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Simple Summary: Endoscopic submucosal dissection (ESD) is accepted as a standard treatment
for early gastric cancer (EGC). Non-curative resection (NCR) of EGC after ESD can increase the
burden of additional treatment and medical expenses. Thus, we aimed to develop a machine-learning
(ML)-based NCR prediction model for EGC prior to ESD. We obtained data from 4927 patients
with EGC who underwent ESD between January 2006 and February 2020. Seven ML-based NCR
prediction models were developed using ten clinicopathological characteristics. The performance
of NCR prediction was highest in the XGBoost model (AUROC, 0.851; 95% confidence interval,
0.837–0.864). Our ML model improved the ability to predict NCR of ESD in patients with EGC. This
ML model can provide useful information for decision-making regarding the appropriate treatment
of EGC before ESD.

Abstract: Non-curative resection (NCR) of early gastric cancer (EGC) after endoscopic submucosal
dissection (ESD) can increase the burden of additional treatment and medical expenses. We aimed to
develop a machine-learning (ML)-based NCR prediction model for EGC prior to ESD. We obtained
data from 4927 patients with EGC who underwent ESD between January 2006 and February 2020.
Ten clinicopathological characteristics were selected using extreme gradient boosting (XGBoost)
and were used to develop a ML-based model. Dataset was divided into the training and internal
validation sets and verified using an external validation set. Sensitivity, specificity, and area under
the receiver operating characteristic curve (AUROC) were evaluated. The performance of each model
was compared by using the Delong test. A total of 1100 (22.1%) patients were identified as being
treated non-curatively with ESD. Seven ML-based NCR prediction models were developed. The
performance of NCR prediction was highest in the XGBoost model (AUROC, 0.851; 95% confidence
interval, 0.837–0.864). When we compared the prediction performance by the Delong test, XGBoost
(p = 0.02) and support vector machine (p = 0.02) models showed a significantly higher performance
among the NCR prediction models. We developed an ML model capable of accurately predicting
the NCR of EGC before ESD. This ML model can provide useful information for decision-making
regarding the appropriate treatment of EGC before ESD.
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1. Introduction

Endoscopic submucosal dissection (ESD) is accepted as a standard treatment for early
gastric cancer (EGC) that satisfies prespecified criteria. The several guidelines defined
curative resection as an en bloc resection of EGC that showed negative horizontal and
vertical margins and met expanded indication. Any ESD that does not satisfy these criteria
is considered a non-curative resection (NCR) [1,2].

The overall incidence of NCR after ESD for EGC is about 15–20% [3–5]. Additional
treatment is required following NCR because of the risk of local recurrence or lymph node
metastasis. Therefore, clinicians should strive to select eligible patients with EGC for ESD
to avoid additional treatment after NCR. However, even if EGC is regarded as a lesion
within the expanded inclusion criteria before ESD, many patients still require additional
treatments following ESD because of NCR [3–6]. Therefore, several studies have developed
models to predict NCR and reduce the incidence of NCR after ESD [7–11]. At our center, we
developed a risk-scoring system (RSS) to predict NCR using large prospectively collected
cohort data [7]. The RSS showed good performance in predicting NCR after ESD in patients
with EGC. However, the limitations of this RSS were that external validation was not
performed and was conducted at a single center.

Recently, artificial intelligence has been applied in clinical practice because of its high
precision, accuracy, speed, and low error rate compared to humans [12–14]. Machine
learning (ML) is a discipline that uses computational modeling to learn from data, meaning
that performance in executing a specific task improves with experience. Thus, ML models
may improve the risk stratification ability provided by existing clinical risk factors used
to develop a prediction model. However, previous ML models that were used to predict
NCR after ESD in patients with EGC had limitations, such as small sample sizes, lack
of external validation, and/or absence of head-to-head comparisons, among prediction
models [8,15]. Thus, we developed ML-based models for the prediction of NCR prior
to ESD in patients with EGC and compared the performance of the ML-based models,
including our previous RSS.

2. Materials and Methods
2.1. Data Collection and Study Population

We retrospectively reviewed data of patients with EGC who underwent ESD at
Severance Hospital between January 2006 and February 2020 and at Gangnam Severance
Hospital between April 2012 and November 2018. Among 14,004 ESD patients, we ex-
cluded 101 patients without endoscopy, tumor, and histology results. In addition, we
further excluded 8976 patients with low grade dysplasia (n = 5410), high grade dysplasia
(n = 2694), subepithelial tumors (n = 315), and others (n = 557). Finally, 4927 patients who
underwent ESD (4396 at Severance Hospital and 531 at Gangnam Severance Hospital) were
included in the study (Figure 1). We analyzed the patients’ age, sex, antithrombotic agent,
tumor size and location, tumor histology, multiplicity of tumors, and various endoscopic
findings of EGCs. The clinicopathological characteristics of these patients, including the
endoscopic findings, were obtained through a retrospective review of medical records and
compared between the groups.

The entire dataset consisted of data from two tertiary general hospitals (Severance
Hospital and Gangnam Severance Hospital). The dataset was partitioned into training, in-
ternal validation, and external validation sets according to the participating center to ensure
the generalizability of the algorithm. Consequently, data from 4396 patients from Severance
Hospital were used for training (90%) and internal validation (10%). From Gangnam Sever-
ance Hospital, data of 531 patients were used for external validation (100%). To develop the
NCR prediction algorithm, each variable for the prediction models was examined according
to clinical relevance and importance scores using a gradient boosting (XGBoost) model.
The details of the feature importance plot are shown in Supplementary Figure S1. We
then categorized the clinicopathological characteristics into the following four categories:
(1) demographics (age, sex, and use of antithrombotics); (2) endoscopy (gross appearance
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and detailed findings); (3) tumors (size, multiplicity, and location with respect to the long
and short axis); and (4) histology (Table 1).
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Figure 1. Flow diagram of study design. Abbreviations used are EGC, early gastric cancer; ESD,
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subepithelial tumor.

Table 1. Clinical variables used to build machine-learning models.

Category Variables

Demographics Sex, Age, Antithrombotics

Endoscopy

Appearance Elevated, Flat, Depressed

Finding
Ulcer, Fold, Erythema, Exudate, Whitish
or atrophy, Nodularity or elevated,
Spontaneous bleeding

Tumor

Size Size (mm)

Number 1, 2, or >2

Location (long axis) Upper, Middle, Lower

Location (short axis) Anterior wall, Posterior wall,
Greater curvature, Lesser curvature

Histology

Adenocarcinoma well-differentiated,
Adenocarcinoma moderate-differentiated,
Adenocarcinoma poorly differentiated,
Signet-ring cell,
Others (Mucinous, Carcinoma in situ,
Squamous cell type, etc)

This study was conducted in accordance with the principles of the Declaration of
Helsinki, and the study protocol was approved by the Institutional Review Board of the
Yonsei University Health System Clinical Trial Center (2022-0236-001). As the clinical
data used in the model development were collected retrospectively, the requirement for
obtaining informed consent was waived.
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2.2. Definitions

The expanded indications for curative ESD are en bloc resection, negative hori-
zontal and vertical margins, no lymphovascular invasion, and one of the following:
(1) tumors > 2 cm, differentiated type, mucosa, and ulcer (−); (2) tumor ≤ 3 cm, differ-
entiated type, mucosa, and ulcer (+); (3) tumor ≤ 2 cm, undifferentiated type, mucosa, and
ulcer (−); or (4) tumor ≤ 3 cm, differentiated type and submucosa1 (SM1, <500 µm from the
muscularis mucosa) [1,2]. En bloc resection was defined as the removal of gastric lesions in
a single piece without fragmentation. Consequently, NCR was defined as a resection that
did not satisfy any of the above criteria.

2.3. ESD Technique

All ESD procedures were performed in hospitalized patients. Immediately before
the procedure, midazolam hydrochloride or propofol was administered intravenously for
sedation. All patients were examined using a video endoscope with or without a water-jet
function (GIF-HQ290, GIF-Q260, and GIF-H260; Olympus, Tokyo, Japan) while lying in
the left lateral decubitus position. After the endoscopic examination of the gastric lesions,
the area surrounding each lesion was marked using argon plasma coagulation (VIO 300D;
ERBE, Tübingen, Germany). A saline solution containing epinephrine (0.01 mg/mL) and
0.8% indigo carmine was injected into the submucosal layer to elevate the lesion from
the muscle layer. A dual knife (KD-650Q; Olympus, Tokyo, Japan) or insulated-tip knife
(KD-610L; Olympus Optical, Tokyo, Japan) was used to make a circumferential incision
and dissection. Hemoclips or hemostatic forceps were used to control the bleeding or
exposed vessels. All patients underwent chest and abdominal radiography immediately
after ESD and on the first day after ESD to detect adverse outcomes, such as pneumonia
or perforation. After ESD, all patients were administered proton pump inhibitors for
4–8 weeks.

2.4. Gross and Histopathologic Evaluation

The endoscopic findings of EGC were classified according to the criteria of the Japanese
Research Society for Gastric Cancer [16]. All specimens were sectioned at 2-mm intervals,
centered on the part of the lesion closest to the margin and the site of the deepest invasion.
Slides stained using hematoxylin and eosin were used for general evaluation. Tumor size,
invasion depth, lymphatic and vascular involvement, and tumor involvement at lateral
and vertical margins were assessed histologically.

2.5. Prediction Models

We developed the following seven ML models: logistic regression, support vector
machine, k-nearest neighbors, naive bayes, extreme gradient boosting (XGBoost), random
forest, and multilayer perceptron. Ten-fold cross-validation was conducted on the internal
validation group (90% for training and 10% for interval validation). The final performance
of the ML models was the average result of the 10-fold cross-validation. A grid search
was utilized to optimize the hyperparameters of each ML model. After the models were
constructed, each prediction model was further evaluated in the external validation group.
The detailed architecture of the ML-based NCR prediction model is shown in Figure 2.
All ML models were implemented using the scikit-learn package version 0.24.2 using
Python 3.7.6 throughout the experiments.

2.6. Statistical Analysis

Continuous variables are presented as means and standard deviations. Categorical
variables were presented as numbers and percentages. To compare the difference between
internal and external datasets, independent two-sample t tests and chi-square tests were
used for continuous and categorical variables, respectively. The Kruskal–Wallis test was
used for data with skewed distribution. The performance of the NCR prediction models
was evaluated using the sensitivity, specificity, precision, F1 score, area under the receiver
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operating characteristics curve (AUROC), and area under the precision-recall curves as
follows:

Sensitivity (Recall) :
TP

TP + FN
Specificity :

TN
TN + FP

Precision :
TP

TP + FP
F1 score :

2 × Precision × Recall
Precision + Recall

where TP, true positive; FN, false negative; TN, true negative; and FP, false positive.
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Figure 2. Development of non-curative resection after endoscopic submucosal dissection
prediction model.

The curves were plotted by varying the thresholds, and the areas under the curves
were compared using the DeLong test. The interpretation of the AUROC and the area
under the precision-recall curves was achieved by comparing the values among the models.
All the performance indices were measured using an external validation set. Statistical
analysis was performed using STATA, version 16.1 (Stata Corporation, College Station, TX,
USA). Statistical significance was set at p < 0.05.

3. Results
3.1. Baseline Characteristics of the Patients

The baseline characteristics are shown in Table 2. The mean age of the study population
was 64.4 years, and 3620 (73.5%) patients were men. Tumors were commonly located in the
lower portion and lesser curvature in both datasets. The tumor size was significantly larger
in the external dataset compared with the internal dataset (12.4 ± 8.4 mm vs. 20.0 ± 12.7 mm,
p < 0.001). Tumor histology and endoscopic findings, including ulcer (p < 0.001), a fusion
of fold, interruption or smooth tapering of the fold (p < 0.001), erythema (p < 0.001),
whitish scar or atrophy (p = 0.002), nodularity or elevated (p < 0.001), and spontaneous
bleeding (p < 0.001), were significantly different across the dataset. In addition, the pro-
portion of undifferentiated type histology, such as poorly differentiated adenocarcinoma
(113 [2.6%] vs. 32 [6.0%], p < 0.001) and signet-ring cell type (210 [4.8%] vs. 40 [7.5%],
p < 0.001) was significantly higher in the external dataset than in the internal dataset.



Cancers 2022, 14, 3742 6 of 11

Table 2. Baseline characteristics of the internal and external data set.

Variables Overall
(n = 4927)

Internal Data Set
(n = 4396)

External Data Set
(n = 531) p-Value

Demographics
Age, years 64.4 ± 10.2 64.7 ± 10.1 62.4 ± 11.2 <0.001

Male 3620 (73.5) 3240 (73.7) 151 (71.6) 0.29
Medications

Antithrombotics 923 (18.7) 830 (18.9) 93 (17.5) 0.45
Histology

AWD 1565 (31.8) 1425 (32.4) 140 (26.4) <0.001
AMD 1228 (24.9) 1109 (25.2) 119 (22.4) 0.16
APD 145 (2.9) 113 (2.6) 32 (6.0) <0.001
SRC 250 (5.1) 210 (4.8) 40 (7.5) <0.001

Other
(Mucinous, CIS, SCC) 1739 (35.2) 1539 (35.0) 200 (37.7) 0.23

Multiple lesions
1 4280 (86.9) 3785 (86.1) 495 (93.2) 0.01
2 561 (11.4) 532 (12.1) 29 (5.5) <0.001

>2 647 (13.1) 611 (13.9) 36 (6.8) <0.001
Tumor location (long axis)

Upper 495 (10.0) 441 (10.0) 54 (10.2) 0.92
Mid 1681 (34.1) 1463 (33.3) 218 (41.1) <0.001

Lower 2635 (53.5) 2369 (53.9) 266 (50.1) 0.10
Tumor location (short axis)

AW 1050 (21.3) 927 (21.1) 123 (23.2) 0.27
PW 1189 (24.1) 1070 (24.3) 119 (22.4) 0.33
LC 1838 (37.3) 1607 (36.6) 231 (43.5) <0.001
GC 1023 (20.8) 904 (20.6) 119 (22.4) 0.32

Tumor size (mm) 13.1 ± 9.2 12.4 ± 8.4 20.0 ± 12.7 <0.001
Endoscopic appearance

Elevated 3253 (66.0) 2976 (67.7) 277 (52.2) <0.001
Flat 1341 (27.2) 1124 (25.6) 217 (40.9) <0.001

Depressed 2302 (46.7) 2029 (46.2) 273 (51.4) 0.02
Endoscopic finding

Ulcer 274 (5.6) 225 (5.1) 49 (9.2) <0.001
Fusion of fold, interruption, or

smooth tapering of fold 104 (2.1) 70 (1.6) 34 (6.4) <0.001

Erythema 795 (16.1) 534 (12.1) 261 (49.2) <0.001
Exudate 210 (4.3) 102 (2.3) 107 (20.2) <0.001

Whitish scar or atrophy 269 (5.5) 225 (5.1) 44 (8.3) 0.002
Nodularity or elevated 863 (17.5) 596 (13.6) 267 (50.3) <0.001
Spontaneous bleeding 60 (1.2) 38 (0.9) 22 (4.1) <0.001

Note: Values for categorical variables are given as a number (percentage); values for continuous variables are
given as mean (standard deviation). Abbreviations: AMD, adenocarcinoma moderate-differentiated; AWD,
adenocarcinoma well-differentiated; APD, adenocarcinoma poorly differentiated; SRC, signet-ring cell; CIS,
carcinoma in situ; SCC, squamous cell carcinoma; AW, anterior wall; PW, posterior wall; LC, lesser curvature; GC,
greater curvature.

3.2. Performance of the ML Model for Prediction of NCR

Among 4972 patients, the rate of NCR after ESD was 22.1%. The NCR rate was signifi-
cantly higher in the internal dataset compared with the external dataset (24.2% vs. 6.4%).
Detailed clinicopathological features according to the curative resection and NCR groups
are summarized in Supplementary Table S1. In the internal dataset, among seven ML mod-
els, the AUROC predicting NCR was highest in the XGBoost model (0.851; 95% confidence
interval [CI], 0.837–0.864), followed by logistic regression (0.840; 95% CI, 0.825–0.854), mul-
tilayer perceptron (0.837; 95% CI, 0.823–0.850), random forest (0.812; 95% CI, 0.797–0.827),
k-nearest neighbors (0.807; 95% CI, 0.792–0.822), and naive Bayes (0.799; 95% CI, 0.783–0.815)
(Figure 3A, Supplementary Figure S2A). Among the ML models, the XGBoost model out-
performed the prediction rate for NCR. In the external dataset, the XGBoost model also



Cancers 2022, 14, 3742 7 of 11

showed superior performance among other ML methods with an AUROC of 0.710 (95% CI,
0.612–0.803), followed by logistic regression (0.693; 95% CI, 0.610–0.773), support vec-
tor (0.693; 95% CI, 0.613–0.769), and multilayer perceptron (0.691; 95% CI, 0.603–0.771)
(Figure 3B, Supplementary Figure S2B). The sensitivity, specificity, precision, F1 score, and
AUROC of the seven ML models are summarized in Table 3. Similarly, F1 scores were
consistently higher in the XGBoost model as compared with other models, irrespective of
the threshold (Supplementary Table S2).
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Table 3. Performance of the non-curative resection prediction model for the seven machine-learning
models used in this study.

Risk Score Precision F1 Score AUPRC
(95%CI) Sensitivity Specificity AUROC

(95%CI) p-Value a

Internal data

RSS 0.636 0.777 0.463
(0.449–0.478) 0.998 0.008 0.701

(0.683–0.720)

LR 0.735 0.547 0.691
(0.677–0.705) 0.788 0.721 0.840

(0.825–0.854) <0.001

SVM 0.700 0.460 0.596
(0.581–0.610) 0.827 0.618 0.667

(0.647–0.687) <0.001

KNN 0.835 0.436 0.652
(0.637–0.665) 0.771 0.665 0.807

(0.792–0.822) <0.001

NB 0.696 0.492 0.633
(0.619–0.647) 0.946 0.380 0.799

(0.783–0.815) <0.001

XGB 0.749 0.576 0.699
(0.685–0.713) 0.785 0.732 0.851

(0.837–0.864) <0.001

RF 0.925 0.326 0.647
(0.633–0.661) 0.713 0.757 0.812

(0.797–0.827) <0.001

MLP 0.718 0.527 0.676
(0.662–0.689) 0.722 0.752 0.837

(0.823–0.850) <0.001
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Table 3. Cont.

Risk Score Precision F1 Score AUPRC
(95%CI) Sensitivity Specificity AUROC

(95%CI) p-Value a

External data

RSS 0.200 0.333 0.174
(0.163–0.186) 0.977 0.147 0.616

(0.516–0.719)

LR 0.122 0.193 0.104
(0.095–0.113) 0.561 0.794 0.693

(0.610–0.773) 0.09

SVM 0.099 0.133 0.113
(0.104–0.122) 0.563 0.794 0.693

(0.613–0.769) 0.02

KNN 0.202 0.148 0.169
(0.159–0.181) 0.829 0.470 0.645

(0.523–0.762) 0.69

NB 0.096 0.147 0.151
(0.141–0.162) 0.776 0.411 0.631

(0.540–0.722) 0.74

XGB 0.187 0.274 0.125
(0.116–0.135) 0.587 0.735 0.710

(0.612–0.803) 0.02

RF 0.031 0.030 0.099
(0.090–0.108) 0.394 0.911 0.688

(0.604–0.769) 0.12

MLP 0.126 0.188 0.105
(0.096–0.114) 0.551 0.823 0.691

(0.603–0.771) 0.06

a Compared with the area under the receiver, operating characteristics of the score-based non-curative resection
prediction model used by the Delong test. Abbreviation: AUPRC, the area under the precision-recall curve;
AUROC, the area under the receiver operating characteristics curve; CI, confidence interval; RSS, risk-scoring
system; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors; NB, naive bayes; XGB,
extreme gradient boosting; RF, random forest; and MLP, multilayer perceptron.

The decision curve analyses showed that the net benefit of the XGBoost model was
greater than other ML models, and the naive Bayes model had the lowest benefit when
compared with other models (Supplementary Figure S3).

In a previous study [7], we developed an RSS using logistic regression modeling in
approximately 1600 patients with EGC who underwent ESD. When we applied this RSS
to the internal dataset (training and internal validation sets), the AUROC of the previous
RSS was 0.701 (95% CI, 0.683–0.720). When the previous RSS was applied to the external
dataset that included 531 EGCs patients, the AUROC of the previous RSS model was 0.616
(95% CI, 0.516–0.719) (Supplementary Table S3). The XGBoost model outperformed the
previous RSS (0.851 vs. 0.701, p < 0.001) up to a difference of 0.150 in the internal dataset.
When we compared the prediction performance using the Delong test, the ML model,
except for the support vector, showed a significantly higher performance compared with
the previous RSS developed without ML in our center (all p < 0.001) (Table 3). However,
when we compared the performance of AUROC between the seven ML models, they were
not significantly differ (Supplementary Table S4).

4. Discussion

Our research identified that an XGBoost ML model derived from two large cohorts
significantly improved the prediction of NCR of ESD in EGC in internal and external
validations. Thus, this ML model improved the ability to predict NCR of ESD in patients
with EGC. ML is defined as a computer-aided prediction method, with the most significant
benefit being an increase in forecast accuracy for NCR prior to ESD.

ESD is widely performed for EGC and has favorable outcomes [17]. However, the num-
ber of cases requiring additional treatment due to NCR after ESD has also increased [5,18].
According to a recent study, the rate of additional surgery due to NCR after ESD was
reported to be 4.3% [18]. However, additional gastrectomy can lead to a waste of medical
resources and expenses and increase the risk of adverse events. Therefore, an accurate
prediction of NCR of EGC prior to ESD is beneficial.

Various risk factors associated with NCR of ESD for EGC are reported in several
studies [7–11]. Among several studies, our group developed an RSS comprising several
endoscopic findings [7]. Logistic regression modeling revealed that a large tumor size
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(≥20 mm), tumor location in the upper body in the stomach, presence of an ulcer, a fusion
of gastric folds, absence of mucosal nodularity, spontaneous bleeding, and undifferentiated
tumor histology on biopsy were associated with NCR of ESD. The risk score points were
assigned for seven variables based on the beta coefficient divided by the absolute value of
the smallest coefficient. Each variable was scored as one or two points, and the total score
was calculated as the sum of the components. The final score ranged from 0 to 7. This RSS
showed an acceptable discriminatory performance in internal validation (AUROC, 0.7004).
However, the RSS had no external validation. After this study, although several prediction
models for NCR of ESD were proposed, there were limitations in that the sample size was
small or only internal validation was performed [8–11].

However, several studies have attempted to improve the curative resection rate by pre-
dicting the depth of cancer accurately or the margin of tumor using endoscopic ultrasound
(EUS) or magnifying endoscopy with narrow-band imaging (M-NBI) [19–24]. However,
EUS and M-NBI also have limitations owing to inter- and intra-observer variabilities and
lesion characteristics, such as cancer location or gross appearance. To overcome these limi-
tations, ML is emerging as an alternative method to improve prediction performance [25].

An important finding of our study is the presentation of the determination reason
or process of the ML model through explainable artificial intelligence analysis. Notably,
there is a compromise between accuracy and interpretability in the ML classification model.
Although the ML approach exhibited high degrees of accuracy based on complex calcu-
lations, it is characterized by low interpretability (artificial intelligence is more generally
characterized as being of a “black-box nature”). The XGBoost classifier used parallel tree
boosting analysis to provide highly efficient and accurate predictions [26,27]. In our study,
the ML model significantly increased the AUROC from 0.701 with our previous RSS to
0.851 in the internal dataset, even though when we applied our previous RSS to the external
validation set, the prediction rate of our previous RSS was 0.616. However, the ML model
outperformed our previous RSS in the external validation dataset. The strength of our study
was the large sample size from two tertiary general hospitals and internal and external
validations were performed. Importantly, our ML model significantly outperformed previ-
ous RSS using logistic regression modeling without ML in both the internal and external
validation datasets. Using this ML model could significantly reduce the rate of NCR, avoid
using additional medical resources, and increase total costs.

Although this study established and rigorously validated the predictive performance
of the designed ML model, it had several limitations. First, there was some discrepancy in
the validation performance between the internal and external validation sets. Second, we
used a prospectively collected database, and the analysis was retrospective. Thus, prospec-
tive validation should be performed to validate ML models. Third, although the ML model
outperformed the previous RSS, the prediction performance of ML may have been affected
by the model design, including hyperparameters. In addition, undetermined significant
variables are not identified or analyzable before ESD, which limits the predictive power
of the models. Fourth, there was no comparison of the performance of predictive models
other than ML models, such as generative adversarial network models. Fifth, our algorithm
is a black-box model; thus, we do not have information or an understanding of how the
algorithm operates internally. Finally, our ML model was based on a Korean population;
thus, our ML model may not be generalizable to other ethnic groups. Nevertheless, our ML
model can significantly improve the prediction rate of NCR in both internal and external
datasets. Individualized prediction using pre-ESD variables based on the ML model can
help physicians’ decision-making processes. Thus, if our ML model is applied to patients
with EGC who will undergo ESD, physicians can determine the prediction rate of NCR.
Therefore, if the NCR rate is high, physicians may discuss options other than ESD, such as
surgery, with patients. However, a prospective study is required to validate this model.
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5. Conclusions

In conclusion, we developed a ML model capable of accurately predicting NCR of
EGC before ESD by considering the demographic and endoscopic characteristics of the
lesions. Our ML model outperformed the previous RSS for NCR of ESD in patients with
EGC. This ML model can provide useful information for decision-making regarding the
appropriate treatment of EGC before ESD.
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www.mdpi.com/article/10.3390/cancers14153742/s1. Supplementary Table S1. Baseline charac-
teristics of the non-curative and curative resection groups. Supplementary Table S2. Performance
of the machine-learning model according to different threshold values. Supplementary Table S3.
Performance of the risk-scoring system in predicting non-curative resection. Supplementary Table S4.
Performance of the non-curative resection prediction model between the seven machine-learning
models. Supplementary Figure S1. Variables ordered by XGBoost feature importance and domain
expertise. Abbreviations: AMD, adenocarcinoma moderate-differentiated; AWD, adenocarcinoma
well-differentiated; SRC, signet-ring cell; APD, adenocarcinoma poorly differentiated; CIS, carcinoma
in situ; SCC, squamous cell carcinoma. Supplementary Figure S2. The precision-recall curves for
prediction of non-curative resection after endoscopic submucosal dissection; (A) internal dataset,
(B) external dataset. Abbreviation: RSS, risk-scoring system; LR, logistic regression; SVM, support
vector machine; KNN, k-nearest neighbors; NB, naive bayes; XGB, extreme gradient boosting; RF,
random forest; MLP, multilayer perceptron. Supplementary Figure S3. Decision curve analysis of
extreme gradient boosting and other models; (A) internal dataset, (B) external dataset. Abbreviation:
LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors; NB, naive bayes;
XGB, extreme gradient boosting; RF, random forest; MLP, multilayer perceptron.
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