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Bistability and time crystals in long-ranged directed
percolation
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Stochastic processes govern the time evolution of a huge variety of realistic systems

throughout the sciences. A minimal description of noisy many-particle systems within a

Markovian picture and with a notion of spatial dimension is given by probabilistic cellular

automata, which typically feature time-independent and short-ranged update rules. Here, we

propose a simple cellular automaton with power-law interactions that gives rise to a bistable

phase of long-ranged directed percolation whose long-time behaviour is not only dictated by

the system dynamics, but also by the initial conditions. In the presence of a periodic mod-

ulation of the update rules, we find that the system responds with a period larger than that of

the modulation for an exponentially (in system size) long time. This breaking of discrete time

translation symmetry of the underlying dynamics is enabled by a self-correcting mechanism

of the long-ranged interactions which compensates noise-induced imperfections. Our work

thus provides a firm example of a classical discrete time crystal phase of matter and paves

the way for the study of novel non-equilibrium phases in the unexplored field of driven

probabilistic cellular automata.
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Percolation theory describes the connectivity of networks,
with applications pervading virtually any branch of science1,
including economics2, engineering3, neurosciences4, social

sciences5, geoscience6, food science7 and, most prominently, epi-
demiology8. Among the multitude of phenomena described by
percolation, of predominant importance are spreading processes,
in which time plays a crucial role and that can be studied within
models of directed percolation (DP)9. Characterized by universal
scalings in time10, in their discretized versions these models are
probabilistic cellular automata (PCA), that is, dynamical systems
with a state evolving in discrete time according to a set of sto-
chastic and generally short-ranged update rules. To account for
certain realistic situations, e.g. of long-distance travels in epidemic
spreading, DP has been extended to long-ranged updates11,12

leading to a change of the universal scaling exponents13.
Despite their wide applicability, PCAs have surprisingly

remained an outlier in a branch of non-equilibrium physics that
has recently experienced a tremendous amount of excitement—
that of discrete time crystals (DTCs)14–20. In essence, DTCs are
systems that, under the action of a time-periodic modulation with
period T, exhibit a periodic response at a different period T 0≠T ,
thus breaking the discrete time-translational symmetry of the
drive and of the equations of motion. DTCs thus extend the
fundamental idea of symmetry breaking21 to non-equilibrium
phases of matter. Following the pioneering proposals in the
context of many-body-localized (MBL) systems17,18, DTCs have
been observed experimentally22,23, and their notion has been
extended beyond MBL24–27.

More recently, Yao and collaborators have fleshed out the
essential ingredients of a classical DTC phase of matter28.
Namely, in a classical DTC, many-body interactions should allow
for an infinite autocorrelation time, which should be stable in the
presence of a noisy environment at finite temperature, a subtle
requirement that rules out the vast class of long-known deter-
ministic dynamical systems. Despite various efforts28–31, an
example of such a classical DTC has mostly remained elusive, and
proving an infinite autocorrelation time robust to noise and
perturbations for this phase of matter is an outstanding problem.
The general expectation is in fact that PCAs and other minimal
models for noisy systems in one spatial dimension can only show
a transient subharmonic response because noise-induced imper-
fections generically nucleate and spread, destroying true infinite-
range symmetry breaking in time28,32.

Here we overcome these difficulties by introducing a simple
and natural generalization of DP in which the dynamical rules are
governed by power–law correlations. This leads to qualitative
changes of the system behaviour and, crucially, the emergence of
a bistable phase of long-ranged DP, enabled by the ability of long-
range interactions to counteract the dynamic proliferation of
defects. By adding a periodic modulation to the update rules, we
then study a version of periodically driven DP and show that the
underlying bistable phase intimately connects to a stable DTC. In
this non-equilibrium phase, the system is able to self-correct
noise-induced errors and the autocorrelation time grows expo-
nentially with the system size, thus becoming infinite in the
thermodynamic limit. In analogy to the one-dimensional Ising
model for which, at equilibrium, long-range interactions enable a
normally forbidden finite-temperature magnetic phase33,34, in
our model, out of equilibrium, the long-range interactions lead to
a classical time-crystalline phase. Crucially, our results appear
naturally in a minimal model of long-ranged DP but are expected
to find applications in many different contexts of dynamical
many-body systems.

Basic understanding of new concepts has historically been built
around the study of minimal models, such as the Ising model for
magnetism at equilibrium33,34, the kicked transverse field Ising

chain for DTCs17,18, or the prototypical Domany–Kinzel (DK)
PCA for DP35. In this paper, we start our discussion with a brief
review of the DK model and then generalize it to include
power–law interactions. We characterize its phase diagram and
show that its long-range nature is the key ingredient for the
emergence of a bistable phase. Finally, we include a periodic drive
for the long-ranged DP process and show with a careful scaling
analysis that the autocorrelation time of the subharmonic
response is exponential in system size. In the thermodynamic
limit, our model provides therefore the first example of a PCA
behaving as a classical DTC, which is persistent and stable to the
continuous presence of noise. Lastly, we conclude with a sum-
mary of our findings and an outlook for future research.

Results
Review of DP. We consider a triangular lattice in which one
dimension can be interpreted as discrete space i and the other one
as discrete time t= 1, 2, 3,… , see Fig. 1. To implicitly account for
the triangular nature of the lattice, i runs over integers and half-
integers at odd and even times t, respectively. We denote L the
spatial system size and are interested in the thermodynamic limit
L→∞. The site i at time t can be either occupied or empty, si,t=
0,1. For a given time t, we call generation the collection of vari-
ables fsi;tgi specifying the system state. Initially, the sites are
occupied with uniform probability p1 > 0. A DP process is defined
by a stochastic Markovian update rule with which, starting from
the initial generation fsi;1gi, all subsequent generations fsi;tgi are
obtained one by one. The main observable we will focus on is the
global density n(t) (henceforth just referred to as density for
brevity) defined as

nðtÞ ¼ hhsi;tiiiruns ð1Þ
where the inner and outer brackets denote average over the L sites
and over R independent runs, respectively. Since n(1)= p1, we
will often refer to p1 as initial density.

The simplest, and yet already remarkably rich, example of the
above setting of DP is the DK model35. Here, we briefly review it
adopting an unconventional notation that, making explicit use of
a local density, will prove very convenient for a straightforward
generalization to a model of long-ranged DP.

In the DK model, the probability of site i to be occupied at time
t depends on the state of its neighbours i ± 1/2 at previous time t
− 1. More specifically, as summarized in Fig. 1a, site i is: (i) empty
if both its neighbours were empty, (ii) occupied with probability
q1 if one and just one of its neighbours was occupied, and (iii)
occupied with probability q2 if both its neighbours were occupied.
To account for these possibilities in a compact fashion, we define
a local density ni,t as

ni;t ¼
si�1

2;t�1 þ siþ1
2;t�1

2
; ð2Þ

and say that site i at time t is occupied with a probability pi,t given
by

pi;t ¼
0 if ni;t ¼ 0

q1 if ni;t ¼ 0:5

q2 if ni;t ¼ 1:

8><
>: ð3Þ

In other words, the probability pi,t is a nonlinear function
f q1;q2ðni;tÞ of the local density ni,t, with domain {0, 0.5, 1}. Since ni,
t only involves the nearest neighbours of site i, the DK model of
DP is obviously ‘short-ranged’. In essence, si,t is a Bernoullian
random variable of parameter pi,t, which we compactly denote
si;t � Bernoulli ðpi;tÞ. The complexity of this model arises from
the fact that the value of the parameter pi,t is not known a priori,
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as it depends on the actual state of the system at previous time t
− 1. Equipped with a random number generator, one can obtain
all the generations one by one according to the above procedure,
as schematically illustrated in the flowchart of Fig. 1b. Reiterating
for several independent runs, one finally obtains the time series of
the density n in Eq. (1).

The DK model features two dynamical phases, shown in
Fig. 1c, d. In the inactive phase, for small enough probabilities q1
and q2, the system eventually reaches the completely unoccupied
absorbing state, that is, no percolation occurs. In the active phase
instead, for large enough probabilities q1 and q2, a finite fraction
of sites remains occupied up to infinite time, that is, the system
percolates. For small initial probability p1≪ 1, the critical line
separating the two phases is characterized by a power–law growth
of the density36, n ~ tθ, with exponent θ ≈ 0.31. As conjectured by
Grassberger37, this exponent is universal for all systems in the DP
universality class. Indeed, DP exemplifies how the unifying

concept of universality pertaining to quantum and classical
many-body systems38 can be extended to non-equilibrium
phenomena.

Important for our work is that, in the DK model, whether the
system percolates or not depends on the parameters q1 and q2 but
not on the initial density p1, at least as long as p1 > 0. Indeed, the
phase boundaries for initial densities p1= 0.01 and p1= 1 in
Fig. 1c, d, respectively, coincide.

Long-ranged percolation and bistability. As the vast majority of
PCA, the DK model features short-ranged update rules9. In
realistic systems, however, it is often the case that the occupation
of a site i is influenced not only by the neighbouring sites but also
by farther sites j, with an effect decreasing with the distance ri,j
between the sites. Building on an analogy with the DK model, we
propose here a model for such a ‘long-ranged’ DP, whose pro-
tocol is explained in the flowchart of Fig. 2a. Specifically, we
consider as a local density ni,t a power–law-weighted average of
the previous generation fsj;t�1gj centred around site i

ni;t ¼
1

N α;L

X
j

sj;t�1

ri;j
� �α ; ð4Þ

where the normalization factor N α;L ensures ni,t= 1 if all sites j
are occupied and the adjective ‘local’ emphasizes the site depen-
dence. The occupation probability pi,t then depends on the local
density ni,t through some nonlinear function fμ that for con-
creteness we consider to be

pi;t ¼ μ tanhð4n2i;tÞ; ð5Þ
with μ∈ (0, 1) a control parameter. The whole DP dynamics is
determined via the occupations si;t � Bernoulli ðpi;tÞ and reiter-
ating from one generation to the next. Note, our findings are not
contingent on the specific choice of Eqs. (4) and (5) but are rather
expected to hold generally for a broad class of long-ranged forms
of the densities ni,t and of functions fμ—see ‘Methods’ section for
details.

We emphasize that Eqs. (4) and (5) and the flowchart in Fig. 2a
are a natural generalization of Eqs. (2) and (3) and Fig. 1b,
respectively. Furthermore, whereas in the DK model the control
parameters are the probabilities q1 and q2, the control parameter
is now μ. As an important difference, now the domain of fμ
accounts for several (and α-dependent) values of ni,t, for which
the piecewise definition of pi,t as in Eq. (3) would have been
unpractical, and the compact form of Eq. (5) was necessary
instead.

The introduction of a long-ranged local density ni,t in Eq. (4)
has profound implications. Arguably, the most dramatic is the
appearance of a bistable phase, in addition to the standard active
and inactive ones. In the bistable phase, the ability of the system
to percolate depends on the initial density p1, see the red lines in
Fig. 2b, c. That is, the bistable phase features two basins of
attraction, resulting into an asymptotically vanishing or finite n,
respectively, and separated by some critical initial density p1,c > 0.
To characterize systematically the dynamical phases of our model,
we plot in Fig. 2d, e the long-time density n(t= 103) as a suitable
order parameter in the plane of the power–law exponent α and
control parameter μ. Comparing the results obtained for a large
and a small initial density p1, it is possible to sketch a phase
diagram composed of three phases: (i) inactive—n decays to 0 at
long times; (ii) active—n does not decay at long times; (iii)
bistable—n either decays or not depending on p1 being small or
large. The existence of this bistable phase is in striking contrast
with short-ranged models of DP such as the DK model and in fact
appears only for α⪅ 2, that is, when the local densities fni;tgi are
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Fig. 1 Domany–Kinzel model of the directed percolation. a The probability
pi,t of site i to be occupied at time t depends on the occupation of its
nearest-neighbours i± 1

2 at time t− 1 and can take discrete values 0, q1 and
q2. b Flowchart representation of the DK model. The initial occupation
probability is uniform pi,t= 1= p1. At time t, each site i is either occupied
(si,t= 1) or empty (si,t= 0) with probability pi,t and 1− pi,t, respectively.
Time is advanced and local densities fni;tgi are computed for each site i as
averages of the nearest-neighbour occupations at previous time, and these
densities determine the occupation probabilities for the next generation,
see Eq. (3). The generations at all subsequent times are obtained by
iteration. c, d The density n at late times can be used to discern the active
and inactive phases, in which n(t= 103) >0 and ≈0, respectively. The
dashed lines serve as a reference to locate the phase boundary and are the
same for initial densities p1= 1 (c) and p1= 0.01 (d). The insets show
representative single instances of the DP for the points in the (q1, q2) plane
marked with a cross. Here L= 100 and R= 103.
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correlated over a sufficiently long range. To understand the origin
of this rich phenomenology, we study the short- and infinite-
range limits of our DP process.

In the short-range limit α→∞, the local densities ni,t reduce to
the averages of the nearest-neighbour occupations si�1

2;t�1 and
siþ1

2;t�1, that is, Eq. (4) recasts into Eq. (2) and the DK model is
recovered. In the notation of Eq. (3), the DK parameters are q1 =
fμ(0.5) and q2= fμ(1). Therefore, we can move across the DK
parameter space (q1,q2) varying μ, going from the inactive phase
(μ < μ1c ) to the active one (μ > μ1c ), and no bistable phase is
possible. We find that the transition happens at a critical
μ1c ¼ 0:85ð7Þ. Note that, in the active phase, a completely empty
state (p1= 0) remains trivially empty at all times. This behaviour
is, however, unstable, because any p1 > 0 leads to percolation (i.e.
p1,c= 0), and we therefore do not classify the active phase as
bistable. At criticality, and for p1≪ 1, the density grows as n ~ tθ

with θ= 0.3(0), as expected for the DP universality class9. See
Supplementary Fig. 2 for details.

In the infinite-range limit α→ 0, and more generally for α ≤ 1,
the factor N α;L in Eq. (4) diverges as L→∞. Correspondingly,
spatial stochastic fluctuations are suppressed, that is, all sites
i share the same occupation probability pi,t+1= pt and density
ni,t = n(t)= pt. Therefore, in this limit the dynamics reduces to

the deterministic 0-dimensional recurrence relation

nðt þ 1Þ ¼ f μ nðtÞ½ �: ð6Þ
The system asymptotic behaviour can then be understood from
the analysis of the fixed points (FPs) of the equation x= fμ(x),
which is detailed in the ‘Methods’ section.

Driven percolation and time crystals. We have established that
long-range correlated local densities fni;tgi give rise to a bistable
phase. We now show how, in a driven DP with periodically
modulated update rules, this phase intimately relates to the
emergence of a classical DTC. In this phase, as we shall see, the
density n displays oscillations over a period larger than that of the
drive and up to a time that, thanks to the long-range interactions
and despite the presence of multiple sources of noise, is expo-
nentially large in the system size, a feature that would generally be
forbidden in short-ranged PCA28. In the thermodynamic limit
L→∞, these subharmonic oscillations are therefore persistent,
that is, the system autocorrelation time diverges to infinity,
breaking the time-translational symmetry and proving a classical
DTC in a periodically driven PCA.

In the spirit of keeping the model as simple as possible, we
consider a minimal drive in which, after every T iterations of the
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i at time t is occupied (si,t= 1) with probability pi,t. Local densities fni;tgi are computed as power–law-weighted averages of the previous generation fsi;t�1gi,
and the occupation probabilities are updated as pi;t ¼ fμ ni;t

� �
, see Eqs. (4) and (5). b, c Time evolution of the density n for p1= 1 (b) and p1= 0.01 (c) for

various representative values of the power–law exponent α and control parameter μ. Three dynamical phases can be distinguished: (i) inactive—the density
n decays to 0 (blue); (ii) active—n does not decay to 0 (yellow); (iii) bistable—n either decays to 0 or not depending on whether the initial density p1 is
small or large (red). d, e Long-time density n(t= 103) in the plane of α and μ for p1= 1 (d) and p1= 0.01 (e). With the criterion used in b, c, we discern the
three phases: inactive (light), active (dark), and bistable (light or dark depending on p1). The dashed lines help locating the phases and coincide in d and e,
and critical values μ0c and μ1c of μ in the limits α→ 0 and α→∞, respectively, are reported (the offset of μ0c from the dashed line, as well as the softening of
the dashed line for α≈ 1, are due to finite-size effects). Crucially, the bistable phase is present only for small enough α≾ 2, that is, for a sufficiently long-
ranged DP. Single instances of the DP for the three phases are shown in the insets, as obtained for the α and μ indicated with coloured dots, and
corresponding to the parameters used in b, c. Here R= 104 and 102 in b, c and d, e, respectively, and L= 500.
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DP in Eqs. (4) and (5), empty sites are turned into occupied ones
and vice versa, making the full equations of motion periodic with
period T. As a further source of imperfections, adding to the
underlying noisy DP, we also account for faulty swaps with
probability pd. More explicitly, the periodic drive consists of the
following transformation

si;1þkT ! 1� si;1þkT with probability 1� pd
si;1þkT with probability pd:

(
ð7Þ

In Fig. 3a, b, we show the spatio-temporal pattern of single
instances of the driven DP, alongside with the density n
averaged over several independent runs. If the DP is short-
ranged enough, the spatio-temporal pattern at long times looks
similar from one period to the next, that is, the density n
synchronizes with the drive and eventually picks a periodicity
T. On the contrary, for a long-ranged enough DP, the system
keeps alternating at every period between a densely occupied
regime and a sparsely occupied one, and n oscillates with period
2T, that is, the system breaks the discrete time-translation
symmetry of the equations of motion.

When using the tag ‘classical DTC’, special care should be
reserved for showing the defining features of this phase, namely,
its rigidity and persistence28. Our system is rigid in the sense that
it does not rely on fine-tuned model parameters, e.g. μ, α or the
initial density p1, and that noise, either in the form of the
inherently stochastic underlying DP or of a small but non-zero
drive defect density pd, does not qualitatively change the results.
Moreover, in the limit L→∞, our DTC is truly persistent.
Indeed, one might expect that the accumulation of stochastic
mistakes introduces phase slips and eventually leads to the
(possibly slow but unavoidable) destruction of the subharmonic
response. Although this expectation is generally correct for short-
ranged DP models, including our model at large α, it can fail for
long-ranged DP models.

To show that, in the limit L→∞, the lifetime of our DTC is
infinite, we perform a scaling analysis comparing results for
increasing system sizes L. First, we introduce an order parameter
Φ(t), henceforth called subharmonicity, that is defined at
stroboscopic times t= 1, 1+ T, 1+ 2T,… as

ΦðtÞ ¼ ð�1Þt�1
T nðtÞ � nðt þ TÞ½ �: ð8Þ

If the density n oscillates with the same period T as the drive, then
n(t)= n(t+ T) and Φ(t)= 0. On the contrary, if n oscillates with
a doubled period 2T, then n(t= 1+ kT) is positive and negative
for even and odd k, respectively, and Φ(t) is finite and maintains a
constant sign. Therefore, Φ(t) is a suitable diagnostics to track the
degree of subharmonicity of n in time and to perform the scaling
analysis.

In Fig. 3c, we show Φ(t) for various system sizes L. For both
α= 1.4 and α= 1.8, the subharmonicity decays exponentially in
time, ΦðtÞ � expð� t�1

τT Þ. As shown in Fig. 3d, these two values of
α are, however, crucially different in how the lifetime τT scales
with the system size. In fact, τT is approximately independent of
L for α= 1.8, whereas it scales exponentially as τ � expðβLÞ for
α= 1.4, for which the decay of the subharmonicity is therefore
just a finite-size effect. The scaling coefficient β quantifies the
time crystallinity of the system and can thus be used to obtain a
full phase diagram as a function of the power–law exponent α,
in Fig. 3e. We observe a phase transition between a DTC and
a trivial phase at α ≈ 1.7. That is, if the DP is sufficiently long-
ranged (α⪅ 1.7), β is finite and in the thermodynamic limit
L→∞ the subharmonic response extends up to infinite time,
as required for a true DTC. In contrast, for a shorter-range DP
(α ⪆ 1.7), β ≈ 0 independently of L and the subharmonic response
is always dynamically destroyed.

Discussion
We have shown that long-range DP and its periodically driven
variant can give rise to a bistable phase and a DTC, respectively.
At the core of our model in Eqs. (4) and (5) is the idea that the
occupation of a given site depends on the state of all the other
sites at the previous time. In this sense, our model is reminiscent
of some SIR-type models of epidemic spreading in which not only
a sick site can infect a susceptible site, but several infected sites
can also cooperate to weaken a susceptible site and finally infect
it39,40. This cooperation mechanism among an infinite number of
parent sites, rather than a finite one as considered in previous
works on long-ranged DP13,41, is the key feature allowing the
emergence of the bistable phase that finds a transparent expla-
nation in the infinite-range limit α→ 0, where it corresponds to
the equation x = fμ(x) having two stable FPs. Bistability also
provides intuition on the origin of the DTC, to which it is deeply
connected. Indeed, the drive in Eq. (7) switches the system from a
densely occupied regime to a sparsely occupied one (and vice
versa). If the underlying DP is bistable, these regimes fall each
within different basins of attraction and can therefore be both
stabilized by the contractive dynamics25,29. Ultimately, this
double stabilization facilitates the establishment of the DTC with
infinite autocorrelation time. Remarkably, this mechanism does
not rely on the equations of motion being perfectly periodic, as
required for DTCs in closed MBL systems42, and we expect that
infinite autocorrelation times could be maintained even in the
presence of aperiodic variations of the drive (although the
nomenclature should be revised in this case, since the underlying
discrete time symmetry would only be present on average but not
for individual realizations). This is in contrast to DTCs in closed
MBL systems42, in which the non-ergodic dynamics hinges on the
peculiar mathematical structure of the Floquet operator, which, in
turns, relies on the underlying equations being perfectly periodic.

The intimate connection between bistability and DTC is,
however, not a strict duality, and the boundaries of the two
phases, in the equilibrium and non-equilibrium phase dia-
grams, respectively, do not coincide. For instance, in our ana-
lysis we found that for μ= 0.9 the bistable phase extends up to
α ≈ 1.6, whereas the DTC stretches slightly farther, up to α ≈
1.7. The origins of this imperfect correspondence can be traced
back to two competing effects. On the one hand, bistability may
not be sufficient to stabilize a DTC. This can already be
understood in the limit α→ 0, in which the asymmetry of fμ
and of its FPs does not guarantee the drive to switch the density
n from one basin of attraction to the other, that is, across the
critical probability p1,c. This issue becomes even more relevant
for larger α, for which the asymmetry is possibly accentuated
and p1,c can approach 0 (see for instance Supplementary Fig. 1).
On the other hand, a perfect bistability may not even be
necessary for a DTC to exist. In fact, for the stabilization of a
DTC, it may be sufficient that, of the densely and sparsely
occupied regimes of the underlying DP, only one is stable, and
the other is just weakly unstable (that is, metastable), meaning
that the time scales of the dynamics of the density n in the two
regimes are very different. Loosely speaking, the stability of one
regime might be able to compensate for the weaker instability of
the other, resulting in an overall stable DTC. The asymmetry of
the underlying DP and the mismatch between the bistable
phase and the DTC highlight the purely dynamical nature of
the latter, that cannot ‘piggy-back’ on any underlying
symmetry.

While these considerations are model and parameters dependent,
and it is ultimately up to numerics to find the bistable and the DTC
phases, what is universal and far reaching here is the concept that
long-ranged DP, and PCA more generally, can host novel dyna-
mical phases, such as DTCs. As Yao and collaborators recently
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pointed out28, long autocorrelation times are in fact generally
unexpected in 1+ 1-dimensional PCA, because imperfections and
phase slips can nucleate, spread and destroy the order. Our work
proves that this fate can be avoided, and time-crystalline order
established, in long-ranged PCA. These systems enable in fact an
error correction mechanism, in our case intimately related to the
bistability, that would be impossible if correlations were limited to a
finite radius. We may speculate that, in the physical picture of a
Hamiltonian system coupled to a bath, this defect suppression
would correspond to the cooling rate being larger than the
heating rate.

In conclusion, we have studied the effects of long-range cor-
related update rules in a model of DP, which we built from an

analogy with the prototypical (but short-ranged) DK PCA. First,
we proved that, beyond the standard active and inactive phases, a
new bistable phase emerges in which the system at long times is
either empty or finitely occupied depending on whether it was
initially sparsely or densely occupied. Second, in a driven DP with
periodic modulation of the update rules, we showed that this
bistable phase intimately connects with a DTC phase, in which the
density oscillates with a period twice that of the drive. In this DTC
phase, the autocorrelation time scales exponentially with the sys-
tem size, and in the thermodynamic limit a robust and persistent
breaking of the discrete time-translation symmetry is established.

As an outlook for future research, further work on the driven DP
should better assess the nature of the transition between the DTC
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and the trivial phase, characterize more systematically the phase
diagram in other directions of the parameter space, and, most
interestingly, address the role of dimensionality. Indeed, it is well
known that dimensionality can facilitate the establishment of
ordered phases of matter at equilibrium, and the question whether
this is the case also out of equilibrium remains open. A positive
answer to this question is suggested by the fact that, in D+ 1-
dimension with D ≥ 2, bistability can emerge even in short-ranged
models of DP40,43,44. Another interesting question regards the fate
of chaos and damage spreading in long-ranged DP 45. Further
research should then aim to gain analytical intuition into the pro-
blem. For instance, the critical α separating the various phases may
be located using a field theoretical approach, which has been suc-
cessful in similar contexts in the past41. Finally, on a broader per-
spective, our work paves the way towards the study of non-
equilibrium phases of matter in the uncharted territory of driven
PCA, with a potentially very broad range of applications throughout
different branches of science. As a timely example, Floquet PCA
may provide new insights into the understanding of seasonal epi-
demic spreading and periodic intervention efficacy.

Methods
Here we provide further technical details on our work. In Eq. (4), we considered as
distance ri,j between sites i and j

ri;j ¼
L
π

tan π
i� j
L

� �����
����; ð9Þ

where the tangent accounts for periodic boundary conditions and makes the dis-
tance of the farthest sites with ∣i− j∣= L/2 artificially diverge. This divergence is
expected to reduce finite-size effects without changing the underlying physics, that
is, in fact dominated by sites with ∣i− j∣ ≪ L, for which we get a natural ri,j ≈ ∣i− j∣.
Indeed, as we checked, similar results are obtained with
ri;j ¼ minðji� jj; L� ji� jjÞ. The Kac-like normalization factor N α;L reads instead

N α;L ¼
XL
j¼1

r1
2;j

� ��α
: ð10Þ

The phenomenology of the bistable phase can be understood from a graphical
FP analysis of the equation fμ(x)= x illustrated in Fig. 4, which explains the

dynamics for α < 1. Three scenarios are possible and interpreted in terms of the
ways the graph of the function fμ intersects with the bisect. (i) Inactive—if μ < μ0c ,
the only FP is x0= 0, which is stable and corresponds to a completely empty state.
The system moves towards this FP and pt t ! 1!0. (ii) Critical—if μ ¼ μ0c , a new
semi-stable FP emerges at xc, which is attractive from its right and repulsive on its
left. (iii) Bistable—if μ > μ0c , the semi-stable FP splits into an unstable FP x1 > x0
and a stable FP x2 > x1. In this case, the system will reach either the unoccupied FP
x0= 0 or the finitely occupied FP x2 > 0 depending whether p1 < x1 or p1 > x1,
respectively. That is, the system is bistable, and the critical initial probability
separating its two basins of attraction is p1,c= x1 (see also Supplementary Fig. 1).
The critical value μ0c is obtained numerically solving for the condition of tangency
between the graph of fμ and the bisect and gives μ0c ¼ 0:6550ð8Þ and xc= 0.5216(9).
For μ > μ0c , the FPs x1 and x2 are found solving for fμ(x)= x, and, for instance, we
find x1= 0.3326(5) and x2= 0.7890(9) for μ= 0.8.

The FP analysis also clarifies the general features of fμ that allow for the
emergence of bistability, that is, in fact not contingent on the choice of fμ made in
Eq. (5). Indeed, the only requirement is that, for some parameter(s) μ, the equation
fμ(x)= x has three FPs x0 < x1 < x2, of which x0 and x2 are stable, whereas x1 is
unstable. Put simply, fμ should be a nonlinear function with a graph looking
qualitatively as that of Fig. 4c. This condition guarantees a bistable phase for α < 1,
which can then possibly extend to α ≥ 1 and, in the presence of a periodic drive,
facilitate the establishment of a DTC.

Finally, note that higher resolution and smaller fluctuations could be achieved in
the figures throughout the paper if simulating larger system sizes L and/or con-
sidering a larger number of independent runs R. This could, for instance, allow a
more accurate characterization of both the equilibrium and the non-equilibrium
phase diagrams of our model, which could be explored in other directions of the
parameter space for varying α, μ, pd and T. This would, however, require a for-
midable numerical effort and goes therefore beyond the scope of this work. As a
reference, for instance, the generation of Fig. 3e for the parameters considered
therein requires a computing time of approximately 4 × 103 h per 3 GHz core.

Data availability
No data sets were generated or analysed during the current study.

Code availability
The codes that support the findings of this study are available at https://figshare.com/
articles/software/Code/13468836.
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