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Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the 
absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of 
DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly 
recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. 
Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in 
diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex 
and intricate mechanisms involved in diabetic cardiomyopathy,  Ca2+ mishandling and mitochondrial dysfunction have been 
described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway 
that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
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Introduction

Metabolic diseases (MetD) involve a cluster of illnesses with 
disrupted normal metabolism, among which are prediabetes, 
metabolic syndrome, and diabetes mellitus (DM). Diabetes 
mellitus (DM) is a chronic metabolic disorder that affects 
millions of people globally, with an exponential increase. 
Indeed, it is expected that this pandemic disease will affect 
more than 690 million people by 2045 [66]. These huge 
numbers are alarming, because this chronic illness is one of 
the major contributors, together with aging and obesity, to 
the increased rate of heart failure (HF) and related morbidity 
and mortality, worldwide [74, 206]. Moreover, DM is also 
a risk factor for many infectious diseases, i.e., tuberculosis, 
melioidosis, dengue, virus infection [279], and the actual 
pandemic of COVID-19 [283].

According to the American Diabetes Association, the 
majority of cases of DM belong to one of two broad eti-
opathogenetic categories: type 1 DM (T1DM) and type 2 
DM (T2DM). However, in many cases, diabetic individuals 
do not easily fit into a single class (see for review, [5, 6]). 
The usually described T1DM, previously known as juvenile-
onset diabetes or insulin-dependent diabetes, is an autoim-
mune disease that results from the destruction of insulin-
producing β-cells in the pancreas, which leads to insulin 
deficiency. This autoimmune disease has been associated 
with different genetic predispositions and environmental fac-
tors. However, the underlying initial mechanisms are still 
poorly defined. T2DM accounts for 90–95% of all cases of 
DM [5] and constitutes a broad-spectrum syndrome, with a 
frequent late diagnosis; thus, target organs may be severely 
affected well before the symptoms appear. The cause of 
T2DM is a combination of resistance to insulin action and 
an inadequate compensatory insulin secretory response.

In the heart, DM produces diabetic cardiomyopathy, 
which finally culminates in HF [112, 141]. Diabetic car-
diomyopathy can be defined as the myocardial dysfunction 
that suffers patients with DM in the absence of hyperten-
sion and structural heart diseases such as valvular or coro-
nary artery dysfunctions. Heart disease may initiate with 
diastolic dysfunction, mainly in T2DM (HF with preserved 
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ejection fraction, HFpEF, EF ≥ 50%) that is later associated 
with systolic dysfunction, finally leading to systolic HF with 
EF < 40% [225].

Similar to many other insidious diseases, like hypertension, 
obesity, or cancer, T2DM starts several decades before reach-
ing an overt and complete disease. Particularly, it may begin 
as a metabolic syndrome or as prediabetes. Indeed, metabolic 
defects precede overt clinical disease in most cases of T2DM. 
These metabolic derangements include impaired glucose toler-
ance and impaired fasting glucose. The presence of these alter-
ations defines the prediabetic state [6, 253]. Because metabolic 
syndrome and prediabetes are usually silent conditions, the 
most studied entity is T2DM. Moreover, although T1DM and 
T2DM have different etiologies, both diseases share similar 
systemic metabolic imbalances [125, 225] that may be at the 
origin of the multiorgan alterations of DM, including diabetic 
cardiomyopathy [136].

Identification of the tight association between DM and 
cardiac disease occurred in 1972 when Rubler et al. (1972) 
described a new type of cardiomyopathy in patients with DM 
called diabetic cardiomyopathy [235]. Two years later, the 
Framingham study recognized the importance of DM in HF 
[141]. Subsequent studies showed that HF occurs at rates three 
to five times higher in DM patients than in the general popula-
tion [112].

The underlying pathophysiology of the prolonged process 
that culminates in diabetic cardiomyopathy and HF is rather 
complex. However, it is known that impaired  Ca2+ handling 
and mitochondrial dysfunction associated with enhanced ROS 
production and  Ca2+-calmodulin-dependent protein kinase 

(CaMKII) activity (two crucial players in HF of different ori-
gins, [182]) appeared altered even at the prediabetic stages. In 
this early phase of the illness, diabetic cardiomyopathy and even 
DM symptoms are absent or unnoticed [98], making the knowl-
edge of prediabetic prevalence, rather uncertain. However, the 
bad prognosis of prediabetic individuals underpins the decisive 
importance of studying the underlying mechanisms of the ill-
ness at the very early stages. Unfortunately, these earlier periods 
have been seldom assessed at the cellular and molecular level.

In the present review, we will focus on the molecular mech-
anisms mediating cytosolic, sarcoplasmic reticulum (SR), and 
mitochondrial  Ca2+ mishandling in diabetic cardiomyopathy 
and how these alterations may be involved in the decrease in 
contractility, arrhythmias, and apoptosis observed that may 
finally end in overt HF. In the last part of the review, we will 
depict what is known about  Ca2+ mishandling and mitochon-
dria dysfunction in the early stages of the illness.

Excitation–contraction coupling and cardiac 
mitochondria function

Ca2+ is a critical second messenger and  Ca2+ homeostasis 
is crucial for maintaining cardiac function. Indeed, altera-
tions in  Ca2+ handling are associated with major cardiac 
disorders [152].

In each heartbeat, the  Ca2+ entered through the L-type 
 Ca2+ channels (LTCC) during the action potential (AP) 
binds to the ryanodine receptors (RyR2) and triggers a 
release of  Ca2+ from the SR by a mechanism known as 

Fig. 1  EC coupling. AP induces 
 Ca2+ entry through the LTCC 
channels that induces RyR2 
opening and  Ca2+ release 
from the SR.  Ca2+ binds to the 
contractile machinery producing 
myocyte contraction.  Ca2+ reent-
ers the SR trough the SERCA2a 
and exits the cell trough the 
NCX, leading to the decrease of 
 Ca2+ transient and mechanical 
relaxation. Inset: Imbalanced ion 
currents can result in membrane 
potential alterations known as 
early and delayed afterdepo-
larizations, EAD, and DAD, 
respectively, according to the 
moment that they occur relative 
to the regular AP. EADs arise 
before the completion of AP, 
whereas DADs occur after AP 
completion. Possible ectopic 
beats are in red and blue. Below: 
An ECG with the ectopic beat 
produced by a DAD
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 Ca2+-induced-Ca2+-release [95] (Fig. 1). The rise in  Ca2+ 
allows actin-myosin interaction and muscle contraction 
(known as excitation–contraction coupling, ECC), but also 
increases the transport rate of mechanisms that remove 
 Ca2+ from the cytosol. These mechanisms are mainly the 
SR  Ca2+-ATPase (SERCA2a) and the  Na+/Ca2+ exchanger 
(NCX), causing the fall of  Ca2+ transient and mechanical 
relaxation. The enhanced activity of SERCA2a allows refill-
ing of SR  Ca2+ store, whereas the NCX activity extrudes the 
 Ca2+ that entered the cell through the LTCC [22].

RyR2 are macromolecular complexes highly controlled 
by different interacting proteins that regulate their activ-
ity, like FK506-binding protein-12.6 (FKBP12.6), calmo-
dulin (CaM), calsequestrin-2 (CASQ2), junctin (JCTN), 
triadin (TRDN), and βII-spectrin. Other proteins in the 
RyR2 complex regulate the level of RyR2 post-transla-
tional modifications, like protein kinase A (PKA),  Ca2+ 
calmodulin dependent protein kinase (CaMKII), SPEG, 
and protein phosphatase type-1 and type-2A (PP1 and 
PP2A, respectively). The RyR2 channel is also regulated 
by S-nitrosylation and oxidation ([22, 23, 160], and see 
below). SERCA2a activity is mainly regulated by phos-
pholamban (PLN) [264]. PLN phosphorylation by PKA 
or CaMKII increases SERCA2a pump activity [99]. The 
PLN-SERCA2a duet is regulated by additional proteins, 
which either enhance or decrease SERCA2a activity and 
the rate of SR  Ca2+ reuptake (see for reviews [153, 188]).

The heart has one of the highest energy demands in 
the organism, to support metabolism, contraction, and ion 
homeostasis. In healthy myocytes, the strategic position-
ing and abundance of mitochondria ensure the necessary 
ATP delivery to rapidly face this high energy demand. 
Under physiological  Ca2+ concentrations, local transfer 
of  Ca2+ to the mitochondria stimulates energy produc-
tion by positively regulating the tricarboxylic acid (TCA) 
cycle enzymes and indirectly the pyruvate dehydrogenase 
complex (PDH), increasing NADH and FADH2 produc-
tion, and enhancing electron transport chain (ETC) activ-
ity [200]. This SR-mitochondria  Ca2+ trafficking provides 
a fundamental link between  Ca2+-dependent contraction 
and mitochondria metabolic output. Indeed, a fraction 
of cardiac mitochondria resides in close proximity to the 
junctional SR. This immediacy plays a functional role in 
excitation-metabolism coupling (EMC) and programmed 
cell death (Fig. 2B) ([58, 111] and see below). Addition-
ally, ETC is the main cellular process that generates reac-
tive oxygen species (ROS) under both physiological and 
pathological conditions [9].

To reach the mitochondrial matrix,  Ca2+ needs to cross 
two lipid bilayers, the outer and the inner mitochondrial 
membranes. In the outer mitochondrial membrane,  Ca2+ 
crosses through the voltage-dependent anion channel 
(VDAC), which allows the transport of ions and small 

proteins (Fig.  2B). The inner mitochondrial membrane 
is completely ion impermeable, and the driving force for 
 Ca2+ entry is the mitochondrial membrane potential (∆Ψm 
around − 150 to − 180 mV) [159]. Mitochondrial matrix 
 Ca2+ concentration balance is achieved by two main mecha-
nisms;  Ca2+ enters mostly through the mitochondrial  Ca2+ 
uniporter complex (MCU) and exits through the  Na+  Ca2+ 
 Li+ exchanger (NCLX) or through the  H+/Ca2+ exchanger 
(HCX) in tissues where mitochondrial NCLX activity is low 
[266]. Heart inducible MCU deleted mice present normal 
resting mitochondrial  Ca2+ levels indicating alternative  Ca2+ 
entry mechanisms [156]. The MCU is a large complex with 
multiple regulatory proteins. It is formed by the inner mem-
brane components, MCU, a dominant-negative MCUb and 
EMRE (essential MCU regulator), and the intermembrane 
space regulators: the EF-hand proteins MICU1, MICU2, 
and MICU3. Additionally, MCUR1 seems to be involved 
in MCU-EMRE interaction [79]. On the other hand, recent 
evidence suggests that besides its well-established role in 
mitochondria-mediated cell death, the mitochondrial perme-
ability transition pore (mPTP) participates in the mainte-
nance of mitochondria  Ca2+ homeostasis through the extru-
sion of mitochondrial  Ca2+ [148, 180]. The identity of the 
mPTP is still under discussion, but one of the most accepted 
conformations is that it is formed by VDAC in the outer 
membrane and the adenine nucleotide translocase (ANT) in 
the inner membrane and the regulatory protein cyclophilin 
D (CyD) in the matrix side [17] (Fig. 2B). The mPTP open-
ing can be induced by  Ca2+ and ROS. ADP,  H+,  Mg2+, and 
NADH increase the  Ca2+ threshold for mPTP opening [17].

SR‑Ca2+ leak and SR‑mitochondria interaction

SR  Ca2+ release in cardiac myocytes occurs via local events 
referred to as  Ca2+ sparks [64]. The normal twitch  Ca2+ tran-
sient in ventricular myocytes results from the temporal and 
spatial summation of thousands of  Ca2+ spark events which 
are synchronized by the AP and L-type  Ca2+ current  (ICa) 
via  Ca2+-induced  Ca2+-release [49, 50, 95, 177, 178].  Ca2+ 
sparks also occur in a stochastic manner during rest, even in 
the absence of  Ca2+ influx, although at very low frequency 
in cardiac cells [64, 241]. Diastolic SR  Ca2+ leak may be 
augmented by an increase in SR  Ca2+ load (above a certain 
threshold, small changes in SR  Ca2+ load result in far greater 
increases in  Ca2+ release) [247] and by factors that alter 
RyR2 regulation [25, 191] (Fig. 2A).

Three different sites have been found to change RyR2 
activity: Ser2808 (2809 in human heart), Ser2814 (2815 
in humans), and Ser2030 [288, 291, 298] (Fig. 2A). Acti-
vation of CaMKII and the subsequent phosphorylation of 
S2814 are generally considered the critical post-translational 
modifications that enhance SR  Ca2+ leak in HF [87, 233], 
ischemia–reperfusion injury [78, 237], and several other 
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diseases, including diabetic cardiomyopathy [93, 256, 261]. 
Importantly, CaMKII may be also persistently over-activated 
(autonomous activation of the kinase) by posttranslational 
modifications including autophosphorylation [129], oxida-
tion [91], S-nitrosylation [57, 92], and O-GlcNAcylation 
(OGN) [91] as well as by reactive carbonyl species [26, 
301]). These modifications occur in several cardiac diseases, 
including diabetic cardiomyopathy, a disease characterized 
by the increase in oxidative stress. CaMKII can phospho-
rylate different substrates, including RyR2 and PLN, which 
are associated with increased SR  Ca2+ leak and enhanced 
propensity to arrhythmias and cell death (see below).

RyR2 may also suffer redox modifications. Although 
the current understanding of redox-mediated RyR2 activity 
remains incomplete, its impact on RyR2 function and dys-
function is supported by a variety of experimental results (see 
for review [55, 85, 171]). Oxidation of RyR2 SH residues 
increases the activity of RyR2 channels and the rate of calcium 
fluxes in isolated SR vesicles [124] and enhances SR  Ca2+ leak 
and arrhythmias [18, 268]. S-nitrosylation and S-glutathionyla-
tion have been also shown to increase the activity of RyR2 
channels in vitro in subcellular cardiac muscle fractions and in 
isolated cardiomyocytes [86, 171, 239] (Fig. 2A).

Mitochondria and endoplasmic reticulum (ER) or SR are 
in close contact (approximately 15–50 nm apart) at mul-
tiple sites called mitochondria-ER contact sites (MERC) 
[58, 111]. The fraction of membranes comprised in these 
interactions is defined as the mitochondrial associated mem-
branes (MAMs). MERCs are involved in multiple critical 
functions among which is ER/SR-mitochondria  Ca2+ shut-
tling [149, 229, 230, 234]. These narrow spaces constitute 
high concentration domains of  Ca2+ released by IP3R or 
RyR2 that affect mitochondrial  Ca2+ homeostasis, energet-
ics, metabolism, and mitochondrial dynamics [300]. Several 
protein-like structures acting as physical tethers link both 
organelles. Among these proteins are mitofusin 2 (Mfn-2) 
[62, 75, 201] and GRP75, which link the  Ca2+ channel IP3R, 
isoform 2 (IP3R2), to VDAC [263]. Similarly, IP3R2 has 
been described to bind with the FUN14 domain containing 
1 (FUNDC1) to modulate SR  Ca2+ release [295]. Seidlmayer 
et al., 2019, recently showed the crucial role of physical 
tethering of SR and mitochondria by Mfn-2 for metabolic 
feedback induced by IP3 (Fig. 2B) [245]. VDAC has also 
physical interactions with the RyR2, which, coupled with 
MCU co-localization with the RyR2, helps to explain how 
ER/SR-mitochondrial  Ca2+ transport is possible [146]. Stud-
ies by De La Fuente et al., 2016, showed that  Ca2+ signaling 
activity promotes MCU recruitment to dyad (RyR2) areas 
[76]. In this way, MCU “hot spots” can be formed at the 
mitochondria-SR/ER associations favoring local  Ca2+ sign-
aling and the excitation-energetics coupling (Fig. 2B).

Ca2+ leak from the RyR2 has been related to either 
reduced or increased mitochondrial  Ca2+ content, both 

Fig. 2  A RyR2 receptor regulation. RyR2 interacts with different proteins 
that regulates its function either directly or through RyR2 phosphorylation 
at different sites (FKBP12.6, juctin, triadin, calsequestrin, PP1, PP2A, 
CaM, CaMKII, and PKA. RyR2 is phosphorylated at Ser2814/15 site 
by CaMKII, at Ser2808/9 site by PKA and CaMKII and at Ser2030 by 
PKA. B MAMs. Mitochondria and ER/SR are linked by several proteins 
resulting in optimized  Ca2+ communication between these two organelles. 
Fundc1, GRP75, and Mfn-2 serve as anchoring proteins, narrowing the 
space between IP3R2/RyR2 and VDAC. The mPTP structure is not clear 
and it’s opening can be induced by increases in ROS,  Ca2+, decreased 
ΔΨm, resulting in release of the mitochondrial content including pro-
apoptotic proteins. C SR-nuclear cross-talk. The outer membrane of the 
nuclear envelope extends into the cytoplasm to form a continuum with 
the SR. The inner membrane deeply invaginates into the nucleus form-
ing what is called the nucleoplasmic reticulum.  Ca2+ inside the nucleus 
can bind calmodulin (CaM) and activate gene transcription. Additionally, 
CaM-Ca2+ can activate CaMKII that will in turn phosphorylate and acti-
vate other transcription factors. Finally, CaM-Ca2+ activates calcineurin 
resulting in additionally gene transcription activation
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resulting in mitochondrial dysfunction and enhanced ROS 
production [119, 240]. Recent experiments indicated that the 
increase in RyR2 activity induces mitochondria depolariza-
tion, altering mitochondria  Ca2+ homeostasis and elevating 
mitochondrial ROS efflux. Thus, the increase in SR  Ca2+ 
leak would trigger a vicious circle that further activates 
RyR2, SR  Ca2+ leak, and mitochondrial dysfunction [119].

Cytosolic  Ca2+ and nucleus cross talk

There is a close contact as well as an intense crosstalk 
between the SR, the nucleus envelope, and the nucleus 
itself. The outer membrane of the nuclear envelope extends 
into the cytoplasm to form a continuum with the SR. The 
nucleus membrane expresses different  Ca2+-handling pro-
teins like RyR type 1 and IP3 receptors, SERCA2a, PLN, 
and NCX [61, 94, 110, 163, 217, 293, 314]. In addition, the 
inner membrane deeply invaginates into the nucleus forming 
what is called the nucleoplasmic reticulum (see for review 
[186]). The relation between nuclear and cytosolic  Ca2+ 
movements and the role played by the membrane nuclear 
 Ca2+ handling proteins are not yet completely understood. 
However, it is known that cytoplasmic  Ca2+ transients are 
associated to nucleoplasmic  Ca2+ transients, which are 
main players in the regulation of gene expression, a process 
termed excitation-transcription coupling [77, 297] Fig. 2C. 
Cytosolic  Ca2+ would passively diffuse to the nucleus and 
then extruded via nuclear pores (NP) distributed along the 
nuclear envelope and then taken up by either the SERCA2a 
at the nuclear membrane or the SR, the neighboring mito-
chondria, or extruded by the NCX in the nearby T tubules 
(see for review [62]). Shanin et al. 2001 showed that NP con-
ductance is controlled by the levels of  Ca2+ and ATP close 
to the nuclear envelope and by the stimulation of different 
receptors, particularly IP3R, located at the nuclear envelope 
[246]. Other receptors identified in the nuclear envelope are 
ɑ-adrenergic, endothelin-1, and angiotensin II [30, 265, 
296] — indicating that IP3 may also originate at the nuclear 
level for a local control of  Ca2+ [62] — as well as β1 and 
β3-adrenergic receptors [31], which may be involved in the 
β regulation of gene expression [281]. Thus, as stated by 
Dewenter et al., 2017, in a relatively recent review “ …cyto-
solic and nuclear  Ca2+ cycling are part of a highly sophisti-
cated system which controls  Ca2+ -dependent signaling by 
modifications of global  Ca2+ oscillations as well as  Ca2+ 
regulation within microdomains” [65, 77, 195].

As will be discussed below, different proteins involved 
in  Ca2+ handling and the interactions and cross-talks SR-
mitochondria and nucleus are modified and/or dysregulated 
in different models of diabetic cardiomyopathy and even in 
the prediabetes state. These changes are part of the cardiac 
maladaptive remodeling and constitute main players in dia-
betic cardiomyopathy development.

Ca2+ mishandling in diabetic 
cardiomyopathy

As described above,  Ca2+ is a key element in ECC, EMC 
and excitation-transcription coupling, but also in trigger-
ing apoptosis and genetic adaptive (maladaptive) responses, 
like hypertrophy [65, 195]. Therefore, it is critical to estab-
lish the alterations in  Ca2+ handling as well as the more 
relevant changes (expression, function, and regulation) of 
proteins involved in  Ca2+ handling in the evolution of dia-
betic cardiomyopathy to delineate strategic actions to avoid 
the progression of the disease.  Ca2+ mishandling in diabetic 
cardiomyopathy is the main cause of depressed contractility, 
slow relaxation, triggered arrhythmias, and altered cellular 
processes, as apoptosis or mitophagy.

a. Main triggers of diabetic cardiomyopathy

When diabetic cardiomyopathy evolves to HF, it shares 
most of the alterations observed in HF from different eti-
ologies, i.e., left ventricular hypertrophy, interstitial fibro-
sis, cell death, diastolic and systolic dysfunction, impaired 
contractility,  Ca2+ mishandling, altered substrate utilization, 
myocardial lipotoxicity, inflammation, impaired autophagy, 
endoplasmic reticulum stress, and oxidative stress [136]. 
Additionally, all these mechanisms are linked and can be 
coordinated. Although the triggers for these changes include 
hyperglycemia, hyperlipidemia, and hyperinsulinemia, the 
beginning of the different cardiac abnormalities is not yet 
clearly determined. Belke et al., 2004, suggested hyperglyce-
mia as the main factor responsible for diabetic cardiomyopa-
thy in both, type 1 and 2 of DM [20]. The authors argue that 
despite insulin levels differ between the two models, both 
exhibit important hyperglycemia and progressive cardiomy-
opathy with increasing plasma glucose levels and advanced 
glycation end products (AGEs) [1]. In contrast, other insu-
lin-resistant models with modest hyperglycemia show only 
discreet cardiomyopathy [19, 223]. Indeed, hyperglycemia 
induces oxidative-stress, producing tissue/cell damage in 
several target organs including the heart [40]. Hyperglyce-
mia leads to the formation of AGEs, forming irreversible 
cross-links in many large proteins (such as collagen), gen-
erating myocardial fibrosis and increased stiffness [10, 13, 
48, 56, 120, 184]. Probably more important in the context of 
this review, cross-linked AGEs were demonstrated in RyR2, 
associated with a decrease in the activity of RyR2 [27], and 
associated with a decreased expression of SERCA2a [28], 
in part through their action on nuclear gene expression (see 
below). These changes have been related to diastolic and 
systolic dysfunction in diabetic cardiomyopathy [154]. 
Experimental evidence also demonstrated a crucial role of 
hyperglycemia on CaMKII activation and arrhythmogenesis 
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in diabetic cardiomyopathy [93], although additional patho-
logical factors exacerbated the risk for arrhythmias in this 
cardiomyopathy [122].

Animal models

There are a wide variety of preclinical animal models of 
DM with specific characteristics that may be relevant to 
studying type 1 or type 2 DM. Among the animal models 
used as experimental tools to study T1DM are the strep-
tozotocin (STZ) model, [32], which is the most frequently 
model used to mimic T1DM, and the spontaneous type 1 
diabetes models, among which are the non-obese diabetic 
(NOD) mouse [185], possibly the most used of spontaneous 
models, the OVE26 mouse model [90] and the heterozygous 
Ins2 + /– Akita diabetic mouse [306] (Table 1 and Supple-
mental Table 1a and b).

To study T2DM, the most used models are the ob/ob 
[311] and db/db [54] mutant mice, the Zucker diabetic fatty 
(ZDF) rat [52], and the spontaneously diabetic model Otsuka 
Long-Evans Tokushima Fatty (OLETF) rat model [142]. 
There are also models of diet-induced diabetes, for instance, 
low STZ and high fat diet (HFD), high fat and high sucrose 
diet (HFHS), or the fructose-rich diet (FRD), all of which 
can result in insulin resistance and T2DM [220]. HIP rats 
are obese rats expressing the human isoform of amylin, a 
pancreatic hormone co-secreted with insulin in the pancre-
atic β-cells, used as a model of late-diabetic cardiomyopathy 
[47]. Non-mammals’ models, like zebra fish, C. elegans, and 
Drosophila melanogaster have been also used as DM models 
[29, 80] (Table 2 and Supplemental Table 2a and b). These 
models may be very useful, because of their shorter cycle 
life, the whole-genome interference RNAɨ library available, 
and the low maintenance cost [144].

All these models were valuable experimental tools for 
studying the underlying mechanisms of T1DM and T2DM 
in the human being, and in all cases, their use present differ-
ent types of advantages and disadvantages (for review about 
this issue, see [42, 143]). In all cases, extrapolation of the 
results to humans has to be cautious, because, in addition to 
some unique characteristics that the models may have, the 
studies may reflect different stages and severities of the ill-
ness, different predispositions to cardiomyopathies, or even 
confounding effects produced by the toxicity of drugs or the 
genetic mutation used to induce DM [42].

b. Low contractility and slow cardiac relaxation

Despite the model diversity, contractile depression, delay 
relaxation associated with a diminished transient  Ca2+ 
amplitude, and prolongation of intracellular  Ca2+ decay are 
hall mark characteristics of diabetic cardiomyopathy in the 
hearts of T1DM and T2DM, as shown in Tables 1 and 2 [20, 

248, 249]. In several diabetic cardiomyopathy models, of 
either T1DM or T2DM, altered relaxation appears before a 
significant decrease in contractility occurs. Moreover, when 
intracellular  Ca2+ transients were measured, changes in con-
tractility and relaxation are associated to similar changes in 
 Ca2+ transient’s amplitude and relaxation, underpinning the 
importance of  Ca2+ mishandling in diabetic cardiomyopathy 
(see supplementary Tables 1 and 2). A reduced SR  Ca2+ 
content may be due to a reduced SERCA2a pump activity, an 
increased SR  Ca2+ leak via RyR2, an enhanced  Ca2+ extru-
sion via NCX, and/or a decrease in  ICa. Tables 1 and 2 of 
supplementary materials display some results of different 
aspects of  Ca2+ handling and mitochondrial alterations in 
different models of diabetic cardiomyopathy. Tables 1 and 
2 are a summary of most common alterations observed in 
different models.

A decrease in SERCA2a expression or activity is a com-
mon finding in the different models in which this protein 
has been explored [20, 28, 67, 203]. In some diabetic mod-
els, for instance, in STZ treated rats or the Akita model in 
T1DM or the db/db mouse model in T2DM, there is an 
increase in PLN expression and a decrease in PLN phos-
phorylation, which should lead to SERCA2a inhibition 
[216], and may well explain the decrease in  Ca2+ transient 
and contractility as well as the slow relaxation typical of 
this disease [20]. Indeed, it has been shown that restora-
tion of SERCA2a expression with an adenoviral vector 
improves contractile function and reverts the increased car-
diomyocyte size in T2DM hearts [236]. However, although 
SERCA2a depression appears as a main mechanism for the 
decrease in contractility and relaxation observed in DCM, 
some T2DM diabetic cardiomyopathy (T2DC) models show 
decreased contractility and even relaxation, without changes 
in SERCA2a expression or PLN alterations (Supplementary 
Table 2). Interestingly, studies by Kralik et al., 2005, indi-
cated a greater depression of  Ca2+ transient decay in OVE26 
than in db/db myocytes, in association with a significant 
decrease in SERCA2a expression in the OVE26 but with-
out changes in db/db myocytes, despite similar degrees of 
diminished contractility [151]. These somewhat unexpected 
findings may indicate different stages of evolution of the ill-
ness, different species and preparations, but also that other 
mechanisms may be playing a role in the decrease in contrac-
tility observed in T2DC. For instance, Pereira et al., 2006, 
described a decrease in SR  Ca2+ content associated with a 
decrease in RyR2 expression, L-type  Ca2+ current, and an 
increase in NCX expression, all of which may contribute to 
decrease SR  Ca2+ load [177]. Unfortunately no measure-
ments of SERCA2a activity or expression were performed in 
this study, to explain the impairment of relaxation described. 
Chou et al., 2017, found similar expression of SERCA2a 
but slower  Ca2+ transient decay, attributed to prolonged AP 
duration due to CaMKII-dependent slowing of  Ca2+ current 
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inactivation and an increase in late  Na+ current ([69] and see 
Supplementary Table 2). Other authors showed mitochon-
drial dysfunction associated to either decrease contractil-
ity or relaxation [97, 134, 227]. Indeed, impaired energy 
metabolism has been also associated to hyperglycemia car-
diac contractile deficiency [150]. In the Zucker diabetic fatty 
(ZDF) rats, a well-known model of T2DM, the decrease in 
contractility and relaxation observed without significant 
alterations in SR  Ca2+ load was attributed to an increase 
in SR  Ca2+ sparks or a diabetic-induced alteration at the 
myofilament level [73]. The first possibility seems unlikely, 
since the increase in spontaneous  Ca2+ sparks would lead to 
a decrease in SR  Ca2+ content, unless a concomitant increase 
in SR  Ca2+ uptake occurs, which seems not to be the case. 
In contrast, changes at the contractile protein level, includ-
ing depressed sensitivity of myofilament to  Ca2+, have been 
described by others in STZ-treated rats [3, 187], ZDF rats 
[127] and ob/ob mice [167] (Supplemental Table 2). This 
finding is very interesting since studies in human cardiac 
tissue report alterations at the myofilament level in T2DC 
[21, 107, 140].

The molecular underlying mechanisms of the decrease 
in SERCA2a expression and/or activity are not completely 
clear, when no changes in PLN expression or phosphoryla-
tion are found. Yet, experimental studies indicate different 
and possibly nonexclusive mechanisms. For instance, it was 
shown that the impairment of relaxation observed in diabetic 
cardiomyopathy in association with a decrease in the activ-
ity of SERCA2a was due to enhancing oxidative stress and 
SERCA2a oxidation [167, 267]. Experiments by Bidasee 
et al., 2004, showed that SERCA2a peptides were modified 
by cross- and no crosslinking AGEs, decreasing SERCA2a 
activity [28] (see also Supplementary Table 1). Indeed, 
diabetic cardiomyopathy is associated with significantly 
enhanced cardiac AGE and AGE receptors (RAGE) levels, 
which colocalize in cardiomyocytes [184]. The decrease in 
SERCA2a expression in myocytes subjected to hyperglyce-
mia was coupled with a significant reduction in SERCA2a 
promoter activity and, in turn, associated with overall lev-
els of nuclear O-GlcNAcylation (OGN), greatly suggesting 
the Sp1 OGN, one of the main transcriptional regulators of 
SERCA2a (ATP2A2 gene) expression [53]. O-GlcNAcyla-
tion of the transcription factor Sp1 was also described in, 
associated to diastolic dysfunction and SERCa2a decreased 
expression [106].

Alterations of RyR2 function were also described in sev-
eral models of diabetic cardiomyopathy ([20, 26, 67, 116, 
216, 248, 249, 256, 304, 309] and see Tables 1 and 2 of 
supplementary material). A common finding, mainly in 
T1DC, is a reduced expression and activity of RyR2 [26, 
67, 248, 303, 304, 308], resulting in reduced contractility, by 
decreasing SR  Ca2+ gain [22]. In some of the studies, RyR2 
alterations were associated with an increase in SR  Ca2+ leak 

either in STZ-induced T1DC [[20, 248, 249, 304] or in db/
db T2DC [13] (Tables 1 and 2 of supplemental material), 
which would either produce or exacerbate the decrease in SR 
 Ca2+ content and contractility observed in diabetic cardio-
myopathy. Of note, the greater activity of RyR2, produced, 
for instance, by PKA or CaMKII phosphorylation, would 
not only favor SR  Ca2+ leak and the decrease in contractil-
ity, but also systolic  Ca2+ release, counteracting the effect 
of SR  Ca2+ leak. Indeed, it was shown that fractional  Ca2+ 
release is enhanced by CaMKII-dependent phosphoryla-
tion of RyR2 [190, 280], for a given SR  Ca2+ load [162]. 
Moreover, the increase in SR  Ca2+ leak can also contribute 
to slowing twitch relaxation. For instance, Shao et al., 2009, 
showed in STZ-induced T1DC a delayed relaxation and  Ca2+ 
transient decrease in the absence of significant changes in 
SERCA2a expression or PLN phosphorylation [249]. These 
results emphasize the putative role of SR  Ca2+ leak on the 
depressed contractility and delayed relaxation observed in 
diabetic cardiomyopathy [24].

The increase in SR  Ca2+ leak in diabetic cardiomyo-
pathy has been associated with different mechanisms. In 
STZ animals, RyR2 has been shown to be phosphorylated 
at S2808/9 [248, 304], a residue mainly phosphorylated 
by PKA, but also by CaMKII [99], and at the CaMKII site 
S2814/5, in association with a decrease in PKA and an 
increase in CaMKII activities, indicating that the increase 
in S2808/9 phosphorylation should be therefore attributed 
to CaMKII [249] (Fig. 2A). As previously mentioned, the 
activity of CaMKII has been shown to be increased in dif-
ferent models of either T1 or T2 diabetic cardiomyopathy 
[69, 73, 122, 261]. The increase in SR  Ca2+ leak has been 
also associated to a decrease in the RyR2 regulatory pro-
tein FKB12.6 [20, 248, 304]. FKBP12.6, a peptidyl-prolyl 
cis–trans isomerase, tightly associates with RyR2, stabiliz-
ing its closed conformational state and facilitating channel 
closure [35] (Fig. 2A). In T1DC, Yaras et al., 2007, showed 
a decreased expression of FKB12.6 and RyR2, RyR2 phos-
phorylation and SR  Ca2+ leak, with an increased activity 
of PKA and PKC, that could be blocked by inhibition of 
PKC and the angiotensin 1 receptors [303]. These results 
linked  Ca2+ mishandling in diabetic cardiomyopathy 
with the increased activity of the renin-angiotensin sys-
tem observed [221]. The increase in ROS production is 
a main mechanism of RyR2 alterations in STZ-induced 
diabetic cardiomyopathy that may be reversed by increas-
ing of antioxidant protection [276]. Bidasee et al., 2004, 
showed a decrease in RyR2 activity with no changes in 
RyR2 expression in STZ rat myocytes, attributed, as in the 
case of SERCA2a, to AGEs [249]. In STZ rat myocytes, 
Tian et al., 2011, further showed an increase in the leak-
ness of RyR2, independent of RyR2 phosphorylation and/
or FKB12.6 downregulation. This effect was attributed to 
the enhanced cyclic adenosine diphosphate ribose levels 
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observed in these myocytes [269]. Moreover, and as dis-
cussed for SERCA2a, the underlying mechanisms of the 
decrease in RyR2 expression described in different models 
of diabetic cardiomyopathy are not clear. In STZ-induced 
diabetic cardiomyopathy, it has been suggested that insulin 
deficiency may play a role, due to its influence on gene 
expression [249].

The results regarding NCX function and  ICa in diabetic 
cardiomyopathy are controversial (Tables  1 and 2 and 
Tables 1 and 2 of supplemental material). In db/db myo-
cytes, NCX function was reported to be normal [20, 69]. 
On the contrary, Stolen et al., 2009, and Pereira et al., 2006, 
reported an enhanced NCX activity in db/db mice [216, 
261], while in T1DM, it was found to be depressed due to 
a decrease in the NCX expression or activity [34, 67]. As 
discussed above, in the cases of enhanced activity, it may 
contribute to SR  Ca2+ unloading and depressed contractil-
ity of diabetic cardiomyopathy. The results on  ICa are also 
mixed; whereas several authors reported that  ICa was not 
affected in diabetic cardiomyopathy [67, 138, 157, 166, 
304], other authors describe a decrease in  ICa suggesting 
that this reduction may be also involved in the reduced SR 
 Ca2+ content observed in diabetic cardiomyopathy [34, 165, 
216, 261, 287]. As noted above, these conflicting results 
might arise from the diabetes model used and/or possibly 
more important, from the degree of evolution of diabetic 
cardiomyopathy.

In summary, SERCA2a and RyR2 appeared to be the 
most affected ECC proteins in diabetic cardiomyopathy 
(although not unique) and in turn the responsible for the 
slowing of relaxation, the decrease in SR  Ca2+ load, and the 
decrease in the amplitude of  Ca2+ transients and contractility 
observed in most diabetic cardiomyopathy models [20, 67, 
158, 216, 248, 304].

c. Cardiac arrhythmias

Beyond the alterations in contractility, cardiac arrhythmias 
propensity is also a hallmark in diabetic cardiomyopathy, 
and diabetic patients are at an increased risk of cardiac 
arrhythmias and sudden death, arrhythmia’s most fear-
some consequence [199, 259, 274]. Reentry is the common 
arrhythmogenic mechanism. Reentry occurs when an AP 
did not extinguish being able to reactivate a region already 
recovered from refractoriness. Reentry can arise from abnor-
malities in conduction, repolarization, or both (Tse et al., 
2016). In diabetic cardiomyopathy both abnormalities are 
present, establishing a powerful arrhythmogenic substrate, 
further strengthened by systemic factors, like autonomic 
neuropathy or inflammation [139, 196] and associated heart 
diseases like coronary artery disease [69, 126, 198, 260, 
312]. Moreover, altered ionic currents and  Ca2+ mishandling 
favor EADs, DADs, and spontaneous APs and constitute the 

arrhythmogenic trigger. In the advanced diabetic cardiomyo-
pathy, these mechanisms coexist making the dissection of 
each one difficult (see for review [274]). A detailed review 
of cardiac arrhythmias in diabetic cardiomyopathy has been 
recently published [122]. In this review, we will concentrate 
on triggered arrhythmias that occur at the cellular level due 
to  Ca2+ mishandling.

Abnormal  Ca2+ cycling is linked to triggered activity 
which may occur due to an imbalance in ionic currents 
favoring a depolarizing net inward current [51]. This imbal-
ance originates membrane potential alterations called early 
and delayed afterdepolarizations, EADs and DADs, respec-
tively, according to the moment that they occur relative to 
the regular AP. EADs arise before the completion of AP, 
whereas DADs occur after AP completion (Fig. 1, inset). 
These mechanisms may produce sustained arrhythmias by 
reentry circuits [174]. EADs occur usually in the presence 
of prolonged repolarization and are attributed to reactiva-
tion of  ICa [131], although the NCX current  (INCX) may also 
be involved [289]. DADs are caused by spontaneous  Ca2+ 
releases from the SR [22]. In the context of SR  Ca2+ over-
load and RyR2 sensitization, the  Ca2+ released by a group 
of RyR2 activates neighboring RyR2. This activation may 
propagate in a regenerative way along the myocytes, as  Ca2+ 
waves [63].  Ca2+ waves are potentially arrhythmogenic, 
since the extrusion of  Ca2+ through the NCX may trigger a 
transient inward current  (Iti) that depolarizes the cell mem-
brane. If the magnitude of depolarization attains the mem-
brane potential threshold, a spontaneous AP and contraction 
occur [22, 190, 258] (Fig. 1, inset).

Abnormal RyR2 gating and SR  Ca2+ leak have been 
critically linked with RyR2 mutations or posttranslational 
modifications of RyR2 or associated regulatory proteins [23, 
81, 99, 118, 292]. As discussed above, an increase in SR 
 Ca2+ leak and arrhythmogenesis was associated with dif-
ferent types of RyR2 alterations in diabetic cardiomyopathy 
models of T1DM and T2DM [20, 93, 248, 249, 304] (see 
Tables 1 and 2 of supplemental materials).

As discussed above, the importance of CaMKII-depend-
ent phosphorylation of RyR2 on SR  Ca2+ leak and triggered 
arrhythmias in diabetic cardiomyopathy has been emphasized 
in several studies [261]. Indeed, CaMKII may be activated 
by different mechanisms, all of which are present in diabetic 
cardiomyopathy [282], i.e., T287-phosphorylated CaMKII, 
M281/282-oxidized CaMKII, and S280 O-linked Glyco-
sylated CaMKII are increased in both, animal diabetic cardio-
myopathy models and diabetic human heart samples [73, 93, 
183, 207]. The first associations of Ser2814 phosphorylation 
(the CaMKII site) with SR  Ca2+ leak in diabetic cardiomyo-
pathy were almost simultaneously made by Shao et al. [249], 
who also described an increase in RyR2 phosphorylation at 
Ser2808/9 site (mainly phosphorylated by PKA), and Sto-
len et al. [261], who described an increase in Ser2814 site 
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phosphorylation and in CaMKII-dependent phosphorylation 
of Thr17 site of PLN. In contrast, they did not find any sig-
nificant increase in RyR2-Ser2808/9 site phosphorylation. 
Erickson et al. [93] also associated the increase in CaM-
KII activity with the enhanced SR  Ca2+ leak and ventricu-
lar arrhythmias produced by hyperglycemia. An increased 
CaMKII-dependent phosphorylation of RyR2 and in Thr17 
site of PLN, associated with an increased SR  Ca2+ leak, was 
also described in a prediabetes model ([255] and see below).

An association between redox modifications of RyR2 
and arrhythmias was observed in mice treated with HFD. 
These mice present ventricular arrhythmias, an increased 
expression of NADPH oxidase, isoform 2 (NOX2) at the 
heart level, and enhanced activity of RyR2 associated to a 
decrease in free thiol residues compared to control. Ventric-
ular arrhythmias were prevented by treatment of the animals 
with apocynin, a ROS scavenger and potent NOX2 inhibitor 
[238]. In a HIP rat model of late-onset T2DC, an increase in 
DADs was observed, associated to enhanced CaMKII and 
PKA phosphorylation and oxidation of RyR2 [219].

The mechanism of the increased SR  Ca2+ leak produced 
by the sole increase in  Ca2+ RyR2 sensitivity is difficult to 
explain. An increase in SR  Ca2+ leak cannot be sustained 
by increasing RyR2 activity, unless there is a simultaneous 
enhancement of SR  Ca2+ uptake that continuously refills the 
SR, to maintain the necessary SR  Ca2+ level to activate RyR2 
[273]. In consonance with this premise, Pereira et al. [216], 
working in db/db mice, described a decrease in SR  Ca2+ 
load associated with a diminished frequency of  Ca2+ sparks. 
Similar results were obtained in STZ-treated rats by Lacombe 
et al., 2007, [157] (see Tables 1 and 2 of supplemental mate-
rial). Therefore, it is possible that the increase in SR  Ca2+ 
leak described in db/db mice [261] and HIP rats [219], and in 
STZ-treated rats by several authors [122, 192, 219, 248, 249, 
304], could be associated not only with RyR2 phosphoryla-
tion or activation, but also with mechanisms that enhance 
SERCA2a activity (like PLN phosphorylation or decreased 
PLN expression), able to maintain the SR  Ca2+ threshold for 
a persistent SR  Ca2+ leak. An increase in CaMKII-dependent 
PLN phosphorylation was indeed observed by Stolen et al., 
2009, in db/db mouse myocytes [261], and by us, in predia-
betic mice and rats [98, 255]. In contrast, the increase in SR 
 Ca2+ leak observed by Shao et al., 2009, is more difficult 
to explain, because no increase in PLN phosphorylation or 
decrease in PLN expression were observed [249].

Earlier experiments by Nordin et al., 1985, described that 
ventricular muscles from diabetic rats were more prone than 
normal myocardium to develop delayed after depolarizations 
and triggered activity under conditions believed to cause 
myoplasmic  Ca2+ overload, like increasing extracellular 
 Ca2+ [208]. More recently Chou et al., 2017, showed in db/
db mice an increased propensity to ventricular arrhythmias 
and alternans [69]. These experiments were performed 

in vivo or in ex vivo preparations, and the propensity to 
ventricular arrhythmias was induced by a specific pacing 
protocol that allows SR  Ca2+ loading. Besides, the authors 
described a significant increase in total PLN phosphoryla-
tion. This increase may be the result of sympathetic over-
activity, which is common in diabetic patients [172] and 
may contribute to increasing PLN phosphorylation levels. In 
line with this concept, the paradoxical triggered arrhythmias 
observed in HF [218] that occur despite the decreased SR 
 Ca2+ load could be explained by the preserved β-adrenergic 
responsiveness in animals with HF. Indeed, it was found that 
β-adrenergic stimulation resulted in a greater increase in SR 
 Ca2+ load in HF than in control rabbit myocytes [218].

In summary, triggered arrhythmias due to  Ca2+ mishan-
dling constitute a very common finding in different models of 
diabetic cardiomyopathy and several studies point to CaMKII 
activation and RyR2 phosphorylation as a main player in this 
type of arrhythmias in diabetic cardiomyopathy.

Although the above results referred to ventricular trig-
gered arrhythmias, it is important to mention that diabetes 
increases the risk of atrial fibrillation [286]. Although the 
pathogenesis of atrial fibrillation is not well clarified, the 
atrial structural and electromechanical remodeling described 
in diabetic cardiomyopathy constitute a more than suitable 
substrate for triggered arrhythmias, and several of the under-
lying mechanisms described for ventricular arrhythmias may 
be shared by atrial fibrillation [173]. As it will be discussed 
below, changes in myofilament responsiveness to Ca were 
described in ventricular and atrial tissue of patients with 
diabetic cardiomyopathy [140].

Finally, most of the results described above were obtained 
in ventricular myocytes of rodents. However, as with any 
animal model, there are limitations in extrapolating the 
results to human disease, which include its rapid intrinsic 
resting heart rate and variations in ion channel distribution 
and kinetics underlying depolarization and repolarization. 
Moreover, most of the studies in isolated myocytes are usu-
ally performed at an artificially low stimulation frequency 
and temperature, which further complicate interpretations 
and extrapolations to human being. However, it is also true 
that rodents have proved to be an excellent tool for explor-
ing underlying mechanisms of arrhythmias (see for review 
[70]). Besides, several studies in the intact heart performed 
at higher frequencies and more physiological temperatures 
support conclusions obtained in isolated myocytes [11, 278] 
In any case, it should be cautious when extrapolating rodents 
results to human disease.

Nuclear  Ca2+ and gene transcription in diabetic 
cardiomyopathy

As stated above, there is close interaction between cyto-
solic  Ca2+ and nuclear envelope and nuclear  Ca2+. Besides, 
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it is also known that the nucleus is equipped to produce 
InsP3 and to release and take up free  Ca2+, independently 
of cytosolic InsP3 or  Ca2+ [89]. Among the  Ca2+-dependent 
pathways mediating transcriptional regulation in cardiomyo-
cytes are the ones mediated by calmodulin, CaMKII, and 
calcineurin, which are overactive in several cardiac diseases, 
including diabetic cardiomyopathy. These pathways would 
be involved in re-expression of a fetal gene program, induc-
ing maladaptive hypertrophy and remodeling of ion channels 
and transporters, ultimately impairing cardiac function [77, 
82]. Indeed, it has been shown that changes in nuclear  Ca2+ 
occur before cytosolic  Ca2+ alterations in disease develop-
ment, supporting the crucial role of nuclear  Ca2+ in the 
activation of maladaptive gene programs [176]. The effect 
of enhanced CaMKII activity on nuclear  Ca2+ and ventricu-
lar remodeling has been recently reviewed [122, 155] and 
may have also a role in diabetic cardiomyopathy remode-
ling. Interestingly, a transcriptomic analysis of cardiac left 
ventricle of STZ-treated rats revealed perturbations in the 
expression of genes corresponding to proteins expressed 
in mitochondria and in genes regulating cardiac fatty acid 
metabolism [113].

Mitochondria dysfunction in diabetic 
cardiomyopathy

In the context of DM, reduced glucose uptake as a result of 
the lack of insulin or the insulin resistance induces a sub-
strate shift toward increased free fatty acid internalization 
and oxidation [257]. Additionally, increased levels of mito-
chondrial acetyl CoA and cytosolic citrate inhibit PDH and 
glycolysis, reducing glucose oxidation (Randle cycle) [222]. 
This metabolic shift that results in reduced ATP produc-
tion, increased ROS generation, and impaired mitochondrial 
respiration capacity is also observed in human diabetic car-
diomyopathy [7, 226]. Interestingly, reduced mitochondrial 
energetics and increased ROS production were observed in 
mice with a cardiomyocyte-specific deletion of the insulin 
receptors, suggesting that lack of insulin signaling might 
also be the cause for the phenotype observed in T2DM 
hearts [33]. However, increasing glucose uptake to control 
levels in a model of T1DM worsened mitochondrial function 
and diabetic cardiomyopathy [290].

Although the exact pathophysiologic mechanisms of dia-
betic cardiomyopathy are not completely understood (see 
above), mitochondrial dysfunction plays a central role [43, 
88, 114, 136]. In this context, mitochondria quality control, 
mitochondrial fission and fusion, mitochondrial biogenesis, 
and mitophagy are central players in mitochondria dynam-
ics and in the evolution of heart disease [242]. Mitophagy, 
a type of selective autophagy that clears damaged or 
unwanted mitochondria [109] is important for cardiovascular 

homeostasis and protection of the myocardium in cardiovas-
cular diseases (for a review on the role of mitophagy in CD, 
see [197]). In diabetic cardiomyopathy, clearance of dam-
aged mitochondria could reduce oxidative stress and apop-
tosis [168]. In HFD-treated mice, cardiac-specific deletion 
of the autophagy-related 7 (atg7) gene resulted in reduced 
autophagy and mitophagy and exacerbated mitochondrial 
dysfunction, fibrosis, and cell death by apoptosis [271]. 
Moreover, T1DM OVE26 mice presented increased cardiac 
mitochondrial area and number associated with impaired 
function and increased oxidative stress [250]. These results 
emphasize the importance that clearance of dysfunctional 
mitochondria needs to be balanced by new mitochondria 
biogenesis. As described below, similar dynamic altera-
tions were found in the prediabetic heart [98]. Mitochon-
drial biogenesis seems to be reduced in skeletal muscles 
in patients with T2DM [228] and in adipocytes from ob/
ob mice [68], while in HFD-treated rats, mitochondrial 
biogenesis is increased as a potential protective mecha-
nism to increase fatty acids consumption and reduce ROS 
production [130].

The increased ROS generation leads to oxidative stress, 
inducing several cellular changes and activating cell death 
mechanisms that include autophagy, necrosis, and apoptosis and 
have distinctive roles. Autophagy acts as a homeostatic process 
that results in the lysosomal degradation of damaged organelles, 
protein aggregates, and is a critical step in tissular damage. The 
imbalance between autophagy and apoptosis may establish the 
progression of diabetes complications. In fact, apoptosis can be 
downregulated by autophagy [284]. Fatty acids accumulation 
results in ER stress [254] impairing autophagy and resulting in 
accumulation of dysfunctional organelles [115, 214]. Increas-
ing autophagy and reducing myocyte apoptosis improve cardiac 
function in STZ mice [121].

ROS, including the superoxide anion, the hydroxyl radi-
cal, and hydrogen peroxide, are signaling molecules with 
important roles in both cardiac physiology and disease. 
Under physiological conditions, cardiac ROS are involved 
in heart development and cardiomyocyte maturation,  Ca2+ 
handling, ECC, and vascular tone (reviewed in [46]). Mito-
chondrial ROS production involves mainly complex I and 
III activity. Excessive ROS production can result in ΔΨm 
dissipation and reduction in NADH production, resulting in 
the emission of  H2O2, a mechanism known as ROS-induced 
ROS release [315]. Lipid accumulation in the ER results in 
ER stress that also induces ROS production, releasing  Ca2+ 
from the ER storage and further increasing mitochondrial 
ROS production [45, 272]. When ROS disbalance occurs, 
oxidative stress can damage mitochondrial DNA, induc-
ing protein oxidative damage and impairing energetics and 
further increasing ROS production [102, 300]. Indeed, dys-
regulated ROS production and oxidative stress have been 
implicated in several cardiac diseases, including cardiac 
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hypertrophy, HF, cardiac ischemia–reperfusion injury, and 
diabetic cardiomyopathy (reviewed in [175, 189, 193, 275]).

Additionally,  Ca2+ can stimulate nitric oxide synthase 
(NOS), generating reactive nitrogen species (RNS) that can 
further enhance ROS production [36, 133]. Therefore,  Ca2+ 
and ROS form a vicious cycle that can induce membrane 
depolarization, mitochondrial protein and DNA damage, 
mPTP opening, and cell death. Alterations in energy and 
ROS/Ca2+ coupling have been observed in HF, supporting 
the importance of  Ca2+ in modulating energy and ROS pro-
duction [209]. Antioxidant daily injection in mice models 
of T1DM and T2DM resulted in reduced oxidative stress 
and myocyte apoptosis, and restoration of diastolic function 
[204]. Mice lacking p66shc, a protein involved in ROS pro-
duction [108], are protected from STZ-induced diastolic and 
systolic dysfunction, reducing diabetes induced cell apopto-
sis and necrosis [232]. Furthermore, hyperglycemia induces 
mitochondrial oxidative stress and mitochondrial fragmenta-
tion, which can cause cellular injury and dysfunction [307].

It is known that when mitochondrial  Ca2+ overload 
occurs, the mPTP can open, resulting in the release of mito-
chondrial content (including  Ca2+) and causing cell death 
[17]. Indeed, it was shown that FUNDC1 is upregulated 
in diabetic human hearts and Akita and STZ animal mod-
els of T1DM. The increased FUNDC1 is associated with 
increased MAM formation by binding to IP3R2, resulting in 
increased mitochondrial  Ca2+ levels, mitochondrial dysfunc-
tion, increased ROS formation, and decreased mitochondrial 
membrane potential, while FUNDC1 deletion protected 
mice from cardiac dysfunction [294]. Mitochondrial  Ca2+ 
overload due to SR  Ca2+ leak can cause mitochondria dys-
function, oxidative stress, and apoptosis as seen in HF [240]. 
As discussed above, CaMKII was overactivated in several 
models of diabetic cardiomyopathy producing RyR2 phos-
phorylation and increasing SR  Ca2+ leak [93, 248, 261]; 
additionally, CaMKII may directly favor mitochondria  Ca2+ 
uptake increasing MCU activity; however, this is a contro-
versial issue that deserves further investigation [103, 137, 
181, 205, 270]. Activated CaMKII phosphorylates Drp-1, a 
mitochondrial membrane protein, which results in increased 
mPTP opening, myocyte death, and heart hypertrophy after 
β-adrenergic stimulation [302]. This phosphorylation was 
also observed in ventricular samples from dilated cardiomy-
opathy and ischemic heart failure patients [302]. Increased 
Drp-1 acetylation has been also detected in obese Zucker and 
HFD fed mice, monkeys, and isolated myocytes treated with 
palmitate [128] resulting in heart dysfunction, mitochon-
drial fission, and cell death mediated by VDAC-1. Initiation 
of cell death by mitochondria in response to diverse stress 
signals, like hypoxia, oxidative stress, and  Ca2+ overload, 
can be induced by opening of the mPTP, resulting in loss of 
ΔΨm and mitochondrial swelling or by permeabilization of 

the mitochondrial outer membrane and release of proapop-
totic proteins [117].

On the other hand, reduced SR  Ca2+ load and  Ca2+ tran-
sients result in decreased mitochondrial  Ca2+ uptake [145]. 
Reduced mitochondrial  Ca2+ content also has deleterious 
effects on mitochondrial function. It can further reduce 
PDH phosphatase activity, resulting in decreased glucose 
and increased fatty acid utilization, increasing lactate pro-
duction, oxygen consumption, and eventually altering con-
tractile function [79]. Suarez et al. [262] described that 
reduced mitochondrial  Ca2+ in diabetic cardiomyopathy 
due to reduced MCU expression results in reduced ΔΨm, 
increased ROS, and apoptosis in STZ-treated mice. Addi-
tionally, reduced cytosolic  Ca2+ transients can reduce mito-
chondrial  Ca2+ content, affecting ATP generation as seen in 
T1DM hearts [158, 308]. Reduced  Ca2+ retention capacity as 
a result of increased sensitivity for mPTP opening can also 
lead to reduced mitochondrial  Ca2+ content and impaired 
energetics in T1DM rat model and human diabetic cardio-
myopathy [8, 212]. Results are less conclusive from T2DM 
models; however, reduced  Ca2+ transients are also observed 
[20, 83, 97, 216, 261] that could result in reduced mito-
chondrial  Ca2+ content. Levels of MCU complex proteins 
like EMRE, MICU1, MCU, and MCUb are also affected in 
both T1DM and T2DM, indicating that mitochondrial  Ca2+ 
entry could be affected in DM not only by the amount of 
cytosolic  Ca2+ or the magnitude of SR  Ca2+ leak but also 
by mechanisms inherent to mitochondria themselves [79]. 
In T1DM mice, there is a reduction in MCU and EMRE 
levels and an increase in the expression of MCUb, result-
ing in reduced cardiac mitochondrial  Ca2+ content. MCU 
adenoviral expression restored mitochondrial bioenerget-
ics, reduced apoptosis, and improved cardiac function 
[262]. In db/db mice, reduced MICU1 expression is related 
to increased oxidative stress and myocyte apoptosis, while 
MICU1 restoration increased mitochondrial  Ca2+ content 
and inhibited the development of diabetic cardiomyopathy, 
observed as enhanced heart function and reduced cardiac 
hypertrophy and fibrosis [134]. Is worth to note that in the 
later, the authors only compared mitochondrial  Ca2+ content 
in db/db mice with or without MICU1 overexpression, with-
out comparison with control mice.

Additionally, alterations in the expression and/or 
activity of the MCU complex proteins can be caused by 
transcription and/or protein expression regulation. For 
example, overexpression of microRNA (miR)-181c in DM 
results in COX-1 reduced expression. This in turn leads 
to increased ROS production, reduced MICU1 expression, 
and mitochondrial  Ca2+ overload, which ultimately results 
in mitochondrial and heart dysfunction [14] (see [132] 
for an extensive review of the role of miR in regulating 
mitochondrial  Ca2+).
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Early alterations in diabetic cardiomyopathy: 
the prediabetic model

The prediabetic state can be define as a metabolic dysfunc-
tion with impaired glucose tolerance and impaired fasting 
glucose, usually asymptomatic [6, 207]. However, cardiac 
defects in DM have a long progression before attaining the 
stage of diabetic cardiomyopathy with evident diastolic and 
systolic symptoms. Knowledge of alterations occurring at 
the early stages of the disease is necessary and essential 
for setting the first steps in the evolution of this cardiac ill-
ness. Unfortunately, and despite the acknowledgment of the 
prolonged evolution of diabetic cardiomyopathy and the 
fact that the prevalence of prediabetes is rising [72], stud-
ies tracking the early stages of diabetic cardiomyopathy are 
scarce. Even with this limitation, there is evidence that sub-
jects with impaired glucose tolerance have impaired diastolic 
function of the left ventricle [12] and prediabetes and bor-
derline diabetes are associated with an increased risk of sud-
den cardiac death possibly due to cardiac arrhythmias [59, 
277]. Moreover, there is evidence suggesting an increased 
propensity to arrhythmias in young people with DM even in 
the absence of detectable systolic dysfunction [243].

In a prediabetes model for T2DM, induced by a FRD 
[4, 101], it was described that as early as 3 weeks of FRD, 
there was an enhanced ROS production and an increase in 

oxidized CaMKII activity in association with enhanced 
SR  Ca2+ leak due to RyR2 phosphorylation at the CaMKII 
site (Ser2814). The increased SR  Ca2+ leak occurs without 
significant changes in SERCA2a or PLN expression, but 
in association with an increase in phosphorylation Thr17 
site of PLN and SERCA2a activity [98]. Surprisingly, SR 
 Ca2+ leak was high enough to trigger in vivo ventricular 
arrhythmias [255] (Fig. 3), at this early stage of the evolu-
tion of the disease. These alterations were prevented by the 
CaMKII inhibitor KN-93, by co-treatment with the reac-
tive oxygen species scavenger Tempol, in SRAIP mice, 
in which the CaMKII inhibitor autocamtide inhibitory 
peptide (AIP) is targeted to the SR [135], or in S2814A 
animals in which the CaMKII site of the RyR2 is replaced 
to Ala and cannot be phosphorylated [60, 280] (Fig. 3). 
Interestingly, and despite the increase in SR  Ca2+ leak, 
SR  Ca2+ load did not change in FRD myocytes. Thus, the 
increase in SR  Ca2+ leak and consequent arrhythmogenic 
 Ca2+ waves and arrhythmias observed in FRD myocytes 
may result from the combination of a decrease in SR  Ca2+ 
threshold for  Ca2+ leak and an increase in SERCA2a activ-
ity, possibly by CaMKII-dependent PLN phosphorylation, 
able to maintain SR  Ca2+ content above  Ca2+ threshold 
for  Ca2+ leak.

In prediabetes, the exacerbated SR  Ca2+ leak was also 
associated with augmented cardiac apoptosis, mitochondrial 

Fig. 3  A. Fructose rich diet 
induces SR  Ca2+ leak and 
arrhythmias. Representative 
confocal images of isolated 
myocytes from control diet 
(CD) or fructose-rich diet 
(FRD) mice. While CD myo-
cytes barely show spontaneous 
 Ca2+ release events (SCaRE), 
FRD myocytes showed sparks, 
waves, and spontaneous con-
tractions (SC and white arrows). 
B Arrhythmias in fructose reach 
diet animals. I to IV: FRD mice 
presented increased frequency 
of arrhythmias compared to CD 
mice. C SR-AIP mice express-
ing the CaMKII inhibitor at the 
SR did not show arrhythmo-
genic events in CD nor FRD. 
Adapted from ([98] and [255])
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swelling, and mitochondrial membrane depolarization in 
FRD mice [98]. These alterations did not occur in S2814A 
myocytes treated with FRD, supporting the concept that the 
increase in CaMKII-S2814 phosphorylation-induced SR 
 Ca2+ leak was associated with increased mitochondrial SR 
 Ca2+ load, dissipation of Δψm, opening of the mPTP, and 
release of apoptotic factors [211]. These experiments empha-
size that apoptosis is already present at the early stages of 
the illness preceding diabetic cardiomyopathy, highlighting 
one of the possible mechanisms involved in cardiac dam-
age. The experiments further indicate that ROS production 
is upstream the activation of CaMKII in the arrhythmogenic 
and apoptotic signaling cascade triggered by FRD and sug-
gest an analogous signaling pathway for both phenomena 
[98, 255].

Both, the arrhythmia and the apoptosis observed in 
the prediabetes model were not only linked to increased 
CaMKII activity but also to ultra-structural changes 
that include increased proximity between SR and 
mitochondria, which could favor  Ca2+ trafficking from 
one organelle to the other, and an increased mitochondria 
density, that additionally were smaller and more spherical 
[98], suggesting dynamics changes, such as mitochondria 
fission, at this early stage. This remodeling was prevented 
in AC3I mice, with cardiac-targeted CaMKII inhibition 
[98]. A more recent paper in FRD mice also revealed an 
increase in several tethering proteins, like mitofusin-2 
(Mfn2), Grp75, and VDAC, and confirmed the increased 
proximity of the SR-mitochondria microdomains, the 
decrease in mitochondria diameter, and the increase in 
mitochondria roundness and density previously described, 
associated to an enhancement of fission protein, Drp1 [98]. 
Again, all these changes did not occur in AC3-I transgenic 
mice [100].

Interestingly, very similar results were recently 
obtained in a different model of prediabetes, the sucrose-
induced metabolic syndrome with obesity (MTs) in rats 
[231]. MTs cardiomyocytes exhibited increased CaMKII 
activity, RyR2 phosphorylation at Ser2814 and PLN 
phosphorylation at Thr17 site, enhanced SERCA2a 
activity, and spontaneous  Ca2+ waves that were inhibited 
by CaMKII inhibition. Moreover, the propensity to 
cardiac arrhythmias in obesity/hyperlipidemia, a main 
contributing factor in the development of metabolic 
syndromes, was also associated with increased CaMKII 
activity as well as PLN and RyR2 phosphorylation at 
the CaMKII sites [313]. In this study, there was also 
an increase in RyR2-Ser2808 phosphorylation which 
was significantly diminished by CaMKII inhibition, 
supporting the notion that phosphorylation of Ser2808 
in diabetic cardiomyopathy was evoked by CaMKII 
activation.

Diastolic dysfunction was also observed at the prediabetic 
stage of Otsuka Long-Evans Tokushima Fatty [194], and 
in a prediabetic model of Long-Evans rats fed with HFD 
and treated with a single low dose of STZ, both models of 
T2DM. Although in this case no increase in CaMKII activ-
ity was found, there was an increased production of ROS in 
cardiac subsarcolemmal mitochondria and of Mfn2 expres-
sion [147].

Contractile decline and  Ca2+ mishandling were also 
observed at the earliest stages of the STZ model T1DM, 
associated to a reduction of Vmax of SERCA2a and RyR2 
conductance, although without major changes in SERCA2a, 
RyR2, NCX, or PLN expression [170]. Unfortunately, no 
attempts to measure protein phosphorylation or CaMKII 
activity were performed, which might provide some clue to 
explain the results obtained.

It is worthwhile to mention here that in rats with high 
sucrose diet-induced metabolic syndrome, it was also 
observed increased RyR2 phosphorylation at Ser2808 
associated with reduced FKBP12.6 expression, with sig-
nificantly increased SR  Ca2+ leak, depressed SR  Ca2+ 
loading, and reduced  Ca2+ transient amplitude vs. con-
trols [210].

Taken together and despite the reduced amount of infor-
mation, it is clear that prediabetes is a silent process that 
initiates detrimental molecular pathways before any other 
apparent alteration could be detected. However, being 
prediabetes a condition in which blood glucose levels are 
above normal but below the defined threshold of diabetes 
[6, 207], the results described above emphasize the need 
of routinely testing of prediabetes in the population. Such 
strategy, together with lifestyle modifications (diet and exer-
cise habit), would help to prevent the arrival of serious and 
definitive heart alterations or delay the onset of this disease 
[202, 285]. Unfortunately, health organizations have not uni-
form criteria for screening prediabetes in individuals that do 
not present risk factors for T2DM (obesity, hypertension, 
familiar background, etc.) [15]. In addition, the metabolic 
conditions in diabetic cardiomyopathy are tightly linked to 
hypertension and obesity, as well as coronary artery disease. 
Indeed, hypertension and hyperlipidemia are considered 
accelerating factors of hyperglycemia and diabetes-induced 
organ damage [41]. It has long been known that he super-
imposition of hypertension on diabetes further aggravates 
microvascular and macrovascular complications through 
additive mechanisms that include arteriolar and capillary 
damage in retinal, renal, coronary, cerebral, and peripheral 
vascular territories. Patients with hypertension and con-
comitant DM compared to non-hypertensive diabetics were 
found to have higher rates of cardiovascular death, myocar-
dial infarction, angina pectoris, amputation, and stroke inde-
pendent of other risk factors (hypertension diabetes study), 
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emphasizing the need of blood pressure and obesity control 
in prediabetes patients.

Results from patients with diabetic 
cardiomyopathy

In human diabetic cardiomyopathy, the results typically 
showed early alterations in diastolic function and even sub-
clinical signs of systolic dysfunction before the appearance 
of any clinical symptoms in T1DM [243, 252, 310] as well 
as in T2DM [96, 105].

Unfortunately, only limited results were found at the level 
of  Ca2+ handling, cardiomyocyte proteins, or mitochon-
dria function. In isolated human atrial trabeculae of T2DC 
asymptomatic patients, it was found a prolonged systolic 
 Ca2+ rise in association with decreased expression of RyR2 
and enhanced phosphorylation of RyR2, associated with 
enhanced PKC and PKA activities. CaMKII expression or 
activity was not measured. In these trabeculae, no changes in 
relaxation nor in SERCA2a or PLN expression were found. 
These patients have normal ejection fraction but fasting glu-
cose was significantly increased [224]. Interestingly, Yaras 
et al., 2007, showed that inhibition of PKC antagonized the 
hyperphosphorylation and restored the depleted protein lev-
els of RyR2 in a rat model of T1DC [303].

The decreased contractility in human diabetic cardiomyo-
pathy has been also associated with alterations at the myo-
filament levels. Jweied et al., 2005, described a decreased 
in  Ca2+ myofilament sensitivity in ventricular trabeculae 
of T2DC patents presenting diastolic dysfunction although 
increased ejection fraction. The decrease in  Ca2+ myofila-
ment sensitivity was associated with an increased phospho-
rylation of troponin I and T [140]. A decrease in  Ca2+ myo-
filament sensitivity would increase the rate of intracellular 
 Ca2+ decay, favoring mechanical relaxation, and might be 
viewed as a compensatory mechanism for the decrease in SR 
 Ca2+ uptake, although the authors did not explore this point. 
Moreover, similar decrease in  Ca2+ myofilament respon-
siveness was recently observed in atrial tissue [21]. These 
findings do not exclude the participation of  Ca2+ handling 
alterations in human diabetic cardiomyopathy but empha-
sized the fact that an alteration at the contractile proteins 
may contribute to cardiac dysfunction at least in T2DC.

Concluding remarks

DM is a complex syndrome and diabetic cardiomyopathy is 
the result of multiple alterations that finally evolve to HF. 
The insidious evolution of diabetic cardiomyopathy has pre-
cluded a clear knowledge of the underlying mechanisms of 

the illness. However, the increasing prevalence of the disease 
warrants a deep and better understanding of the mechanisms 
of diabetic cardiomyopathy at the molecular level, particu-
larly at the early stages of the malady. Among these mecha-
nisms,  Ca2+ mishandling and mitochondria dysfunction, as 
well as maladaptive gene programs, play a crucial role in 
the different types and models of diabetic cardiomyopathy 
and are responsible, at least in part, for the diminished con-
tractility and slowed relaxation, the propensity to triggered 
arrhythmias, and the increase in cell death. Moreover, strong 
experimental evidence indicates that the increased activity 
of CaMKII is one of the prevailing mechanisms involved in 
 Ca2+ mishandling that may lead to triggered arrhythmias 
and mitochondrial dysfunction. Possibly more important, all 
these alterations can be detected at the very early stages in 
the progression of diabetic cardiomyopathy or in conditions 
with high risk to evolve to DM, like obesity or metabolic 
syndrome. These studies underpin the need for timely detec-
tion of the illness at the possibly unique stages at which 
reversal of  Ca2+ handling alterations and mitochondrial dys-
function could be achieved, and sudden cardiac death could 
be prevented.
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