cells, CD8 + T cells, natural killer cells and 
cytotoxic lymphocytes, high expression of genes specific to 
fibroblasts (Figure S2G). MIC C, immune desert, was character-
ized by the lowest expression of gene signatures related to 
immune cells, as well as low fibroblasts. MICs A was character-
ized by high expression of genes specific to fibroblasts and 
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immune-low profile. MICs B and D were characterized by het-
erogeneous but generally immune-low and immune-high pro-
files, respectively.

The 8 cohorts with available survival data (n = 843) were 
pooled to study the clinical outcome of the six MICs (Figure 2a; 
Table S1). Patients with MIC F exhibited the longest overall 
survival compared with group A or B patients (P = .006 and 
P = .019, respectively, Figure 2a). The TLSs were defined as 
CD20 + B cell follicles juxtaposed with CD3 + T cell aggregates 
containing at least one LAMP3+ mature dendritic cell .11–14 

Representative images of TLSs in bladder cancers detected in 
formalin-fixed paraffin-embedded tumor sections by immuno-
histochemistry staining showing CD20 + B cell zones (Figure 

2b–c) and LAMP+ (brown) DC cell zones (Figure 2d–e), which 
were downloaded from Human Pathology Atlas .15

In order to verify whether the algorithm could really iden-
tify cases with high TLSs infiltration, it was verified by analyz-
ing MIBC HE slides in TCGA (n = 403, Figure 2f–i). We found 
that 4.7% (n = 19) of MIBC patients with TLSs in class F, 4.0% 
(n = 16) in class E, 2.0% (n = 8) in class D, 0.7% (n = 3) in class 
C, 1.0% (n = 4) in class B, and 0.0% (n = 0) in class A, which 
reached statistical significance (table S3, P < .001). The 9-gene 
TLS signature (CD79B, CD1D, CCR6, LAT, SKAP1, CETP, 
EIF1AY, RBP5, and PTGDS) was derived from genes specifi-
cally upregulated in CD8+ CD20+ metastasized melanoma 
tumors .6 As for TCGA HE scans, the expression of 9-gene 

Figure 1. Consensus clustering based on 10 TME cell types of 1763 MIBCs in 14 cohorts. (a) The cumulative distribution function (CDF) shows the cumulative portion of 
all sample co-clustering at the given consensus index (1.0 = co-clustered 100% of the time) for each tested k. Generally, a more step-like curve is associated with more 
stable clustering. The relative increase in total area under the CDF is shown, where generally a greater area may suggest more stable clustering. (b) Delta area curve of 
consensus clustering, indicating the relative change in area under the cumulative distribution function (CDF) curve for each category number k compared with k − 1. 
The horizontal axis represents the category number k, and the vertical axis represents the relative change in area under the CDF curve. (c) Color-coded heat map 
corresponding to the consensus matrix for k = 6 obtained by applying consensus clustering. The color gradients were from 0 to 1, representing the degree of consensus, 
with white corresponding to 0 and dark blue to 1. (d) Composition of the TME by MIC as defined by the MCP-counter Z scores. The patient annotations include MIBC 
cohorts, MICs, Baylor subtype, UNC subtype, CIT subtype, Lund subtype, MDA subtype, and TCGA subtype. Rows represent TME cells, and columns represent samples.
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TLS signature in the TLS+ group was significantly higher than 
that in the TLS- group. (P < .0001, Fig. S2K)

2.2. Pan-cancer gene expression analysis of TLSs markers 
in 11,835 solid tumors from TCGA

The t- distributed stochastic neighbor embedding (tSNE) map 
of 11,835 solid tumors (excluding hematological tumors) from 
TCGA based on the MCP-counter (Figure 3a). Expression 
levels of three MCP- counter cell signatures (B lineage, 
CD8 + T cells and myeloid dendritic cells) and the 9-gene 

TLS signature had a certain similarity in distribution on the 
tSNE map (Figure 3b–e).

It could be seen that the expression of 9-gene TLSs sig-
natures related to the presence of TLS reveals similar char-
acteristics, where TLSs signatures are strongly expressed in 
tumors with higher levels of myeloid dendritic cells in 
B lineage cells and CD8 + T cells. The cancer type-specific 
expression of the 9-gene TLSs signature (Figure 3f) showed 
that in most types of cancer, the distribution is extremely 
uneven, and some tumors express the signature at a high 
level. For example, thymoma (THYM) showed strong 
expression of TLSs signatures. However, in some malignant 

Figure 2. Tertiary lymphoid structures in bladder cancers. (a) Kaplan–Meier curves for OS of 14 cohorts showing the association between MICs and OS. Representative 
images of tertiary lymphoid structures (TLSs) detected in formalin- fixed paraffin-embedded bladder cancers sections by immunohistochemistry staining showing CD20 
+ (brown) B cell zones (b and c) and LAMP+ (brown) DC cell zones (d-e). TLSs could be recognized as “small” lymph node like structures in HE slides of MIBC from TCGA 
(f-i).
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tumors, most tumors did show high expression of TLSs 
signature. This is especially true for tumors that occur in 
the sites with immunology privilege, such as the eye (UVM, 
uveal melanoma) and the brain (GBM, glioblastoma; 
GBMLGG, lower grade glioma and glioblastoma;). 
Adrenocortical carcinoma (ACC) also show very low expres-
sion of TLSs signature, since corticosteroids secreted by ACC 
have recently been shown to inhibit TLS regeneration .14 

Similarly, as observed in advanced urothelial carcinoma16 

and lung cancer, 14 the development of TLSs was suppressed 
in patients receiving corticosteroids for immunotherapeutic 
toxicity. All in all, this transcriptomic analysis revealed the 
heterogeneity of TLSs abundance between different human 
cancer types.

2.3. MIC and immune-checkpoint-related genes

Among the TCGA datasets, the expression of immune- 
checkpoint-related genes (Figure 4a) followed that of immune 
infiltrates, with high expression of the genes (CD274, 
PDCD1LG2, CTLA4, PDCD1, LAG3, HAVCR2, and TIGIT, 
respectively) in MIC F followed by MIC D tumors, and low- 
to very- low expression in MICs E, A, B and C tumors. The 
expression of genes associated with antigen processing 
machinery (B2M, HLA-A, HLA-B, HLA-C, TAP1, and TAP2, 
respectively) was high in MICs F and D, intermediate in MIC 
E, and very low in MICs A, B and C (Figure 4a). In addition, 
patients with MIC F exhibited the better overall survival com-
pared with group D patients (P = .022, Figure 4b).

Figure 3. Pan-cancer gene expression analysis of tertiary lymphoid structure markers in 11,835 solid tumors from TCGA. (A) The t- distributed stochastic neighbor 
embedding (tSNE) map of 11,835 solid tumors (excluding hematological tumors) from TCGA based on the MCP-counter. (B-D) The three graphs on the right display the 
expression level of three MCP-counter cell signatures related to tertiary lymphoid structures. (E) Expression levels of the TLS-9-genes signature on the tSNE map 
presented. (F) The violin plot showing the expression of the 9-gene TLS signature in the various cancer types as probability densities. ACC, adrenocortical carcinoma; 
BLCA, bladder carcinoma; BRCA, breast carcinoma; CESC, cervical squamous carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; COADREAD, 
colorectal adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma; GBMLGG, lower grade glioma and glioblastoma; HNSC, head and neck squamous cell 
carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear- cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, lower- grade glioma; LIHC, liver 
hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, 
pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, 
skin cutaneous melanoma; STAD, stomach adenocarcinoma; STES, stomach and esophageal carcinoma; TGCT, testicular germ cell tumor; THYM, thymoma; THCA, 
thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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Figure 4. Mutational and epigenetic landscape of the BLCA immune phenotype. (a) Unsupervised clustering of TME cells in the TCGA cohort. MICs, Baylor subtype, UNC 
subtype, CIT subtype, Lund subtype, MDA subtype, and TCGA subtype are shown as patient annotations. (b) Kaplan–Meier curves for OS of TCGA cohort showing the 
association between MICs and OS. (c) The Venn diagram of mRNA DEGs, the circle represents mRNA DEGs between MICs F and other MICs; (d) the Venn diagram of 
lncRNA DEGs; (e) the Venn diagram of miRNA DEGs; (f) the Venn diagram of methylation DEGs. (g) Venn diagrams show the amount of DEGs with MICs F affected by at 
least one of the indicated genetic (mRNA) or epigenetic (lncRNA, miRNA, methylation) events. (h) The oncoPrint of MICs. Individual patients represented in each column. 
The top bar plot indicates TMB, whereas the right bar plot shows the mutation frequency of each gene. MICs, Baylor subtype, UNC subtype, CIT subtype, Lund subtype, 
MDA subtype, and TCGA subtype are shown as patient annotations.
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2.4. Differentially expressed RNAs in MIBC related to the 
tertiary lymphoid structures

Among the TCGA datasets, expression data for 20,475 
mRNAs, 7656 lncRNAs, 1,881 miRNAs and 396,605 methy-
lated probes were extracted from TCGA. We compared Class 
F with other classes (A-E), respectively. When we combined 
these five groups and analyzed for differentially expressed 
RNAs, 579 mRNAs (−1> log2 FC >1, FDR < 0.01) (Figure 4c; 
Figure S3; Table S4-S8), 125 lncRNAs (−1> log2 FC >1, FDR < 
0.01) (Figure 4d; Figure S4; Table S9-S13), 7 miRNAs (−1> log2 
FC >1, FDR < 0.01) (Figure 4e; Figure S5; Table S14-S18), and 
11,170 methylated probes (−0.5> log2 FC >0.5, FDR < 0.05) 
(Figure 4f; Table S19-S23) showed consistently differential 
expression. Based on these data, these differentially expressed 
mRNAs (n = 579), lncRNAs (n = 125), miRNAs (n = 7), and 
methylated probes (n = 11,170) were selected for further 
analysis.

We hypothesized that differentially expressed genes affected 
by different patterns of genetic and epigenetic regulation might 
represent a key driving force for the establishment of tumor 
immune phenotypes. GO enrichment analysis of these 579 
mRNAs (Figure 4g) showed that overexpression of genes 
involved in tumor immunity pathways, for example, cytokine- 
cytokine receptor interaction, Th1 and Th2 cell differentiation, 
Th17 cell differentiation, B cell receptor signaling pathway, 
T cell receptor signaling pathway, PD-L1 expression and PD- 
1 checkpoint pathway in cancer, and Toll-like receptor signal-
ing pathway (Fig. S6A–B). As for differentially expressed 
lncRNAs (n = 125), target mRNA prediction revealed 299 
lncRNA-mRNA links (Figure 4g), according to the ENCORI 
database (Interaction Number ≥ 1, Experiment Num ≥ 1). GO 
enrichment analysis of these 299 mRNAs showed that over-
expression of genes involved in tumor immunity pathways, for 
example, antigen processing and presentation, Th1 and Th2 
cell differentiation, natural killer cell mediated cytotoxicity, 
Th17 cell differentiation, and PD-L1 expression and PD-1 
checkpoint pathway in cancer (Fig. S7A–B). As for differen-
tially expressed miRNAs (n = 7), target mRNA prediction 
revealed 2702 miRNA-mRNA links (Figure 4g), according to 
the ENCORI database (strict stringency ≥ 5). GO enrichment 
analysis of these 2702 mRNAs showed that overexpression of 
genes involved in cellular senescence, and proteoglycans in 
cancer (Fig. S8A–B), which are involved in fundamental mole-
cular and cell biology processes occurring in cancer, such as 
cell immune modulation and metastasis formation .17 As for 
differentially expressed methylated probes (n = 11,170) (Figure 
4g), GO enrichment analysis of these 11,170 mRNAs showed 
that overexpression of genes involved in PI3K-Akt signaling 
pathway, Ras signaling pathway, and MAPK signaling pathway 
(Fig. S9A–B).

2.5. Differences in somatic mutations related to the 
immune phenotype

To unravel relevant genetic alterations, we next investigated 
the distributions of somatic alterations and observed different 
patterns among bladder cancer clusters in terms of gene muta-
tions (Figure 4h). Since the survival differences were related 

with the expressional alterations in the identified clusters, 
drugs targeting on the genes with high mutation rates for 
classifying the subtypes may generate distinctive effects on 
the subtypes. To identify potential drug targets, potential drug-
gable genes were mapped based on known inhibitors cataloged 
in the Drug Gene Interaction Database .18 These plot (Fig. S10) 
shows potential druggable gene categories along with upto top 
5 genes involved in them. As results, we found different drug-
gable genomes (MIC A: EP300, ERBB2, FAT4, MUC16 and 
PIK3CA; MIC B: EP300, FGFR3, HMCN1, MUC16 and 
MUC17; MIC C: ATM, BIRC6, FAT3, FGFR3 and HMCN1; 
MIC D: ATM, EP300, FAT1, HMCN1 and KMT2A; MIC E: 
HMCN1, KMT2A, MUC16, MUC17 and PIK3CA; MIC F: 
ATM, EP300, FAT4, HMCN1 and MUC16.) may be highly 
contributable to the survival differences between the identified 
subtypes. For MIBC patients, more attention should be paid on 
these drugs since patients from different subtypes may have 
distinctive responses to these drugs.

2.6. Tertiary lymphoid structures are associated with 
immunotherapy response in metastatic urothelial cancer

Here we examined whether MICs can predict the patient 
response to checkpoint blockade therapy from a large cohort 
of patients with metastatic urothelial cancer (IMvigor21019), 
from which pre-treatment tumor samples to study the clinical 
activity of PD-L1 blockers were used for comprehensive eva-
luation. Different kinds of tissue samples (n = 298) including 
bladder, kidney, liver, lung, lymph node ureter and others, 
were performed transcriptome RNA sequencing (RNA-seq) 
in the IMvigor210 cohort. Here only bladder tissue samples 
(n = 168) were involved in the following analysis. The patients 
who had a complete or partial response to treatment were 
classified as responders, and compared with non-responders 
who showed stable or progressive disease. The complete 
response rate (CR) was 8.9% (15 out of 168) in the overall 
cohort. MICs showed substantial variation in complete 
response rate (CRR), with MIC F patients exhibiting the high-
est CRR (21.4%, 3 out of 14), followed by MIC D (16.1%, 5 out 
of 31) and MIC A (11.1%, 2 out of 18) (Figure 5a). Patients with 
MIC F tumors also exhibited improved overall survival com-
pared with patients with MIC A (P = .015), MIC C or MIC 
E (P = .118 and P = .157, respectively, these P values were 
borderline but trending toward significance). (Figure 5b).

3. Discussion

Recent study showed that activation of oncogenic pathways in 
tumor cells could impair induction or execution of a local 
antitumor immune response .20

A study found that PI3K inhibitors could improve anti-PD1 
efficacy in a clinically relevant breast cancer mouse model .21 In 
addition, tumors of the non-T cell-inflamed subset contained 
FGFR3-activating mutations .22 Interestingly, tumors of the 
claudin-low subset expressed immune gene signatures at high 
levels and had decreased frequencies of FGFR3 mutations .23 In 
our study, we found PIK3CA had high mutation in the sub-
types of MIC A and MIC E, and FGFR3 had high mutation in 
the subtypes of MIC B and MIC C. Therefore, more attention 
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should be paid on the combination of immunotherapy and 
these druggable genomes, which may help change the tumor 
immune microenvironment.

Previous study3,24 reported that PD-L1 expression on 
immune cells was significantly associated with response. By 
contrast, PD-L1 expression on tumor cells was not associated 
with response .19 We found that many differentially expressed 
RNAs (mRNA, lncRNA and miRNA) in MIBC were related to 
tertiary lymphatic structure, which were mainly involved in 
tumor immune pathways, such as PD-L1 expression and PD-1 
checkpoint pathway in cancer. In addition, we found the 
CD8 + T cell signature and PD1 were expressed in class 
F MIBC, which were associated with improved survival, pro-
viding high infiltration of TLSs. The integrative analysis 
demonstrated that TLSs were the key discriminative feature 
of a group of patients with improved survival. We found that 
this TLSs-high subgroup was found to respond better to PD1 
blockade therapy. In addition, van Dijk16 et al. showed that 
there was no correlation between baseline TLS numbers and 
the response of combined CTLA-4 plus PD-1 blockade, 
although immature TLSs were higher in non-complete- 
response advanced urothelial cancer .16 Gao et al.25 observed 
a higher density of TLSs in pre-treatment (neoadjuvant com-
bination anti-PD-L1 plus anti-CTLA-4) tumor tissues of 
responder patients as compared to non-responder patients of 
high-risk urothelial carcinoma. However, the underlying 
mechanism needs further research, but the possible explana-
tion is that TLS is the site of anti-tumor immunity, where 
B cells indicate T cells (especially CD8 + T cells) to recognize 
tumor-associated antigens .26 Overall, our findings lay the 
foundation for risk stratification of MIBC patients and identi-
fying patients who are more likely to benefit from 
immunotherapy.

The main limitations of our study are that the analyses were 
based on transcriptome subset due to comparisons across gene 
expression quantification technologies. Further studies are 
needed large cohorts across tumor types and stage of disease, 
as well as with therapeutic regimens. Pre-clinical models will 
help lend statistical power to the notion that TLSs indepen-
dently contribute to antitumor immune function in the context 
of immunotherapies.

4. Conclusions

Our data present multiomic data that support a role for TLS 
signatures in the response to immunotherapies in patients with 
bladder cancer. Although the distinct mechanisms through 
which TLSs contribute are incompletely understood, this find-
ing opens avenues for therapeutic strategies that aim at enhan-
cing TLSs formation and function, which could result in 
improved clinical outcomes and responses to cancer 
immunotherapy.

5. Patients and methods

5.1. Inclusion criteria

We downloaded the publicly available bladder cancer gene 
expression datasets. A total of 14 cohorts were collected (Table 
S1). Cohorts with <20 tumors, without MIBC, post-treatment 
(chemotherapy) tumor samples, or <10000 genes, or cohorts 
hybridized on older or two-color microarray platforms, were 
removed from meta-cohort compilation (Table S2).

5.2. Data sources and preprocessing

Raw data from the microarray datasets generated using 
Affymetrix® and Illumina® were downloaded from the Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). 
The raw data for the dataset from Affymetrix® were processed 
using the RMA algorithm for background adjustment using the 
“Affy” package .27 The raw data for the dataset from Illumina® 
were processed using the “lumi” package. The “ComBat” 
algorithm28 was applied to reduce the likelihood of batch 
effects from non-biological technical biases. We performed 
a quality check, platform-specific normalization, and com-
bined them by ComBat (Fig. S1A-C).

5.3. Deconvolution of the cellular composition with 
MCP-counter

We used the microenvironment- cell-populations (MCP)- 
counter10 method on the basis of specific molecular 

Figure 5. MICs predict patient response to PD1 blockade. This Fig. refers to the IMvigor210 cohort (n = 168). (a) Relationship between MIC and response to PD1 
blockade in the IMvigor210 cohort. (b) Ovreall survival of patients by tumor MIC (n = 168). CR, complete response; PD, progressive disease; PR, partial response; SD, 
stable disease.
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markers for eight major immune cell types (CD3 + T cells, 
CD8 + T cells, cytotoxic lymphocytes, natural killer cells, 
B lymphocytes, monocytic lineage cells, myeloid dendritic 
cells and neutrophils), endothelial cells and fibroblasts. The 
MCP counter method measures the absolute abundance of 
immune cell subtypes that can be compared between 
samples.

5.4. Evaluation TLSs by hematoxylin and eosin staining in 
TCGA cohort

The sections were screened for the presence of TLSs based on 
morphologic features. Follicular aggregates of lymphatic cells 
were defined as TLS.

5.5. Consensus clustering for TME-infiltrating cells

Tumors with qualitatively different TME cell infiltration 
patterns were grouped using hierarchical agglomerative 
clustering (based on Euclidean distance and Ward’s link-
age). Unsupervised clustering methods (K-means) for data-
set analysis were used to identify TME patterns and classify 
patients for further analysis. A consensus clustering algo-
rithm was applied to determine the number of clusters in 
the meta-dataset to assess the stability of the discovered 
clusters. This procedure was performed using the 
ConsensuClusterPlus R package and was repeated 1000 
times to ensure the stability of classification. The criteria 
to determine the number of clusters were as follows: rela-
tively high consistency within clusters, relatively low varia-
tion coefficient, and no appreciable rise in the area under 
the cumulative distribution function (CDF) curve. The cate-
gory number was selected as the area under the CDF curve 
and showed no significant change.

5.6. Six published MIBC molecular classifications by 
BLCAsubtyping

We used BLCAsubtyping29 (R package) six to assign each 
sample to a subtype in each of the six published MIBC mole-
cular classifications (Baylor, 30 University of North Carolina 
(UNC), 31 MD Anderson Cancer Center (MDA), 32 the Cancer 
Genome Atlas (TCGA), 33 Cartes d’Identité des Tumeurs 
(CIT)-Curie, 34 and Lund .35)

5.7. Pan-cancer gene expression analysis of tertiary 
lymphoid structure markers in 11,835 solid tumors from 
TCGA

The t- distributed stochastic neighbor embedding (tSNE) map 
of 11,835 solid tumors from TCGA based on the MCP-counter 
software scores estimating the composition of the tumor 
microenvironment (TME). MCP-counter software was applied 
to all samples, and the tSNE map was constructed on the 
estimates with the R.

5.8. Differentially expressed genes (DEG) associated with 
the MICs

To identify genes associated with MICs patterns, we grouped 
patients into six subtypes based on immune-cell infiltration. 
DEGs among these groups were determined using the 
R package (DESeq2: mRNA, miRNA and lncRNA; ChAMP 
:36 methylated probes).

5.9. Functional and pathway enrichment analysis

Gene annotation enrichment analysis using the 
clusterProfiler R package37 was performed on differentially 
expressed genes. Gene Ontology (GO) terms were identified 
with a strict cutoff of P < .01 and false discovery rate (FDR) 
of less than 0.05.37

5.10. Drug and gene interactions

The mutation data for 405 TCGA samples were obtained from 
UCSC Xena and analyzed by using maftools package. All drug 
and gene interaction information were obtained from the 
DGIdb18 which included both the known and reported drug- 
gene interactions.

5.11. Genomic and clinical data sets with 
immune-checkpoint blockade

Here we examined whether MICs can predict the patient 
response to checkpoint blockade therapy from a large cohort 
of patients with metastatic urothelial cancer (IMvigor21019), 
from which pre-treatment tumor samples investigating the 
clinical activity of PD-L1 blockade with atezolizumab in meta-
static urothelial cancer (mUC) were used for an integrated 
evaluation.

5.12. Statistical analysis

The chi-square test or Fisher exact was used for categorical 
variables, and the t-test or Wilcoxon rank-sum test for contin-
uous variables. Kaplan-Meier analysis was used to determine 
OS. Log-rank test was used to compare survival between sub-
groups. Statistical analyses were performed with SPSS, version 
26.0 (IBM, Armonk, NY), and R software packages, version 
4.0.1 (The R Foundation for Statistical Computing, http:// 
www.r-project.org/). A two-sided P value of less than 0.05 
was considered to be statistically significant for all reports.
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