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The immune microenvironment at the maternal-fetal interface was determined

by the crosstalk between the trophoblast and maternal-derived cells, which

dynamically changed during the whole gestation. Trophoblasts act as innate

immune cells and dialogue with maternal-derived cells to ensure early

embryonic development, depending on the local immune microenvironment.

Therefore, dysfunctions in trophoblasts andmaternal decidual cells contribute to

pregnancy complications, especially recurrent pregnancy loss in early

pregnancy. Since many unknown regulatory factors still affect the complex

immune status, exploring new potential aspects that could influence early

pregnancy is essential. RNA methylation plays an important role in contributing

to the transcriptional regulation of various cells. Sufficient studies have shown

the crucial roles of N6-methyladenosine (m6A)- and m6A-associated-

regulators in embryogenesis during implantation. They are also essential in

regulating innate and adaptive immune cells and the immune response and

shaping the local and systemic immune microenvironment. However, the

function of m6A modifications at the maternal-fetal interface still lacks wide

research. This review highlights the critical functions of m6A in early embryonic

development, summarizes the reported research on m6A in regulating immune

cells and tumor immune microenvironment, and identifies the potential value of

m6A modifications in shaping trophoblasts, decidual immune cells, and the

microenvironment at the maternal-fetal interface. The m6A modifications are

more likely to contribute to embryogenesis, placentation and shape the immune

microenvironment at the maternal-fetal interface. Uncovering these crucial

regulatory mechanisms could provide novel therapeutic targets for RNA

methylation in early pregnancy.
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Introduction

Most mammalian genomes undergo RNA transcription, and

many RNA transcripts can never be translated into proteins (1),

which may lead to functional defects. RNA is not only an

essential intermediate in the flux from DNA to proteins but

also a regulatory molecule for fundamental cellular processes,

the dysfunction of which contributes to important pathological

processes (2). The coding and noncoding transcriptomes are

widely and dynamically regulated by chemical modification,

which adds new modifications of complexity and functionality

to the emerging roles of RNAs in physiological and pathological

conditions (3). Covalent modifications sense the changing

environment directly and rapidly without changing the DNA

and RNA sequences (4). In contrast to the epigenetic

modifications on DNA and histones that work at the

transcriptional level, RNA methylation has a notable effect on

gene regulation at the posttranscriptional level (5). RNA

modifications affect transcripts by altering the charge, base-

pair potential, secondary structure and RNA–protein

interactions, which, in turn, regulates gene expression via

RNA processing, localization, translation and degradation (3).

N6-methyladenosine (m6A) is the most abundant internal

mRNA modification. Identifying of the proteins that mediate

m6A modifications has elucidated the roles of mRNA

modifications in nearly every aspect of the mRNA life cycle, as

well as various cellular, developmental, and disease processes (3).

In mammals, approximately 0.1%- 0.6% of adenines undergo

m6A modification, with an average of 3-5 methylated sites in

each mRNA. Remarkably, m6A modifications can be deposited

onto transcripts in tissue- and cell-type-specific- manners (6).

The m6A modifications commonly occur in yeast, plants, flies,

bacteria, humans and other mammals, which implicates its

multiple functions in RNA, including precursor mRNA (pre-

mRNA) splicing, mRNA translation, stability, structure, export

and decay, implying an association with several cellular

processes, such as cell differentiation and reprogramming,

further contributing to various human diseases (reviewed in

(7)). For m6A detection, methods, including analytical

chemistry, high-throughput sequencing, m6A-CLIP and

miCLIP, have emerged to determine the specific methylation

sites and the modification fractions at these sites to promote

biological studies of RNA modifications (3, 8–11), which

provided the available ways to study the roles of m6A

modification proteins in physical and pathological processes.

Similar to DNA methylation, the deposition and removal

of mRNA methylation also depend on a multiunit

methyltransferase complex that was initially documented in

1994 (7). mRNA methylation is governed by three types of

proteins, namely, methyltransferases as “writers”, demethylases

as “erasers”, and specific m6A-binding proteins (YTHDF1-3)

as “readers” (12). The deposition of m6A methylation
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is catalyzed by multicomponent methyltransferases, mainly

methyltransferase-like 3 (METTL3), METTL14, Wilms’ tumor

1-associated protein (WTAP), RNA-binding motif proteins 15

(RBM15s), virlike m6A methyltransferase associated (VIRMA/

KIAA1429), zinc finger CCCH-Type containing 13 (ZC3H13)

and METTL16 (13–19). METTL3 is the most important

component of the m6A methyltransferase complex (MTC) and

highly conserved in eukaryotes from yeast to humans (20);

METTL3 forms a stable heterodimer core complex regulated

by WTAP and catalyzes the transfer of meth1 groups (13, 21).

Similar to WTAP, RBM15s have no catalytic function but bind

to METTL3 and WTAP to guide these two proteins to specific

RNA sites for m6A modification. KIAA1429-mediated m6A

methylation of mRNAs takes place near the 3’-UTR and the

stop codon (22). m6A modification occurs when METTL3 and

METTL14 are recruited into the nucleus (14). Only METTL3

has methyltransferase activity in the MTC. METTL16 encodes S-

adenosylmethionine (SAM) synthase and is expressed in most

cells. However, METTL16-mediated m6A sites were located in

introns or intron–exon boundaries, which is different from the

common m6A sites in UTRs (19). The m6A demethylases as

“erasers” make the m6A methylation dynamic and reversible,

which could be passively removed from the transcriptome via

degradation of the modified RNA or active demethylation by the

m6A demethylases fat mass and obesity-associated (FTO) or a-

ketoglutarate-dependent dioxygenase alkB homolog 5

(ALKBH5), both belonging to the AlkB family of dioxygenases

known to demethylate N-methylated nucleic acids (23, 24). FTO

was the first demethylase discovered in 2011 (23). The ALKBH5

catalytic domain can demethylate m6A-containing single-

s tranded RNA (ssRNA) and single-stranded DNA

(ssDNA) (25).

The discovery of reader proteins has made great progress in

elucidating the impact of m6A methylation in mammalian cells.

Different ‘readers’ with different cellular localizations influence

almost all aspects of RNA metabolism, such as YT521-B

homology domain family proteins (YTHDFs), insulin-like

growth factor 2 mRNA-binding proteins (IGF2BPs),

eukaryotic translation initiation factor 3 (EIF3) and

heterogeneous nuclear ribonucleoproteins (HNRNPs) (26–29).

Proteins with YTH domains located in the cytoplasm (YTHDF1,

YTHDF2 and YTHDF3) and nuclei (YTHDC1 and YTHDC2)

directly recognize m6A marks (27, 30), which promote the

degradation and translation of m6A-modified RNA. In

contrast to YTHDFs, IGF2BPs promote the stability and

storage of their target mRNAs in a m6A-dependent manner

under normal stress conditions and therefore affect gene

expression output (28). EIF3 directly binds a single 5’ UTR

m6A and recruits the 43S complex to initiate translation in

a cap-dependent manner (26). Numerous studies have shown

that m6Amodifications play essential roles in multiple biological
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and pathological processes: hematopoietic development,

central nervous and system development, the adaptive and

innate immune system, carcinogenesis and the tumor

microenvironment, as well as gametogenesis and early embryo

development, the dysfunction of which generally results in

various diseases by abnormal m6A modifications of the target

genes (31) (Figure 1). Currently, with the development of

assisted reproductive technology (ART), which helps to

exclude abnormalities in the embryo, there remains the

occurrence of recurrent pregnancy loss (RPL) in child-bearing

women (32). Embryo implantation into the endometrium

successfully relies on strict and coordinated regulation of

trophoblasts derived from the fetus and decidual stromal cells

and immune cells derived from the maternal sides (33).

Crosstalk could be regulated by molecules associated with

implantation, including hormones, signaling molecules,

transcription factors and cytokines (34). However, the

occurrence of RPL remains high, and more efforts should be

made to discover the mystery of embryo implantation. Emerging

studies emphasize the essential roles of m6A modifications in

embryo implantation, while their roles in trophoblasts and

immune tolerance at the maternal-fetal interface are worthy of

further investigation.

Successful blastocyst implantation was first established by

normal embryo development after fertilization. Its further

development relies on the dynamically coordinated balance

between the fetal-derived invading trophoblasts and the
Frontiers in Immunology 03
receptive maternal decidua (35). Once implantation is

initiated, the trophoblasts, originating from the outer layer of

the blastocyst, will differentiate into invasive extravillous

trophoblasts (EVTs) to attach and invade the maternal

decidua and therefore promote placentation (36), making the

first contact with the maternal immune system. The placenta not

only mediates the hormonal, nutritional and oxygen support to

the fetus but also plays an essential immunoregulatory role at the

maternal-fetal interface (37). Blastocysts that take paternal

antigens as semiallogeneic to the maternal side can be

recognized and accepted by the immunosuppressive maternal

immune system (38). After normal implantation, the

implantation sites are infiltrated with diverse immune cells,

which are mainly characterized by an anti-inflammatory Th2-

type immune microenvironment (39). Previously, embryo

quality was shown to contribute to adverse pregnancy

complications. ART tools make the selection of high-quality

embryos available; however, implantation rates and successful

pregnancy with ART are still relatively low. This indicated that

uterine receptivity might also play a crucial role in the

establishment of normal pregnancy (40). Diverse mechanisms,

including cytokine/chemokine and hormonal signaling as well as

DNA modifications, contribute to the pathology of pregnancy

complications (40), which is attributed to the abnormal gene

expression of cytokines/chemokines and abnormal signaling in a

specific time and space during placentation and further

fetal development.
FIGURE 1

Overview of the reversible m6A RNA modifications and related functions. m6A modifications are regulated by m6A writers (METTL3, METTL14,
RBM15s and WATP) and readers (FTO and ALKBH5). m6A methylation is recognized by different readers (YTHDC1-2, YTHDF1-3 and EIF3) by
regulating RNA splicing, exportation, translation, degradation, stabilization and storage.
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Early mammalian embryos are capable of strong pluripotent

stemness, which could be reprogrammed by epigenetic

modifications. m6A modification is highly conserved from

yeast to mammals and can regulate gene expression output,

determine stem cell fate and cell differentiation, and further

shape the local microenvironment. Recent studies have shown

that m6A modifications are associated with animal reproductive

processes, including gametogenesis, maternal-zygote transition

(MZT) and early embryonic development (41–45). In addition,

m6A modifications also play an essential roles in fine-tuning the

immune response, including innate and adaptive immune

responses and immune system development (8). Here, we

reviewed the potential roles and novel insights of m6A

methylation in embryo development and immune tolerance

during early pregnancy during maternal-fetal tolerance.
m6A functions in preimplantation
embryogenesis

After fertilization, the newly generated zygote sustains a

transcriptionally quiescent state and initiates early maternally

programmed embryogenesis, following zygote genome

activation (ZGA) with a clearance of maternal stores (RNA

and DNA), which is termed the maternal-to-zygote transition

(MZT) (46). The most important biological process, early

embryonic development, is generally determined by a

programmed transition into a totipotent and pluripotent

embryonic state, followed by cell fate decisions and lineage-

specific differentiation (47). Early embryogenesis relies on

maternally inherited mRNA. Recently, emerging studies have

reported that the epitranscriptomic mark m6A and its cofactors

play critical roles in ensuring gene expression in an appropriate

time and space in both preimplantation and postimplantation

embryonic development (46, 47). In the murine preimplantation

embryo, germinal vesicle (GV) oocyte-specific knockdown (KD)

of Mettl3 inhibited oocyte maturation and the MZT by

disrupting maternal mRNA degradation (41). Additionally,

Mettl3 is mainly located in the intracisternal A particle (IAP)-

type family of endogenous retroviruses. Mettl3 knockout (KO)

in mice blocked the integrity of multiple heterochromatin marks

on METTL3-targeted IAPs. Mechanistically, the RNA

transcripts in METTL3-bound IAPs are related to m6A-

methylated chromatin, which is regulated by the m6A reader

YTHDC1. This interaction, in turn, promotes the association of

METTL3 with chromatin. Furthermore, METTL3 also interacts

with the H3K9me3 methyltransferase SETDB1 and its cofactor

TRIM28 (48). These results suggest an important role of

METTL3-targeted IAP integrity in mouse embryonic stem

cells. Downregulation of the m6A reader HnRNPA2/B1, which

is regulated by Mettl3, blocked mouse embryonic development
Frontiers in Immunology 04
from the 4-cell stage by altering global gene expression involving

the transcription, translation, cell cycle, embryonic stem cell

differentiation, and RNA methylation pathways in HnRNPA2/

B1 KD blastocysts. Similar results were found in Mettl3 KD

blastocysts, which also showed that HnRNPA2/B1 is regulated in

a Mettl3-dependent manner (49). In Mettl14 arginine 255

(R255me) mutant mice, embryonic stem cells (mESCs) led to

decreased global mRNA m6A levels and preferentially affected

endoderm differentiation in mESCs. Mettl14 R255me markedly

enhances the interaction of Mettl3/Mettl14 with WTAP and

binds to the substrate RNA. Moreover, protein arginine N-

methyltransferase 1 (PRMT1) regulates Mettl14 at R255,

which highlights the communication between protein and

RNA methylation in regulating gene expression (50).

Knockdown of Mettl3 and Mettl14 in mESCs led to similar

phenotypes, with a lack of m6A RNA methylation and loss of

self-renewal capability (27). WTAP, as part of the MTC, is

essential for the blastocyst rate and global m6A levels of

porcine early embryonic development, indicating the

indispensable role of WTAP in porcine embryo development

(51). An mRNA interactome capture study in zebrafish embryos

identified the dramatic translocation of Hnrnpa1 accompanied

by the movement from cytoplasmic to nuclear RNA targets and

other pre-mRNA splicing factors to the nucleus in a

transcription-dependent manner, indicating that Hnrnpa1

RNA-binding activities regulated RNA metabolism during

early embryo development in a spatial and temporal manner

(52). Accurately, one-third of zebrafish maternal mRNA is m6A

modified, and m6A-binding protein promotes the clearance of

maternal mRNAs, the removal of which slows down the decay of

m6A-modified maternal mRNA and impairs ZGA, therefore

blocking the initiation of the timely MZT and cell cycle and

contributing to the overall delay of larval life (43). Additionally,

the m6A reader protein YTHDF1-3, as a maternal mRNA-

binding partner, was highly expressed in the zebrafish MZT

process (3), suggesting that YTHDF protein-mediated m6A

modification may regulate the MZT process. m6A-methylated

maternal mRNA degradation impedes YTHDF2-deficient

zebrafish embryos and therefore delays the timely MZT and

leads to developmental interruption during the larval period

(43). In addition, it was also reported that the m6A reader

YTHDF2 is essential for oocyte maturation and embryo

development (43, 53). The oocyte-specific deletion of YTHDF2

in mice also impeded the degradation of maternal mRNAs,

thereby delaying the ZGA process. These results suggest that

YTHDF2 plays important roles in the transcriptome transition

by mediating m6A-dependent mRNA degradation. Similar to

YTHDF2, the oocyte-specific deletion of VIRMA contributes to

female-specific infertility in mice, which inhibits oocyte

maturation by regulating pre-mRNA alternative splicing (54).

In human ESCs, the ALKBH5 catalytic domain is fused

to targeted RNA m6A erasure (TRME) and therefore
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demethylates the target m6A sites and increases mRNA stability

with limited off-target effects (55). However, the role of VIRMA

in early embryonic development remains unknown and requires

further investigation.

In contrast to YTHDF2 that promotes mRNA decay,

IGF2BPs could work as a new class of cytoplasmic m6A

readers that regulate the stability and storage of mRNAs (28).

Downregulation of Igf2bp1 in zebrafish parthenogenetic

activation (PA) embryos decreased the cleavage and blastula

rates, which induced cell apoptosis and could be rescued by

augmenting the miR-670 inhibitor (56). Maternal deletion of

Igf2bp2 (also called IMP2) results in murine early embryo

development arrest at the 2-cell stage in vitro by decreasing

the expression of Ccar1 and Rps14, both of which are

essential for early embryonic developmental competence

(57). However, the role of IGF2BP2 in regulating mRNA

stability and degradation in ZGA as a m6A reader still

needs to be clarified. Deletion of maternal Igf2bp3 degraded

maternal mRNAs prior to MZT and resulted in severe

developmental defects of abnormal cytoskeleton organization

and cell division and destabilized the Igf2bp3-bound mRNAs.

Interestingly, Igf2bp3 overexpression in wild-type embryos

also causes a developmental delay. These results indicate

the important functions of Igf2bp3 in regulating early

zebrafish embryogenesis by binding and stabilizing maternal

mRNAs (58). The above findings suggested that the function

of IGF2BP3 is different from that of YTHDF2, but both
Frontiers in Immunology 05
are indispensable for early embryogenesis in various

species (Figure 2).
m6A functions in postimplantation
embryogenesis

After implantation, the blastocyst attaches to the uterus and

initiates differentiation and development. The ectoderm of the

blastocyst is the trophoblast stem cells, which differentiate into

multiple trophoblast subsets and therefore promote

placentation. The inner cell mass transitions from naïve state

pluripotency to primed state pluripotency and is required for

organogenesis and individual formation (47). A number of

studies have reported that m6A determines the fate of

embryonic stem cells (ESCs), losing m6A modifications causes

pluripotent stem cells to display a state of hyperpluripotency and

cannot differentiate into lineages, thus contributing to

embryonic lethality (55, 59). Mechanistically, METTL3-/- ESCs

exhibited poor differentiation potential that prevented KO

teratomas from forming the three germ layers. The abnormal

expression of NANOG from E5.5 to E7.5 in epiblasts led to

embryonic lethality.Mettl3 andMettl14 KO mice both exhibited

embryonic lethality at E6.5 (59, 60). These findings indicate the

important role of MELLT3/METTL14 in early embryogenesis.

Another m6A writer, METTL16, regulates human MAT2A,

and increasing METTL16 binding to the methionine
FIGURE 2

The role of m6A RNA modifications in early embryo development and placentation. The downregulation of the m6A RNA modifications
METTL3, METTL14, METTL16, MAT2A, VIRMA, WATP, YTHDF2, hnRNPA2/B1 and IGF2BP2/3 is related to early embryo development; however,
the upregulation of IGF2BP3 also causes a delay in late development. In addition, the decrease in FTO and YTHDF2 is associated with early
placental dysfunction, while the overexpression of METTL3/ALKBH5 is related to late abnormal placentation.
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adenosyltransferase 2A (MAT2A) 3’UTR could promote

efficient splicing in a hairpin (hp1) m6A-dependent manner

(19). However, the m6A modifications on MAT2A were

recognized by YTHDC1 for mRNA degradation (61).

Although normal morphology and genotyping ratios were

observed in E2.5 and E3.5 blastocysts from WT and Mettl16

KOmice, only 1.9%Mettl16 KO embryos at E6.5 could be found

in the Mettl16-/- mouse model, indicating that METTL16

deletion led to embryo lethality around implantation (42).

Interestingly, the most decreased gene in E2.5 KO embryos

was Mat2a, suggesting that Mettl16 and Mat2a are essential for

early embryonic development. Apart from METTLs, another

m6A writer, WATP-deficient ESCs, failed to differentiate into

endoderm and mesoderm. In addition, deficiency of WATP in

embryos results in abnormal egg cylinders at the gastrulation

stage and causes embryonic lethality at E10.5 in mice (62).

However, the relevant mechanisms need further exploration.

YTHDC1, as the only nuclear reader, regulates the alternative

polyadenylation (APA), AS and nuclear export of m6A-modified

mRNAs in mouse oocytes. In addition, YTHDC1 is essential for

early embryonic development (63). These results indicated that

YTHDC1 is not only critical for gametogenesis but also

important for the viability of early embryo development.

Interestingly, no colonies were found in hnRNPA2/B1 mouse

KO blastocysts. Nonetheless, knockdown of hnRNPA2/B1

impeded embryonic development after the 4-cell stage and

blocked further development, and a similar phenotype was

observed in Mettl3 KD embryos. Furthermore, Mettl3 KD

blastocysts showed enhanced mislocalization of hnRNPA2/B1

and reduced m6A methylation, which suggested that hnRNPA2/

B1 is important for early embryogenesis by Mettl3-dependent

m6A RNA methylation (49). Deficiency of m6A methylation

writers, easers and readers generally leads to embryo lethality

postimplantation. However, these mutants focus on the embryo

itself and not the placenta. The results of deciphering the

developmental disorders programmed for placental

phenotypes in embryonic lethal and subviable mouse knockout

lines showed that 68% of KO lines mainly exhibited placental

dysmorphologies (64). Early embryo lethality is closely

associated with placental malformation, which strongly

correlates with abnormal brain, heart and vascular

development (64). The critical role of the placenta in

pregnancy was determined by the trophoblast lineage. In

preeclampsia (PE), METTL3 and m6A methylation were

upregulated in the placental trophoblast (65). The maturation

of miR-497/195-5P mediated by METTL3 impeded trophoblast

migration and invasion by targeting WWP1 in PE patients (66).

In addition, the RNA demethylase FTO and HLA-G were

significantly decreased in the trophoblasts of spontaneous

abortion (SA) patients, and the mRNA expression of VEGFA,

VEGFR and MMP2 bound to YTHDF2 also decreased in SA

patients, which indicated that FTO in the chorionic villi
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promotes immune tolerance and angiogenesis at the maternal-

fetal interface due to aberrant methylation and oxidative stress

and therefore leads to the occurrence of SA (67).

Downregulation of ALKBH5 demethylase KDM3B mediated

activated leukocyte cell adhesion molecule (ALCAM) by

increasing PPARG mRNA m6A modification and activating

the Wnt/b-catenin pathway, in turn relieving PE progression

(68). In addition, Xiaocui Li et al. reported that global mRNA

m6A methylation was significantly decreased in villi from RPL

patients without affecting ALKBH5 expression. Besides,

ALKBH5 KD in villous explants enhanced trophoblast

invasion by upregulating the half-life of cysteine-rich

angiogenic inducer 61 (CYR61) mRNA (69) (Figure 2).

Although some m6A modifications are reported to be

associated with the differentiation and function of

trophoblasts, more explorations are needed to elucidate the

other m6A enzymes in the biological and immunoregulatory

functions of trophoblasts and provide broad RNA epigenetic

regulatory patterns in physical and pathological pregnancies.
m6A functions in the innate immune
response

Innate immunity provides the first line of defense against

infections in a nonspecific manner. The innate immune cells at

the maternal-fetal interface consist of macrophages (MFs),

natural killer (NK) cells and dendritic cells (DCs), which can

sense invading pathogens and exogenous RNAs rapidly and thus

respond in a timely manner to foreign pathogens (70). Innate

immune cells comprise large populations of immune cells at the

maternal-fetal interface (35). DC cells are the main antigen

presentation cells (APCs) that can activate T cells and are

equipped with the capacity to effectively take up, process and

present antigens on the cell surface (71). Emerging studies have

shown that m6A modification and m6A-associated proteins

mediate innate immunity by regulating the recognition and

responses to foreign pathogens, unmodified tRNAs, exogenous

RNAs and aberrant endogenous RNAs. The recognition of

foreign pathogens depends on several pattern-recognition

receptors, such as plasma membrane receptors (Toll-like

receptors, TLRs) and cytosolic sensors (RIG-I-like receptors,

RIG-I and NLR proteins) (72). Kariko K et al. in 2005 reported

that m6A modification decreased TLR3, TLR7, or TLR8

activation in monocyte-derived DCs (MDDCs), which was the

first time that the regulatory effect on the process of RNA

recognition was presented (73). Once RNA recognition occurs,

the innate immune response immediately initiates and releases

multiple cytokines, such as type I interferons (IFNs) and

interferon-stimulated genes (ISGs) (74, 75). METTL14

depletion inhibited viral reproduction and promoted dsDNA-

or HCMV-induced IFNB1 mRNA accumulation, while
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ALKBH5 depletion exhibited the opposite effect (75)(Figure 3A).

The RNA helicase DDX46 demethylates the antiviral proteins

MAVS, TRAF3 and TRAF6 by recruiting ALBKH5 (76)

(Figure 3C). hnRNPA2B1 recognizes viral DNA and facilitates

the m6A modification nucleocytoplasmic trafficking of CGAS,

IFI16, and STING mRNAs by preventing FTO-mediated

demethylation, thereby amplifying IFN production and

enhancing the antiviral effect on HSV-1 infection (77)

(Figure 3D). In addition, m6A modification also mediates the

metabolic program to promote host immunity against viral

infection. Downregulation of ALBKH5 increases the m6A

modifications on the mRNA of a-ketoglutarate dehydrogenase

(OGDH) and reduces its mRNA stability and protein expression,

which inhibits viral replication (Figure 3B). These studies

suggest that m6A modifications exert a contributory effect on
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antiviral responses by targeting antiviral-specific genes and

proteins and reprogramming the metabolic state of the host.

In addition, mounting evidence has shown that m6A

methylation plays a critical role in DC activation and function.

Mettl3-specific depletion in DCs results in delayed maturation in

response to lipopolysaccharide (LPS) and impaired phenotypic

and functional maturation of DCs. Mechanistically, the

expression of the costimulatory molecules CD40 and CD80,

the TLR4 signaling adaptor Tirap and the cytokine IL-12

decreased with a low capacity to stimulate T-cell responses

(78) (Figure 3E). Loss of classical DCs enhanced the cross-

presentation of tumor antigen and cross-priming of CD8+ T

cells in vivo. Binding of YTHDF1 to transcripts of lysosomal

proteases increases the translation of lysosomal cathepsins in

DCs. Moreover, blockade of the PD-L1 checkpoint is enhanced
B

C D

E
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FIGURE 3

Dendritic cells are regulated by m6A modifications through different mechanisms. (A) METTL14 depletion inhibited viral reproduction and
promoted dsDNA- or HCMV-induced IFNB1 mRNA accumulation. (B) Downregulation of ALBKH5 in DCs increased m6A modifications on
OGDH mRNA and reduced its mRNA stability and protein expression, thereby inhibiting viral replication. (C) The RNA helicase DDX46
demethylates the antiviral proteins MAVS, TRAF3 and TRAF6 by recruiting ALBKH5. (D) hnRNPA2B1 recognizes viral DNA and facilitates m6A
modification nucleocytoplasmic trafficking of CGAS, IFI16, and STING mRNAs by preventing FTO-mediated demethylation. (E) Mettl3-specific
depletion in DCs results in delayed maturation in response to lipopolysaccharide (LPS) and impaired phenotypic and functional maturation of
DCs. Mechanistically, the expression of the costimulatory molecules CD40 and CD80, the TLR4 signaling adaptor Tirap and the cytokine IL-12
decreased with a low capacity to stimulate T-cell responses.
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in Ythdf1−/− mice, implicating YTHDF1 as a therapeutic target

in cancer immunotherapy (79). These findings indicate that

m6A methylation and its related proteins play major roles in

the maturation and activation of DCs and promote the

initiation of the adaptive immune response through antigen

cross-presentation.

Macrophages serve as another main component of innate

immune cells. RNA binding protein-focused CRISPR screening

results showed that m6A writers were the top candidate genes in

regulating LPS-activated macrophages. Mettl3 ablation

macrophages produced little TNF-a with LPS stimulation (80)

(Figure 4A). However, Mettl3 downregulation in macrophages

significantly increased the proinflammatory cytokines TNF-a,
IL-6 and NO. Mechanically, Mettl3 KO in macrophages

promoted the expression and stability of NOD1 and RIPK2,

which were mediated by YTHDF1 and YTHDF2, respectively

(81) (Figure 4A). Additionally, Mettl3 and YTHDF2

cooperatively regulate PGC-1a mRNA degradation in oxidized
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low-density lipoprotein (ox-LDL)-induced monocytes (82)

(Figure 4A). Mettl3 promotes the ox-LDL-induced

inflammatory response in macrophages by modifying STAT1

mRNA, thereby polarizing macrophages to the M1 phenotype

(83). The deletion of Mettl3 in myeloid cells promotes tumor

growth and metastasis in vivo. Mechanistically, Mettl3-deficient

mice showed increased M1/M2-like tumor-associated

macrophage and regulatory T (Treg) cell infiltration in the

local tumor microenvironment due to the impairment of

YTHDF1-mediated SPRED2, which enhances the activation of

nuclear factor kB (NF-kB) and STAT3 via the ERK pathway and

consequently leads to tumor growth and metastasis.

Furthermore, PD-1 checkpoint blockade was partially

decreased in Mettl3-deficient mice, indicating the important

role of Mettl3 in tumor immunotherapy (84). Additionally,

myeloid lineage-restricted deletion of Mettl3 protects mice

from age-related and diet-induced development of innate

immunity-driven nonalcoholic fatty liver disease (NAFLD)
B

C D

A

FIGURE 4

Macrophage polarization was modified by m6A methylation in different environments. (A) Mettl3 ablation macrophages produced little TNF-a
with LPS stimulation. Mettl3 downregulation in macrophages significantly increased the proinflammatory cytokines TNF-a, IL-6 and NO by
increasing NOD1 and RIPK2 via YTHDF1 and YTHDF2, respectively. Mettl3 and YTHDF2 cooperatively degraded PGC-1a mRNA in oxLDL-treated
monocytes. (B) Myeloid lineage-restricted Mettl3 deletion protected mice from age-related and diet-induced development of innate immunity-
driven nonalcoholic fatty liver disease (NAFLD) and obesity by decreasing mTOR expression and the NF-kB pathway by targeting DDIT4. (C) FTO
deficiency inhibited both M1 and M2 polarization by suppressing the NF-kB signaling pathway and decreasing the stability of STAT and PPAR-g
via YTHDF2 involvement, therefore blocking macrophage activation. (D) The loss of Mettl14 decreased the demethylase Socs1 mRNA to activate
TLR4/NF-kB signaling. In addition, IGF2BP2-/- macrophages were refractory to IL-4-induced activation to regulate the switch of M1 to M2
subtypes in a m6A-dependent manner.
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and obesity. Mettl3 deficiency results in a notable increase in

DNA damage inducible transcript 4 (DDIT4) mRNA. The

decrease in mammalian target of rapamycin (mTOR) and NF-

kB pathway activity in Mettl3-deficient macrophages could be

restored by DDIT4 KD (85) (Figure 4B). These findings

demonstrate the contribution of Mettl3-mediated m6A

modifica t ion of DDIT4 to macrophage metabol ic

reprogramming in NAFLD and obesity. Lihui Dong et al.

reported that macrophage-specific knockout of the m6A

methyltransferase Mettl14 drives CD8+ T-cell differentiation

with a dysfunctional trajectory, impairing CD8+ T cells to

eliminate tumors (86). Silencing of the m6A eraser FTO

markedly inhibited both M1 and M2 polarization by

suppressing the NF-kB signaling pathway and decreasing the

stability of STAT and PPAR-g via YTHDF2 involvement,

therefore blocking macrophage activation (87, 88) (Figure 4C).

Mettl14 ablation in myeloid cells contributes to acute bacterial

infection in mice by the continuous production of

proinflammatory cytokines, which can be rescued by forced

expression of Socs 1 in macrophages depleted of Mettl14 or

YTHDF1. Loss of Mettl14 decreases demethylase expression,

and Socs1 mRNA overactivates TLR4/NF-kB signaling. These

findings highlight that m6A methylation-mediated SOCS1

expression is essential for the negative feedback control of

macrophages on bacterial infection (89). YTHDF1 KD

macrophages in rats improved the secretion of anti-

inflammatory cytokines, highlighting the protective role of

YTHDF1 KD macrophages in severe sepsis rats with ECMO

(90). YTHDF2 KD in the mouse macrophage cell line Raw264.7

enhanced osteoclast formation and bone resorption (91). The

m6A reader IGF2BP2-abated macrophages showed enhanced

M1 polarization and promoted dextran sulfate sodium-induced

colitis development. IGF2BP2-/- macrophages are refractory to

IL-4-induced activation by targeting tuberous sclerosis 1 to
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regulate the switch of M1 to M2 subtypes in a m6A-dependent

manner, which indicates the key role of IGF2BP2 in the

regulation of macrophages (92) (Figure 4D). These results

indicated that the differentiation and function of macrophages

could be regulated by m6A methylation.

NK cells are a large population of innate lymphocytes

involved in antitumour and antiviral immunity. The m6A

reader YTHDF2 is markedly increased in NK cells when

activated by cytokines, tumors and virus infection, which

mediates NK-cell antitumour and terminal maturation related

to modulating NK-cell trafficking and regulating Eomes,

respectively, losing which affects the antitumour and antiviral

function of NK cells in vivo. Mechanistically, YTHDF2 promotes

the effector function of NK cells and is essential for IL-15-

mediated NK-cell survival and proliferation by the STAT5-

YTHDF2 positive feedback loop, highlighting the novel

biological role of YTHDF2 in NK cells in antitumour

immunity (93) (Figure 5A). In addition, inactivation of

Mettle3 in NK cells changed the hemostasis, infiltration and

function of NK cells in the tumor microenvironment, leading to

accelerated tumor growth and short lifespan in mice by

modifying SHP-2 mRNA, which rendered NK cells

hyporesponsive to IL-15 (94) (Figure 5B). However, the role of

m6A modifications in the development and function

of macrophages and NK cells remains limited and is worthy of

more focus and investigation.
m6A functions in the adaptive
immune response

Adaptive immunity could be special in the clearance of

specific pathogens, which are mainly mediated by the

activation of antigen-specific T/B lymphocytes, and finally
BA

FIGURE 5

Antitumour immunity of NK cells was regulated by m6A modification. (A) YTHDF2 is essential for IL-15-mediated NK-cell survival and
proliferation by the STAT5-YTHDF2 positive feedback loop. (B) Mettle3 ablation in NK cells changed the hemostasis, infiltration and function of
NK cells by modifying SHP-2 mRNA in the tumor microenvironment.
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establish long-term immunological memory against the given

antigen. Recently, an increasing number of studies have shown

that m6A exerts an important effect on adaptive immunity and

modulates the differentiation and function of different subsets of

T cells (70). Val1, expressed in all immune cells, is used as Cre

recombinase with the Val1 promoter in studying the immune

response. However, METTL3 deficiency in Val1-Cre mice led to

nonviable progeny, indicating the critical role of METTL3 in

immune cells. While CD4, CD11C and Foxp3 were used to

construct cell-specific transgenic mice (95), a large amount of

m6A was still detectable (78, 96), which reflected incomplete

METTL3 deletion.

The generation and maturation of CD4+ T cells in the

thymus highly depend on the T-cell receptor (TCR) and

multiple costimulatory signals. Initially, deficiency of METTL3

in CD4+ T cells did not affect the generation, maturation or

capacity to respond to TCR stimulation in vitro, which indicated

that the basic TCR signals and downstream signal transduction

did not depend on m6A methylation in vitro (96). In CD4+ T-

cell-specific Mettl3 KO mice, the proportion of naïve cells was

higher, while the proportion of activating CD4+ T cells was

lower than that in WT mice, and Mettl3 KO mice developed

spontaneous colitis, indicating that m6A helped to keep naïve

cells quiescent. A similar phenotype was observed inMettl14 KO

mice (96).
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IL-7 is essential for homeostatic proliferation and long-term

survival of naïve T cells (97). Likewise, the naïve T cells inMettl3

KO mice show a striking similarity to CD4+ T cells transferred

to IL-7-deficient mice (98). The IL-7 receptor suppresses

cytokine signaling of SOCS1 targets (98). Members of the

SOCS family, including Socs1, Socs3 and Cish, bind the

cytokine receptor and prevent STAT5 activation and

downstream signaling (99) (Figure 6A). The SOCS genes were

marked by m6A and showed slower mRNA degradation and

higher protein expression in Mettl3-deficient T helper cells,

which possibly impeded signal transduction through IL-7R

(96). However, the role of m6A methylation in the response to

cognate antigen recognition in vitro and pathogens in vivo

cannot be excluded (8). T follicular helper (Tfh) cells are

specialized effector CD4+ T cells required for humoral

immunity. The conditional deletion of METTL3 in CD4+ T

cells inhibits TFH cell differentiation and the germinal center

response in a cell-intrinsic manner. TFH signature genes,

including Tcf7, Bcl6, Icos and Cxcr5, and these effects rely on

intact methyltransferase activity. Loss of METTL3 results in

accelerated decay of Tcf7 transcripts, emphasizing the role of

Mettl3 in stabilizing Tcf7 transcription via m6A modification

and Tfh cell differentiation (100) (Figure 6B). Whether CD8+ T

cells and TCR signaling in vivo are regulated by m6A requires

further investigation.
B
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A

FIGURE 6

T-cell functions were shaped by m6A regulators. (A) IL-1R is a suppressor of SOCS1 targets. The Socs family prevents STAT5 activation and
downstream signaling, which are marked by m6A and show slower mRNA degradation and higher protein expression in Mettl3-deficient T
helper cells and blocked signal transduction through IL-7R. (B) Loss of METTL3 in CD4+ T cells leads to the degradation of the Tfh signature
gene Tcf7 and inhibits Tfh cell differentiation. (C) Mettl14 ablation in Treg cells decreases RORgt expression and blocks the differentiation of naïve
T cells into Th17 cells. (D) ALKBH5 deficiency in CD4+ T cells increases the m6A modification of IFN-g and CXCL2 mRNA, thus decreasing their
mRNA stability and protein expression in CD4+ T cells.
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CD4+ regulatory T (Treg) cells represent differentiated

CD4+ T cells that are transcribed by Foxp3, mediate

immunosuppressive function and prevent the emergence of

deleterious autoimmune diseases. Treg cells express high levels

of IL-2R, which activates STAT5 and is essential for their

immunosuppressive function (101–103). Although in Treg-

specific Mettl3 KO mice, the frequency of Treg cells was

normal, both female and male mice developed severe

autoimmune diseases and were infertile. Moreover, the mice

died from 8-9 weeks and increased the mRNA levels of SOCS

genes. These results suggest the important role of METTL3 in

the immunosuppressive function of Treg cells (104). T-cell-

specific Mettl14 deficiency induced spontaneous colitis in mice

by increasing inflammatory cell infiltration, Th1/Th17 cytokines

and the colonic weight-to-length ratio, which could be rescued

by adoptive transfer of WT Treg cells. Mettl14-deficient Treg

cells showed downregulated RORgt expression and blocked the

differentiation of naïve T cells into Th17 cells (105)(Figure 6C).

ALKBH5, not FTO, promotes naïve CD4+ T cells to induce

adoptive transfer colitis. Additionally, T-cell-specific knockout

ALKBH5 protects mice against EAE due to the increased m6A

modification of interferon-g and C-X-C motif chemokine ligand

2 (CXCL2) mRNA, thus decreasing their mRNA stability and

protein expression in CD4+ T cells (Figure 6D). These changes

resulted in an attenuated CD4+ T-cell response and diminished

recruitment of neutrophils into the central nervous system,

revealing the unexpected specific role of ALKBH5 in

regulating the pathogenicity of CD4+ T cells in autoimmune

disease (106). These studies highlighted some of the m6A

modifiers in their therapeutic potential in antitumour and

autoimmunity, and it would be interesting to decipher the

regulatory networks in T cells and the functions of other RNA

methylations in controlling T-cell differentiation, clonal

expansion and their subsequent effector functions (107).
m6A functions in shaping the local
immune microenvironment

Emerging studies have shown that the local tumor

microenvironment (TME) required for tumor growth and

survival plays important roles in tumor development and

progression. TME is complex and contains not only cancer cells

and stromal cells but also macrophages and distant recruited cells,

such as infiltrating immune cells, characterized by hypoxia,

immune escape, metabolic dysregulation and chronic

inflammation (108, 109). m6A has been widely investigated in

regulating oncogenes or tumor suppressor genes in various

cancers. Accumulating studies have recently reported a new role

of m6A in the antitumour immune response. In addition to

affecting classical immunotherapy, m6A also affects tumor-

associated immune cell activation and infiltration and cytokine

secretion in the tumor microenvironment, which play important
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roles in tumor initiation, progression, metastasis, and treatment

response (110, 111). The tumor immune microenvironment

(TIME) generally consists of the infiltration of multiple

immunosuppressive cells, especially MDSCs and Treg cells, and

is often absent of antitumour immune cells (111, 112).

In recent years, emerging studies have deciphered the vital

role of m6A modifications in the regulation of the local and

systemic TIME, which mediate tumor progression and response

to immunotherapy (113). The analysis of the m6A-related

signatures from The Cancer Genome Atlas (TCGA),

Genotype-Tissue Expression (GTEx) and the Gene Expression

Omnibus (GEO) database revealed a significant relationship

between the diverse m6A clusters and the TIME (114, 115). In

glioma, m6A signatures were associated with classification,

including prognosis, grade, isocitrate dehydrogenase (IDH)

status and 1p19q status. Patients in the high-risk group

showed enhanced stroma and immune scores and a higher

abundance of immune infiltration (116–119). Silencing

ALKBH5 in glioblastoma multiforme (GBM) notably

suppresses hypoxia-induced tumor-associated macrophage

(TAM) recruitment and immunosuppression in allograft

tumors by regulating CXCL8/IL-8 secretion (120). Reduced

METTL3 in hepatocellular carcinoma (HCC) results in

increased infiltration of DCs in the TIME, which leads to the

overall upregulation of major histocompatibility complex

(MHC) molecules, costimulatory molecules, and adhesion

molecules and is closely related to the prognoses of HCC

(121). In addition, overexpressed YTHDF1 in HCC was

associated with low CD3+ and CD8+ T-cell infiltration (122).

ALKBH5 regulated PD-L1 mRNA in a YTHDF2-dependent

manner on monocytes/macrophages and infiltration of

myeloid-derived suppressor-like cells in the TIME of

intrahepatic cholangiocarcinoma (ICC) (123). Alkbh5 in

melanoma and colorectal cancers (CRC) regulates the

metabolism/cytokines and infiltration of immunosuppressive

Treg cel ls and MDSCs, therefore enhancing PD-1

immunotherapy and GVAX vaccination therapy (124, 125). In

addition, Alkbh5 was related to the infiltration of monocytes in

periodontitis, of which regulated m6A mediated the immune

reaction of TNF-family-member receptors and cytokines,

indicating the crucial roles of m6A in the diversity and

complexity of the immune microenvironment of periodontitis

(126). Additionally, Mettl3- or Mettl14-deficient tumors

upregulated cytotoxic tumor-infiltrating CD8+ T cells and

increased the production of IFN-g, Cxcl9 and Cxcl10 in the

TIME of CRC in vivo, thereby enhancing the response to anti-

PD-1 treatment (127). METTL3, WTAP, IGF2BP3, YTHDF1,

HNRNPA2B1 and HNRNPC were markedly increased in

esophageal squamous cell carcinoma (ESCC) and positively

related to the expression of PD-1, whose copy number

dynamically affects the enrichment of tumor-infiltrating

immune cells (128). Consensus clustering for 15 m6A

regulators identified two molecular subtypes (clusters 1/2) in
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head and neck squamous cell carcinoma (HNSCC). Cluster 1

was enriched with G2 M checkpoint, mTORC1 signaling, and

PI3K/AKT/mTOR signaling, while cluster 2 was associated with

favorable prognosis, increased PD-L1, higher immune score and

distinct immune cell infiltration (129). High-risk pancreatic

adenocarcinoma (PAAD) contributed to the enhanced

infiltration of M0 and M2 macrophages and decreased B cells,

naïve T cells, CD8+ T cells and Treg cells (130–133). IGF2BPs, as

functional downstream modulators of circNDUFB2, regulate the

secretion of CXCL10, CXCL11, CCL5, and IFNb in non-small

cell lung cancer (NSCLC) (134, 135). In addition, m6A-related

genes in peripheral blood leukocytes are noninvasive biomarkers

for NCCLC patients (136). Nucleophosmin 1 (NPM1) is a

chameleon protein that shuttles between the nucleus and

cytoplasm. NPM1 is overexpressed in lung adenocarcinoma

(LUAD) and effectively distinguishes LUAD from normal

samples. The expression level of NPM1 in LUAD is markedly

related to tumor stage and prognosis. Multiple database analysis

showed that NPM1 is negatively related to B cells and NK cells.

Moreover, NPM1 expression was significantly correlated with

one m6A modifier-related gene YTHDF2 and five glycolysis-

related genes (ENO1, HK2, LDHA, LDHB and SLC2A1) (137, 138).

Four immune-related genes (IRGs), including CD274, CD8A,
Frontiers in Immunology 12
GZMA and PRF1, were screened and were consistent with the

enrichment of CD8+ T cells and activated memory CD4+ T cells

in the TIME of multiple cancers (132). In breast cancer, the three

m6A clusters (writers, erasers and readers) are correlated with

subsets of the infiltrating immune landscape, including activated

CD8+ T cells, NK cells, activated DCs, macrophages and

Treg cells. The low m6Ascore contributes to the increased

mutation burden, immune activation and survival rates and is

associated with an enhanced response to anti-PD-1/PD-L1

immunotherapy (139–141). In bladder cancer, 9 m6A-related

lncRNAs were dramatically associated with overall survival

outcomes of bladder cancer. The risk score of bladder cancer

was correlated with the infiltration levels of multiple immune

cells, including B cells, plasma cells, Tfh cells, Treg cells, resting

NK cells, neutrophils, and M0, M1 and M2 macrophages, which

indicated the important role of m6A-related lncRNAs in

prognosis and shaping the tumor immune microenvironment

(142, 143), which was also found in papillary thyroid carcinoma

(PTC) (114) and HCC (144). The above studies indicated that

m6A methylation and m6A-related modifications play essential

roles in the differentiation and function of immune cells and

secretion of cytokines, therefore shaping the TIME and

further regulating the response to immunotherapy (Figure 7).
FIGURE 7

m6A modifies the tumor immune microenvironment and regulates tumor progression. m6A writers, erasers and readers regulate the tumor
immune microenvironment in glioma, liver cancer, colorectal cancer, esophageal cancer, pancreatic cancer, lung cancer, breast cancer, and
bladder cancer by controlling different immune cells and the PD-1/PD-L1 immune checkpoint mediating the efficacy of immune therapy.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.988130
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.988130
Th e m6A mod ifi c a t i o n s i n t h e t umo r immune

microenvironment have been extensively studied (Figure 8). In

addition, emerging studies have reported that m6A

modifications can regulate the functions of multiple immune

cells and cytokine secretion and shape the TIME, thus

participating in the progression of cancer. Currently, RNA

modification has become a new direction for studying embryo

development and maternal-fetal immune tolerance. m6A

modifications in the endometrium and ovary have been

reported to be related to multiple gynecological diseases,

including gynecological cancers, adenomyosis, endometriosis,

polycystic ovary syndrome and premature ovarian failure, which

generally contribute to RPL (145, 146). Researchers have

proposed that receptivity at the maternal-fetal interface is

more reminiscent of cancer immunology (35, 147).

Trophoblasts and tumor cells share many similarities,

including invasion, angiogenesis, and immunosuppressive

environments, both of which are supported by an abetting

microenvironment. However, the immunosuppressive

environment in tumors severely influences antitumour

therapy, which is different from the decidual immune

environment (147). Emerging studies of m6A in tumors have

shown potential value and strengthened the functions of m6A in

the decidual local immune microenvironment. The crosstalk

between trophoblasts and decidual immune cells, including
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decidual NK cells, macrophages and T cells, determines the

local immune microenvironment at the maternal-fetal interface,

the imbalance of which may lead to adverse pregnancy

outcomes, such as RPL/RIF and preeclampsia (148). Although

little is known about m6A methylation in trophoblast and

decidual immune cells, knowledge of m6A modifications in

shaping multiple immune cells and the TIME would inspire us

to explore the potential roles of m6A functions in maternal-fetal

immune tolerance by targeting trophoblasts and decidual NK

cells, T cells and macrophages as well as cytokine secretion to

shape the local immune microenvironment, thus affecting

placentation and immune tolerance at the maternal-fetal

interface, the imbalance of which may affect placentation and

disrupt the receptive microenvironment and further lead to

adverse pregnancy, including RPL and RIF. However,

trophoblast cells are more precisely regulated than tumor cells,

and the regulatory mechanisms of m6A in trophoblast and

decidual immune cells remains unknown and requires further

investigation (Figure 8).
Conclusions and future perspectives

Numerous studies have elucidated the crucial roles of m6A-

and m6A-associated regulators in embryogenesis during
FIGURE 8

Insights into m6A modification in the tumor and decidual microenvironment. The m6A modifications in the tumor immune microenvironment
have been extensively studied. However, the role of m6A modifications in decidual immune cells remains largely unknown. The same immune
trajectory of decidual and tumor immune microenvironments encouraged us to study the mechanisms of m6A in decidual immune cells.
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implantation. Additionally, other authors uncovered their

essential roles in the differentiation and function of innate and

adaptive immune cells as well as in shaping the local and

systemic immune microenvironment. Indeed, m6A- and m6A-

associated- regulators target cytokine secretion and multiple

immune cells in the development and metastasis of various

cancers by mediating the response to immunotherapy.

Interestingly, the process of blastocyst implantation was

similar to the metastasis of tumors; currently, the occurrence

of RIF and RPL still disturbs child-bearing age women with

unknown pathologies (35, 149). It is essential to determine the

potential unknown factors causing RPL and RIF to provide clear

targets for reproductive physicians. Although it is relatively

straightforward to diagnose RPL, the progress of predicting

and preventing RPL has been hampered by a lack of a

standardized definition, uncertainties around the pathogenesis

and highly variable clinical presentation. Moreover, the

effectiveness of many medical interventions is controversial

due to the available treatments targeting the putative risk

factors for RPL (150). Therefore, it is urgent to explore the

underlying pathologies that lead to RPL. Dysfunction of

trophoblasts, stromal cells and decidual immune cells

contributes to RPL and RIF. The m6A- and m6A-related-

regulators participate in embryogenesis and shape the local

microenvironment, which draws inspiration from studies in

tumors and provides novel insight for investigating the

potential pathologies causing RPL and RIF. Although some

studies have reported the role of m6A- and m6A-related-

regulators in the function of trophoblasts and are therefore

correlated with pathological pregnancies, the relationship

between m6A-and m6A-related- regulators and maternal

decidual cells and the local immune microenvironment at the

maternal-fetal interface is still unknown and needs further

exploration, which would fill the gap in m6A in the shaping

microenvironment at the maternal-fetal interface.
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